![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > snss | GIF version |
Description: The singleton of an element of a class is a subset of the class. Theorem 7.4 of [Quine] p. 49. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
snss.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
snss | ⊢ (𝐴 ∈ 𝐵 ↔ {𝐴} ⊆ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | velsn 3510 | . . . 4 ⊢ (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴) | |
2 | 1 | imbi1i 237 | . . 3 ⊢ ((𝑥 ∈ {𝐴} → 𝑥 ∈ 𝐵) ↔ (𝑥 = 𝐴 → 𝑥 ∈ 𝐵)) |
3 | 2 | albii 1429 | . 2 ⊢ (∀𝑥(𝑥 ∈ {𝐴} → 𝑥 ∈ 𝐵) ↔ ∀𝑥(𝑥 = 𝐴 → 𝑥 ∈ 𝐵)) |
4 | dfss2 3052 | . 2 ⊢ ({𝐴} ⊆ 𝐵 ↔ ∀𝑥(𝑥 ∈ {𝐴} → 𝑥 ∈ 𝐵)) | |
5 | snss.1 | . . 3 ⊢ 𝐴 ∈ V | |
6 | 5 | clel2 2788 | . 2 ⊢ (𝐴 ∈ 𝐵 ↔ ∀𝑥(𝑥 = 𝐴 → 𝑥 ∈ 𝐵)) |
7 | 3, 4, 6 | 3bitr4ri 212 | 1 ⊢ (𝐴 ∈ 𝐵 ↔ {𝐴} ⊆ 𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 ∀wal 1312 = wceq 1314 ∈ wcel 1463 Vcvv 2657 ⊆ wss 3037 {csn 3493 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 681 ax-5 1406 ax-7 1407 ax-gen 1408 ax-ie1 1452 ax-ie2 1453 ax-8 1465 ax-10 1466 ax-11 1467 ax-i12 1468 ax-bndl 1469 ax-4 1470 ax-17 1489 ax-i9 1493 ax-ial 1497 ax-i5r 1498 ax-ext 2097 |
This theorem depends on definitions: df-bi 116 df-tru 1317 df-nf 1420 df-sb 1719 df-clab 2102 df-cleq 2108 df-clel 2111 df-nfc 2244 df-v 2659 df-in 3043 df-ss 3050 df-sn 3499 |
This theorem is referenced by: snssg 3622 prss 3642 tpss 3651 snelpw 4095 sspwb 4098 mss 4108 exss 4109 reg2exmidlema 4409 elnn 4479 relsn 4604 fnressn 5560 un0mulcl 8915 nn0ssz 8976 fimaxre2 10890 fsum2dlemstep 11095 fsumabs 11126 fsumiun 11138 bdsnss 12763 |
Copyright terms: Public domain | W3C validator |