![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > relsnop | GIF version |
Description: A singleton of an ordered pair is a relation. (Contributed by NM, 17-May-1998.) (Revised by Mario Carneiro, 26-Apr-2015.) |
Ref | Expression |
---|---|
relsn.1 | ⊢ 𝐴 ∈ V |
relsnop.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
relsnop | ⊢ Rel {〈𝐴, 𝐵〉} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relsn.1 | . . 3 ⊢ 𝐴 ∈ V | |
2 | relsnop.2 | . . 3 ⊢ 𝐵 ∈ V | |
3 | 1, 2 | opelvv 4484 | . 2 ⊢ 〈𝐴, 𝐵〉 ∈ (V × V) |
4 | 1, 2 | opex 4054 | . . 3 ⊢ 〈𝐴, 𝐵〉 ∈ V |
5 | 4 | relsn 4539 | . 2 ⊢ (Rel {〈𝐴, 𝐵〉} ↔ 〈𝐴, 𝐵〉 ∈ (V × V)) |
6 | 3, 5 | mpbir 144 | 1 ⊢ Rel {〈𝐴, 𝐵〉} |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 1438 Vcvv 2619 {csn 3444 〈cop 3447 × cxp 4434 Rel wrel 4441 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 665 ax-5 1381 ax-7 1382 ax-gen 1383 ax-ie1 1427 ax-ie2 1428 ax-8 1440 ax-10 1441 ax-11 1442 ax-i12 1443 ax-bndl 1444 ax-4 1445 ax-14 1450 ax-17 1464 ax-i9 1468 ax-ial 1472 ax-i5r 1473 ax-ext 2070 ax-sep 3955 ax-pow 4007 ax-pr 4034 |
This theorem depends on definitions: df-bi 115 df-3an 926 df-tru 1292 df-nf 1395 df-sb 1693 df-clab 2075 df-cleq 2081 df-clel 2084 df-nfc 2217 df-ral 2364 df-rex 2365 df-v 2621 df-un 3003 df-in 3005 df-ss 3012 df-pw 3429 df-sn 3450 df-pr 3451 df-op 3453 df-opab 3898 df-xp 4442 df-rel 4443 |
This theorem is referenced by: cnvsn 4908 fsn 5463 |
Copyright terms: Public domain | W3C validator |