ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  relsnop GIF version

Theorem relsnop 4769
Description: A singleton of an ordered pair is a relation. (Contributed by NM, 17-May-1998.) (Revised by Mario Carneiro, 26-Apr-2015.)
Hypotheses
Ref Expression
relsn.1 𝐴 ∈ V
relsnop.2 𝐵 ∈ V
Assertion
Ref Expression
relsnop Rel {⟨𝐴, 𝐵⟩}

Proof of Theorem relsnop
StepHypRef Expression
1 relsn.1 . . 3 𝐴 ∈ V
2 relsnop.2 . . 3 𝐵 ∈ V
31, 2opelvv 4713 . 2 𝐴, 𝐵⟩ ∈ (V × V)
41, 2opex 4262 . . 3 𝐴, 𝐵⟩ ∈ V
54relsn 4768 . 2 (Rel {⟨𝐴, 𝐵⟩} ↔ ⟨𝐴, 𝐵⟩ ∈ (V × V))
63, 5mpbir 146 1 Rel {⟨𝐴, 𝐵⟩}
Colors of variables: wff set class
Syntax hints:  wcel 2167  Vcvv 2763  {csn 3622  cop 3625   × cxp 4661  Rel wrel 4668
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-opab 4095  df-xp 4669  df-rel 4670
This theorem is referenced by:  cnvsn  5152  fsn  5734
  Copyright terms: Public domain W3C validator