![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > relsn2m | GIF version |
Description: A singleton is a relation iff it has an inhabited domain. (Contributed by Jim Kingdon, 16-Dec-2018.) |
Ref | Expression |
---|---|
relsn2m.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
relsn2m | ⊢ (Rel {𝐴} ↔ ∃𝑥 𝑥 ∈ dom {𝐴}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relsn2m.1 | . . 3 ⊢ 𝐴 ∈ V | |
2 | 1 | relsn 4749 | . 2 ⊢ (Rel {𝐴} ↔ 𝐴 ∈ (V × V)) |
3 | dmsnm 5112 | . 2 ⊢ (𝐴 ∈ (V × V) ↔ ∃𝑥 𝑥 ∈ dom {𝐴}) | |
4 | 2, 3 | bitri 184 | 1 ⊢ (Rel {𝐴} ↔ ∃𝑥 𝑥 ∈ dom {𝐴}) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 105 ∃wex 1503 ∈ wcel 2160 Vcvv 2752 {csn 3607 × cxp 4642 dom cdm 4644 Rel wrel 4649 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2163 ax-ext 2171 ax-sep 4136 ax-pow 4192 ax-pr 4227 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-v 2754 df-un 3148 df-in 3150 df-ss 3157 df-pw 3592 df-sn 3613 df-pr 3614 df-op 3616 df-br 4019 df-opab 4080 df-xp 4650 df-rel 4651 df-dm 4654 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |