ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  relsn2m GIF version

Theorem relsn2m 5117
Description: A singleton is a relation iff it has an inhabited domain. (Contributed by Jim Kingdon, 16-Dec-2018.)
Hypothesis
Ref Expression
relsn2m.1 𝐴 ∈ V
Assertion
Ref Expression
relsn2m (Rel {𝐴} ↔ ∃𝑥 𝑥 ∈ dom {𝐴})
Distinct variable group:   𝑥,𝐴

Proof of Theorem relsn2m
StepHypRef Expression
1 relsn2m.1 . . 3 𝐴 ∈ V
21relsn 4749 . 2 (Rel {𝐴} ↔ 𝐴 ∈ (V × V))
3 dmsnm 5112 . 2 (𝐴 ∈ (V × V) ↔ ∃𝑥 𝑥 ∈ dom {𝐴})
42, 3bitri 184 1 (Rel {𝐴} ↔ ∃𝑥 𝑥 ∈ dom {𝐴})
Colors of variables: wff set class
Syntax hints:  wb 105  wex 1503  wcel 2160  Vcvv 2752  {csn 3607   × cxp 4642  dom cdm 4644  Rel wrel 4649
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4192  ax-pr 4227
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-v 2754  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-br 4019  df-opab 4080  df-xp 4650  df-rel 4651  df-dm 4654
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator