Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > relsn2m | GIF version |
Description: A singleton is a relation iff it has an inhabited domain. (Contributed by Jim Kingdon, 16-Dec-2018.) |
Ref | Expression |
---|---|
relsn2m.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
relsn2m | ⊢ (Rel {𝐴} ↔ ∃𝑥 𝑥 ∈ dom {𝐴}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relsn2m.1 | . . 3 ⊢ 𝐴 ∈ V | |
2 | 1 | relsn 4709 | . 2 ⊢ (Rel {𝐴} ↔ 𝐴 ∈ (V × V)) |
3 | dmsnm 5069 | . 2 ⊢ (𝐴 ∈ (V × V) ↔ ∃𝑥 𝑥 ∈ dom {𝐴}) | |
4 | 2, 3 | bitri 183 | 1 ⊢ (Rel {𝐴} ↔ ∃𝑥 𝑥 ∈ dom {𝐴}) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 104 ∃wex 1480 ∈ wcel 2136 Vcvv 2726 {csn 3576 × cxp 4602 dom cdm 4604 Rel wrel 4609 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-br 3983 df-opab 4044 df-xp 4610 df-rel 4611 df-dm 4614 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |