| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > snss | GIF version | ||
| Description: The singleton of an element of a class is a subset of the class (inference form of snssg 3757). Theorem 7.4 of [Quine] p. 49. (Contributed by NM, 21-Jun-1993.) (Proof shortened by BJ, 1-Jan-2025.) |
| Ref | Expression |
|---|---|
| snss.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| snss | ⊢ (𝐴 ∈ 𝐵 ↔ {𝐴} ⊆ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snss.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | snssg 3757 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∈ 𝐵 ↔ {𝐴} ⊆ 𝐵)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ∈ 𝐵 ↔ {𝐴} ⊆ 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 ∈ wcel 2167 Vcvv 2763 ⊆ wss 3157 {csn 3623 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-in 3163 df-ss 3170 df-sn 3629 |
| This theorem is referenced by: snssgOLD 3759 prss 3779 tpss 3789 snelpw 4247 sspwb 4250 mss 4260 exss 4261 reg2exmidlema 4571 elomssom 4642 relsn 4769 fnressn 5751 un0mulcl 9300 nn0ssz 9361 fimaxre2 11409 fsum2dlemstep 11616 fsumabs 11647 fsumiun 11659 fprod2dlemstep 11804 dvmptfsum 15045 elply2 15055 elplyd 15061 ply1term 15063 plymullem 15070 bdsnss 15603 |
| Copyright terms: Public domain | W3C validator |