ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  snss GIF version

Theorem snss 3615
Description: The singleton of an element of a class is a subset of the class. Theorem 7.4 of [Quine] p. 49. (Contributed by NM, 5-Aug-1993.)
Hypothesis
Ref Expression
snss.1 𝐴 ∈ V
Assertion
Ref Expression
snss (𝐴𝐵 ↔ {𝐴} ⊆ 𝐵)

Proof of Theorem snss
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 velsn 3510 . . . 4 (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴)
21imbi1i 237 . . 3 ((𝑥 ∈ {𝐴} → 𝑥𝐵) ↔ (𝑥 = 𝐴𝑥𝐵))
32albii 1429 . 2 (∀𝑥(𝑥 ∈ {𝐴} → 𝑥𝐵) ↔ ∀𝑥(𝑥 = 𝐴𝑥𝐵))
4 dfss2 3052 . 2 ({𝐴} ⊆ 𝐵 ↔ ∀𝑥(𝑥 ∈ {𝐴} → 𝑥𝐵))
5 snss.1 . . 3 𝐴 ∈ V
65clel2 2788 . 2 (𝐴𝐵 ↔ ∀𝑥(𝑥 = 𝐴𝑥𝐵))
73, 4, 63bitr4ri 212 1 (𝐴𝐵 ↔ {𝐴} ⊆ 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104  wal 1312   = wceq 1314  wcel 1463  Vcvv 2657  wss 3037  {csn 3493
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097
This theorem depends on definitions:  df-bi 116  df-tru 1317  df-nf 1420  df-sb 1719  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2244  df-v 2659  df-in 3043  df-ss 3050  df-sn 3499
This theorem is referenced by:  snssg  3622  prss  3642  tpss  3651  snelpw  4095  sspwb  4098  mss  4108  exss  4109  reg2exmidlema  4409  elnn  4479  relsn  4604  fnressn  5560  un0mulcl  8915  nn0ssz  8976  fimaxre2  10890  fsum2dlemstep  11095  fsumabs  11126  fsumiun  11138  bdsnss  12763
  Copyright terms: Public domain W3C validator