ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  relsn2m GIF version

Theorem relsn2m 5081
Description: A singleton is a relation iff it has an inhabited domain. (Contributed by Jim Kingdon, 16-Dec-2018.)
Hypothesis
Ref Expression
relsn2m.1 𝐴 ∈ V
Assertion
Ref Expression
relsn2m (Rel {𝐴} ↔ ∃𝑥 𝑥 ∈ dom {𝐴})
Distinct variable group:   𝑥,𝐴

Proof of Theorem relsn2m
StepHypRef Expression
1 relsn2m.1 . . 3 𝐴 ∈ V
21relsn 4716 . 2 (Rel {𝐴} ↔ 𝐴 ∈ (V × V))
3 dmsnm 5076 . 2 (𝐴 ∈ (V × V) ↔ ∃𝑥 𝑥 ∈ dom {𝐴})
42, 3bitri 183 1 (Rel {𝐴} ↔ ∃𝑥 𝑥 ∈ dom {𝐴})
Colors of variables: wff set class
Syntax hints:  wb 104  wex 1485  wcel 2141  Vcvv 2730  {csn 3583   × cxp 4609  dom cdm 4611  Rel wrel 4616
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-br 3990  df-opab 4051  df-xp 4617  df-rel 4618  df-dm 4621
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator