| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > snss | GIF version | ||
| Description: The singleton of an element of a class is a subset of the class (inference form of snssg 3756). Theorem 7.4 of [Quine] p. 49. (Contributed by NM, 21-Jun-1993.) (Proof shortened by BJ, 1-Jan-2025.) |
| Ref | Expression |
|---|---|
| snss.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| snss | ⊢ (𝐴 ∈ 𝐵 ↔ {𝐴} ⊆ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snss.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | snssg 3756 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∈ 𝐵 ↔ {𝐴} ⊆ 𝐵)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ∈ 𝐵 ↔ {𝐴} ⊆ 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 ∈ wcel 2167 Vcvv 2763 ⊆ wss 3157 {csn 3622 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-in 3163 df-ss 3170 df-sn 3628 |
| This theorem is referenced by: snssgOLD 3758 prss 3778 tpss 3788 snelpw 4246 sspwb 4249 mss 4259 exss 4260 reg2exmidlema 4570 elomssom 4641 relsn 4768 fnressn 5748 un0mulcl 9283 nn0ssz 9344 fimaxre2 11392 fsum2dlemstep 11599 fsumabs 11630 fsumiun 11642 fprod2dlemstep 11787 dvmptfsum 14961 elply2 14971 elplyd 14977 ply1term 14979 plymullem 14986 bdsnss 15519 |
| Copyright terms: Public domain | W3C validator |