Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > relsnop | GIF version |
Description: A singleton of an ordered pair is a relation. (Contributed by NM, 17-May-1998.) (Revised by Mario Carneiro, 26-Apr-2015.) |
Ref | Expression |
---|---|
relsn.1 | ⊢ 𝐴 ∈ V |
relsnop.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
relsnop | ⊢ Rel {〈𝐴, 𝐵〉} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relsn.1 | . . 3 ⊢ 𝐴 ∈ V | |
2 | relsnop.2 | . . 3 ⊢ 𝐵 ∈ V | |
3 | 1, 2 | opelvv 4654 | . 2 ⊢ 〈𝐴, 𝐵〉 ∈ (V × V) |
4 | 1, 2 | opex 4207 | . . 3 ⊢ 〈𝐴, 𝐵〉 ∈ V |
5 | 4 | relsn 4709 | . 2 ⊢ (Rel {〈𝐴, 𝐵〉} ↔ 〈𝐴, 𝐵〉 ∈ (V × V)) |
6 | 3, 5 | mpbir 145 | 1 ⊢ Rel {〈𝐴, 𝐵〉} |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2136 Vcvv 2726 {csn 3576 〈cop 3579 × cxp 4602 Rel wrel 4609 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-opab 4044 df-xp 4610 df-rel 4611 |
This theorem is referenced by: cnvsn 5086 fsn 5657 |
Copyright terms: Public domain | W3C validator |