| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > snss | GIF version | ||
| Description: The singleton of an element of a class is a subset of the class (inference form of snssg 3770). Theorem 7.4 of [Quine] p. 49. (Contributed by NM, 21-Jun-1993.) (Proof shortened by BJ, 1-Jan-2025.) |
| Ref | Expression |
|---|---|
| snss.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| snss | ⊢ (𝐴 ∈ 𝐵 ↔ {𝐴} ⊆ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snss.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | snssg 3770 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∈ 𝐵 ↔ {𝐴} ⊆ 𝐵)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ∈ 𝐵 ↔ {𝐴} ⊆ 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 ∈ wcel 2177 Vcvv 2773 ⊆ wss 3168 {csn 3635 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-v 2775 df-in 3174 df-ss 3181 df-sn 3641 |
| This theorem is referenced by: snssgOLD 3772 prss 3792 tpss 3802 snelpw 4262 sspwb 4265 mss 4275 exss 4276 reg2exmidlema 4587 elomssom 4658 relsn 4785 fnressn 5780 un0mulcl 9342 nn0ssz 9403 fimaxre2 11588 fsum2dlemstep 11795 fsumabs 11826 fsumiun 11838 fprod2dlemstep 11983 dvmptfsum 15247 elply2 15257 elplyd 15263 ply1term 15265 plymullem 15272 bdsnss 15923 |
| Copyright terms: Public domain | W3C validator |