ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  relsnopg GIF version

Theorem relsnopg 4779
Description: A singleton of an ordered pair is a relation. (Contributed by NM, 17-May-1998.) (Revised by BJ, 12-Feb-2022.)
Assertion
Ref Expression
relsnopg ((𝐴𝑉𝐵𝑊) → Rel {⟨𝐴, 𝐵⟩})

Proof of Theorem relsnopg
StepHypRef Expression
1 opelvvg 4724 . 2 ((𝐴𝑉𝐵𝑊) → ⟨𝐴, 𝐵⟩ ∈ (V × V))
2 opexg 4272 . . 3 ((𝐴𝑉𝐵𝑊) → ⟨𝐴, 𝐵⟩ ∈ V)
3 relsng 4778 . . 3 (⟨𝐴, 𝐵⟩ ∈ V → (Rel {⟨𝐴, 𝐵⟩} ↔ ⟨𝐴, 𝐵⟩ ∈ (V × V)))
42, 3syl 14 . 2 ((𝐴𝑉𝐵𝑊) → (Rel {⟨𝐴, 𝐵⟩} ↔ ⟨𝐴, 𝐵⟩ ∈ (V × V)))
51, 4mpbird 167 1 ((𝐴𝑉𝐵𝑊) → Rel {⟨𝐴, 𝐵⟩})
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wcel 2176  Vcvv 2772  {csn 3633  cop 3636   × cxp 4673  Rel wrel 4680
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-opab 4106  df-xp 4681  df-rel 4682
This theorem is referenced by:  imasaddfnlemg  13146
  Copyright terms: Public domain W3C validator