ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  relsn2m GIF version

Theorem relsn2m 5074
Description: A singleton is a relation iff it has an inhabited domain. (Contributed by Jim Kingdon, 16-Dec-2018.)
Hypothesis
Ref Expression
relsn2m.1 𝐴 ∈ V
Assertion
Ref Expression
relsn2m (Rel {𝐴} ↔ ∃𝑥 𝑥 ∈ dom {𝐴})
Distinct variable group:   𝑥,𝐴

Proof of Theorem relsn2m
StepHypRef Expression
1 relsn2m.1 . . 3 𝐴 ∈ V
21relsn 4709 . 2 (Rel {𝐴} ↔ 𝐴 ∈ (V × V))
3 dmsnm 5069 . 2 (𝐴 ∈ (V × V) ↔ ∃𝑥 𝑥 ∈ dom {𝐴})
42, 3bitri 183 1 (Rel {𝐴} ↔ ∃𝑥 𝑥 ∈ dom {𝐴})
Colors of variables: wff set class
Syntax hints:  wb 104  wex 1480  wcel 2136  Vcvv 2726  {csn 3576   × cxp 4602  dom cdm 4604  Rel wrel 4609
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-br 3983  df-opab 4044  df-xp 4610  df-rel 4611  df-dm 4614
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator