ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  relsnop GIF version

Theorem relsnop 4765
Description: A singleton of an ordered pair is a relation. (Contributed by NM, 17-May-1998.) (Revised by Mario Carneiro, 26-Apr-2015.)
Hypotheses
Ref Expression
relsn.1 𝐴 ∈ V
relsnop.2 𝐵 ∈ V
Assertion
Ref Expression
relsnop Rel {⟨𝐴, 𝐵⟩}

Proof of Theorem relsnop
StepHypRef Expression
1 relsn.1 . . 3 𝐴 ∈ V
2 relsnop.2 . . 3 𝐵 ∈ V
31, 2opelvv 4709 . 2 𝐴, 𝐵⟩ ∈ (V × V)
41, 2opex 4258 . . 3 𝐴, 𝐵⟩ ∈ V
54relsn 4764 . 2 (Rel {⟨𝐴, 𝐵⟩} ↔ ⟨𝐴, 𝐵⟩ ∈ (V × V))
63, 5mpbir 146 1 Rel {⟨𝐴, 𝐵⟩}
Colors of variables: wff set class
Syntax hints:  wcel 2164  Vcvv 2760  {csn 3618  cop 3621   × cxp 4657  Rel wrel 4664
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-opab 4091  df-xp 4665  df-rel 4666
This theorem is referenced by:  cnvsn  5148  fsn  5730
  Copyright terms: Public domain W3C validator