| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cnvopab | GIF version | ||
| Description: The converse of a class abstraction of ordered pairs. (Contributed by NM, 11-Dec-2003.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| Ref | Expression |
|---|---|
| cnvopab | ⊢ ◡{〈𝑥, 𝑦〉 ∣ 𝜑} = {〈𝑦, 𝑥〉 ∣ 𝜑} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relcnv 5048 | . 2 ⊢ Rel ◡{〈𝑥, 𝑦〉 ∣ 𝜑} | |
| 2 | relopab 4793 | . 2 ⊢ Rel {〈𝑦, 𝑥〉 ∣ 𝜑} | |
| 3 | opelopabsbALT 4294 | . . . 4 ⊢ (〈𝑤, 𝑧〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ [𝑧 / 𝑦][𝑤 / 𝑥]𝜑) | |
| 4 | sbcom2 2006 | . . . 4 ⊢ ([𝑧 / 𝑦][𝑤 / 𝑥]𝜑 ↔ [𝑤 / 𝑥][𝑧 / 𝑦]𝜑) | |
| 5 | 3, 4 | bitri 184 | . . 3 ⊢ (〈𝑤, 𝑧〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ [𝑤 / 𝑥][𝑧 / 𝑦]𝜑) |
| 6 | vex 2766 | . . . 4 ⊢ 𝑧 ∈ V | |
| 7 | vex 2766 | . . . 4 ⊢ 𝑤 ∈ V | |
| 8 | 6, 7 | opelcnv 4849 | . . 3 ⊢ (〈𝑧, 𝑤〉 ∈ ◡{〈𝑥, 𝑦〉 ∣ 𝜑} ↔ 〈𝑤, 𝑧〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑}) |
| 9 | opelopabsbALT 4294 | . . 3 ⊢ (〈𝑧, 𝑤〉 ∈ {〈𝑦, 𝑥〉 ∣ 𝜑} ↔ [𝑤 / 𝑥][𝑧 / 𝑦]𝜑) | |
| 10 | 5, 8, 9 | 3bitr4i 212 | . 2 ⊢ (〈𝑧, 𝑤〉 ∈ ◡{〈𝑥, 𝑦〉 ∣ 𝜑} ↔ 〈𝑧, 𝑤〉 ∈ {〈𝑦, 𝑥〉 ∣ 𝜑}) |
| 11 | 1, 2, 10 | eqrelriiv 4758 | 1 ⊢ ◡{〈𝑥, 𝑦〉 ∣ 𝜑} = {〈𝑦, 𝑥〉 ∣ 𝜑} |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1364 [wsb 1776 ∈ wcel 2167 〈cop 3626 {copab 4094 ◡ccnv 4663 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-br 4035 df-opab 4096 df-xp 4670 df-rel 4671 df-cnv 4672 |
| This theorem is referenced by: mptcnv 5073 cnvxp 5089 mptpreima 5164 f1ocnvd 6129 cnvoprab 6301 mapsncnv 6763 lgsquadlem3 15404 |
| Copyright terms: Public domain | W3C validator |