| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cats2catd | GIF version | ||
| Description: Closure of concatenation of concatenations with singleton words. (Contributed by AV, 1-Mar-2021.) (Revised by Jim Kingdon, 19-Jan-2026.) |
| Ref | Expression |
|---|---|
| cats2catd.b | ⊢ (𝜑 → 𝐵 ∈ Word V) |
| cats2catd.d | ⊢ (𝜑 → 𝐷 ∈ Word V) |
| cats2catd.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
| cats2catd.y | ⊢ (𝜑 → 𝑌 ∈ 𝑊) |
| cats2catd.a | ⊢ (𝜑 → 𝐴 = (𝐵 ++ 〈“𝑋”〉)) |
| cats2catd.c | ⊢ (𝜑 → 𝐶 = (〈“𝑌”〉 ++ 𝐷)) |
| Ref | Expression |
|---|---|
| cats2catd | ⊢ (𝜑 → (𝐴 ++ 𝐶) = ((𝐵 ++ 〈“𝑋𝑌”〉) ++ 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cats2catd.a | . . 3 ⊢ (𝜑 → 𝐴 = (𝐵 ++ 〈“𝑋”〉)) | |
| 2 | cats2catd.c | . . 3 ⊢ (𝜑 → 𝐶 = (〈“𝑌”〉 ++ 𝐷)) | |
| 3 | 1, 2 | oveq12d 5987 | . 2 ⊢ (𝜑 → (𝐴 ++ 𝐶) = ((𝐵 ++ 〈“𝑋”〉) ++ (〈“𝑌”〉 ++ 𝐷))) |
| 4 | cats2catd.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ Word V) | |
| 5 | cats2catd.x | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
| 6 | 5 | s1cld 11116 | . . . . 5 ⊢ (𝜑 → 〈“𝑋”〉 ∈ Word 𝑉) |
| 7 | wrdv 11049 | . . . . 5 ⊢ (〈“𝑋”〉 ∈ Word 𝑉 → 〈“𝑋”〉 ∈ Word V) | |
| 8 | 6, 7 | syl 14 | . . . 4 ⊢ (𝜑 → 〈“𝑋”〉 ∈ Word V) |
| 9 | ccatcl 11089 | . . . 4 ⊢ ((𝐵 ∈ Word V ∧ 〈“𝑋”〉 ∈ Word V) → (𝐵 ++ 〈“𝑋”〉) ∈ Word V) | |
| 10 | 4, 8, 9 | syl2anc 411 | . . 3 ⊢ (𝜑 → (𝐵 ++ 〈“𝑋”〉) ∈ Word V) |
| 11 | cats2catd.y | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ 𝑊) | |
| 12 | 11 | s1cld 11116 | . . . 4 ⊢ (𝜑 → 〈“𝑌”〉 ∈ Word 𝑊) |
| 13 | wrdv 11049 | . . . 4 ⊢ (〈“𝑌”〉 ∈ Word 𝑊 → 〈“𝑌”〉 ∈ Word V) | |
| 14 | 12, 13 | syl 14 | . . 3 ⊢ (𝜑 → 〈“𝑌”〉 ∈ Word V) |
| 15 | cats2catd.d | . . 3 ⊢ (𝜑 → 𝐷 ∈ Word V) | |
| 16 | ccatass 11104 | . . 3 ⊢ (((𝐵 ++ 〈“𝑋”〉) ∈ Word V ∧ 〈“𝑌”〉 ∈ Word V ∧ 𝐷 ∈ Word V) → (((𝐵 ++ 〈“𝑋”〉) ++ 〈“𝑌”〉) ++ 𝐷) = ((𝐵 ++ 〈“𝑋”〉) ++ (〈“𝑌”〉 ++ 𝐷))) | |
| 17 | 10, 14, 15, 16 | syl3anc 1250 | . 2 ⊢ (𝜑 → (((𝐵 ++ 〈“𝑋”〉) ++ 〈“𝑌”〉) ++ 𝐷) = ((𝐵 ++ 〈“𝑋”〉) ++ (〈“𝑌”〉 ++ 𝐷))) |
| 18 | ccatass 11104 | . . . . 5 ⊢ ((𝐵 ∈ Word V ∧ 〈“𝑋”〉 ∈ Word V ∧ 〈“𝑌”〉 ∈ Word V) → ((𝐵 ++ 〈“𝑋”〉) ++ 〈“𝑌”〉) = (𝐵 ++ (〈“𝑋”〉 ++ 〈“𝑌”〉))) | |
| 19 | 4, 8, 14, 18 | syl3anc 1250 | . . . 4 ⊢ (𝜑 → ((𝐵 ++ 〈“𝑋”〉) ++ 〈“𝑌”〉) = (𝐵 ++ (〈“𝑋”〉 ++ 〈“𝑌”〉))) |
| 20 | df-s2 11249 | . . . . . 6 ⊢ 〈“𝑋𝑌”〉 = (〈“𝑋”〉 ++ 〈“𝑌”〉) | |
| 21 | 20 | eqcomi 2211 | . . . . 5 ⊢ (〈“𝑋”〉 ++ 〈“𝑌”〉) = 〈“𝑋𝑌”〉 |
| 22 | 21 | oveq2i 5980 | . . . 4 ⊢ (𝐵 ++ (〈“𝑋”〉 ++ 〈“𝑌”〉)) = (𝐵 ++ 〈“𝑋𝑌”〉) |
| 23 | 19, 22 | eqtrdi 2256 | . . 3 ⊢ (𝜑 → ((𝐵 ++ 〈“𝑋”〉) ++ 〈“𝑌”〉) = (𝐵 ++ 〈“𝑋𝑌”〉)) |
| 24 | 23 | oveq1d 5984 | . 2 ⊢ (𝜑 → (((𝐵 ++ 〈“𝑋”〉) ++ 〈“𝑌”〉) ++ 𝐷) = ((𝐵 ++ 〈“𝑋𝑌”〉) ++ 𝐷)) |
| 25 | 3, 17, 24 | 3eqtr2d 2246 | 1 ⊢ (𝜑 → (𝐴 ++ 𝐶) = ((𝐵 ++ 〈“𝑋𝑌”〉) ++ 𝐷)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ∈ wcel 2178 Vcvv 2777 (class class class)co 5969 Word cword 11033 ++ cconcat 11086 〈“cs1 11109 〈“cs2 11242 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-coll 4176 ax-sep 4179 ax-nul 4187 ax-pow 4235 ax-pr 4270 ax-un 4499 ax-setind 4604 ax-iinf 4655 ax-cnex 8053 ax-resscn 8054 ax-1cn 8055 ax-1re 8056 ax-icn 8057 ax-addcl 8058 ax-addrcl 8059 ax-mulcl 8060 ax-addcom 8062 ax-addass 8064 ax-distr 8066 ax-i2m1 8067 ax-0lt1 8068 ax-0id 8070 ax-rnegex 8071 ax-cnre 8073 ax-pre-ltirr 8074 ax-pre-ltwlin 8075 ax-pre-lttrn 8076 ax-pre-apti 8077 ax-pre-ltadd 8078 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-reu 2493 df-rab 2495 df-v 2779 df-sbc 3007 df-csb 3103 df-dif 3177 df-un 3179 df-in 3181 df-ss 3188 df-nul 3470 df-if 3581 df-pw 3629 df-sn 3650 df-pr 3651 df-op 3653 df-uni 3866 df-int 3901 df-iun 3944 df-br 4061 df-opab 4123 df-mpt 4124 df-tr 4160 df-id 4359 df-iord 4432 df-on 4434 df-ilim 4435 df-suc 4437 df-iom 4658 df-xp 4700 df-rel 4701 df-cnv 4702 df-co 4703 df-dm 4704 df-rn 4705 df-res 4706 df-ima 4707 df-iota 5252 df-fun 5293 df-fn 5294 df-f 5295 df-f1 5296 df-fo 5297 df-f1o 5298 df-fv 5299 df-riota 5924 df-ov 5972 df-oprab 5973 df-mpo 5974 df-1st 6251 df-2nd 6252 df-recs 6416 df-frec 6502 df-1o 6527 df-er 6645 df-en 6853 df-dom 6854 df-fin 6855 df-pnf 8146 df-mnf 8147 df-xr 8148 df-ltxr 8149 df-le 8150 df-sub 8282 df-neg 8283 df-inn 9074 df-n0 9333 df-z 9410 df-uz 9686 df-fz 10168 df-fzo 10302 df-ihash 10960 df-word 11034 df-concat 11087 df-s1 11110 df-s2 11249 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |