| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sbcbr1g | GIF version | ||
| Description: Move substitution in and out of a binary relation. (Contributed by NM, 13-Dec-2005.) |
| Ref | Expression |
|---|---|
| sbcbr1g | ⊢ (𝐴 ∈ 𝐷 → ([𝐴 / 𝑥]𝐵𝑅𝐶 ↔ ⦋𝐴 / 𝑥⦌𝐵𝑅𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbcbr12g 4139 | . 2 ⊢ (𝐴 ∈ 𝐷 → ([𝐴 / 𝑥]𝐵𝑅𝐶 ↔ ⦋𝐴 / 𝑥⦌𝐵𝑅⦋𝐴 / 𝑥⦌𝐶)) | |
| 2 | csbconstg 3138 | . . 3 ⊢ (𝐴 ∈ 𝐷 → ⦋𝐴 / 𝑥⦌𝐶 = 𝐶) | |
| 3 | 2 | breq2d 4095 | . 2 ⊢ (𝐴 ∈ 𝐷 → (⦋𝐴 / 𝑥⦌𝐵𝑅⦋𝐴 / 𝑥⦌𝐶 ↔ ⦋𝐴 / 𝑥⦌𝐵𝑅𝐶)) |
| 4 | 1, 3 | bitrd 188 | 1 ⊢ (𝐴 ∈ 𝐷 → ([𝐴 / 𝑥]𝐵𝑅𝐶 ↔ ⦋𝐴 / 𝑥⦌𝐵𝑅𝐶)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∈ wcel 2200 [wsbc 3028 ⦋csb 3124 class class class wbr 4083 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-sbc 3029 df-csb 3125 df-un 3201 df-sn 3672 df-pr 3673 df-op 3675 df-br 4084 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |