| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sbcbr1g | GIF version | ||
| Description: Move substitution in and out of a binary relation. (Contributed by NM, 13-Dec-2005.) |
| Ref | Expression |
|---|---|
| sbcbr1g | ⊢ (𝐴 ∈ 𝐷 → ([𝐴 / 𝑥]𝐵𝑅𝐶 ↔ ⦋𝐴 / 𝑥⦌𝐵𝑅𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbcbr12g 4118 | . 2 ⊢ (𝐴 ∈ 𝐷 → ([𝐴 / 𝑥]𝐵𝑅𝐶 ↔ ⦋𝐴 / 𝑥⦌𝐵𝑅⦋𝐴 / 𝑥⦌𝐶)) | |
| 2 | csbconstg 3118 | . . 3 ⊢ (𝐴 ∈ 𝐷 → ⦋𝐴 / 𝑥⦌𝐶 = 𝐶) | |
| 3 | 2 | breq2d 4074 | . 2 ⊢ (𝐴 ∈ 𝐷 → (⦋𝐴 / 𝑥⦌𝐵𝑅⦋𝐴 / 𝑥⦌𝐶 ↔ ⦋𝐴 / 𝑥⦌𝐵𝑅𝐶)) |
| 4 | 1, 3 | bitrd 188 | 1 ⊢ (𝐴 ∈ 𝐷 → ([𝐴 / 𝑥]𝐵𝑅𝐶 ↔ ⦋𝐴 / 𝑥⦌𝐵𝑅𝐶)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∈ wcel 2180 [wsbc 3008 ⦋csb 3104 class class class wbr 4062 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-ext 2191 |
| This theorem depends on definitions: df-bi 117 df-3an 985 df-tru 1378 df-nf 1487 df-sb 1789 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-v 2781 df-sbc 3009 df-csb 3105 df-un 3181 df-sn 3652 df-pr 3653 df-op 3655 df-br 4063 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |