ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  relsnop GIF version

Theorem relsnop 4540
Description: A singleton of an ordered pair is a relation. (Contributed by NM, 17-May-1998.) (Revised by Mario Carneiro, 26-Apr-2015.)
Hypotheses
Ref Expression
relsn.1 𝐴 ∈ V
relsnop.2 𝐵 ∈ V
Assertion
Ref Expression
relsnop Rel {⟨𝐴, 𝐵⟩}

Proof of Theorem relsnop
StepHypRef Expression
1 relsn.1 . . 3 𝐴 ∈ V
2 relsnop.2 . . 3 𝐵 ∈ V
31, 2opelvv 4484 . 2 𝐴, 𝐵⟩ ∈ (V × V)
41, 2opex 4054 . . 3 𝐴, 𝐵⟩ ∈ V
54relsn 4539 . 2 (Rel {⟨𝐴, 𝐵⟩} ↔ ⟨𝐴, 𝐵⟩ ∈ (V × V))
63, 5mpbir 144 1 Rel {⟨𝐴, 𝐵⟩}
Colors of variables: wff set class
Syntax hints:  wcel 1438  Vcvv 2619  {csn 3444  cop 3447   × cxp 4434  Rel wrel 4441
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-sep 3955  ax-pow 4007  ax-pr 4034
This theorem depends on definitions:  df-bi 115  df-3an 926  df-tru 1292  df-nf 1395  df-sb 1693  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ral 2364  df-rex 2365  df-v 2621  df-un 3003  df-in 3005  df-ss 3012  df-pw 3429  df-sn 3450  df-pr 3451  df-op 3453  df-opab 3898  df-xp 4442  df-rel 4443
This theorem is referenced by:  cnvsn  4908  fsn  5463
  Copyright terms: Public domain W3C validator