![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > relsnopg | GIF version |
Description: A singleton of an ordered pair is a relation. (Contributed by NM, 17-May-1998.) (Revised by BJ, 12-Feb-2022.) |
Ref | Expression |
---|---|
relsnopg | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → Rel {〈𝐴, 𝐵〉}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opelvvg 4709 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 〈𝐴, 𝐵〉 ∈ (V × V)) | |
2 | opexg 4258 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 〈𝐴, 𝐵〉 ∈ V) | |
3 | relsng 4763 | . . 3 ⊢ (〈𝐴, 𝐵〉 ∈ V → (Rel {〈𝐴, 𝐵〉} ↔ 〈𝐴, 𝐵〉 ∈ (V × V))) | |
4 | 2, 3 | syl 14 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (Rel {〈𝐴, 𝐵〉} ↔ 〈𝐴, 𝐵〉 ∈ (V × V))) |
5 | 1, 4 | mpbird 167 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → Rel {〈𝐴, 𝐵〉}) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∈ wcel 2164 Vcvv 2760 {csn 3619 〈cop 3622 × cxp 4658 Rel wrel 4665 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-opab 4092 df-xp 4666 df-rel 4667 |
This theorem is referenced by: imasaddfnlemg 12900 |
Copyright terms: Public domain | W3C validator |