ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isumss2 GIF version

Theorem isumss2 11162
Description: Change the index set of a sum by adding zeroes. The nonzero elements are in the contained set 𝐴 and the added zeroes compose the rest of the containing set 𝐵 which needs to be summable. (Contributed by Mario Carneiro, 15-Jul-2013.) (Revised by Jim Kingdon, 24-Sep-2022.)
Hypotheses
Ref Expression
isumss2.ss (𝜑𝐴𝐵)
isumss2.adc (𝜑 → ∀𝑗𝐵 DECID 𝑗𝐴)
isumss2.c (𝜑 → ∀𝑘𝐴 𝐶 ∈ ℂ)
isumss2.b (𝜑 → ((𝑀 ∈ ℤ ∧ 𝐵 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐵) ∨ 𝐵 ∈ Fin))
Assertion
Ref Expression
isumss2 (𝜑 → Σ𝑘𝐴 𝐶 = Σ𝑘𝐵 if(𝑘𝐴, 𝐶, 0))
Distinct variable groups:   𝐴,𝑗   𝐴,𝑘   𝐵,𝑗   𝐵,𝑘   𝑗,𝑀
Allowed substitution hints:   𝜑(𝑗,𝑘)   𝐶(𝑗,𝑘)   𝑀(𝑘)

Proof of Theorem isumss2
Dummy variables 𝑎 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isumss2.ss . . . . 5 (𝜑𝐴𝐵)
21adantr 274 . . . 4 ((𝜑 ∧ (𝑀 ∈ ℤ ∧ 𝐵 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐵)) → 𝐴𝐵)
3 isumss2.c . . . . . 6 (𝜑 → ∀𝑘𝐴 𝐶 ∈ ℂ)
4 iftrue 3479 . . . . . . . 8 (𝑚𝐴 → if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0) = 𝑚 / 𝑘𝐶)
54adantl 275 . . . . . . 7 ((∀𝑘𝐴 𝐶 ∈ ℂ ∧ 𝑚𝐴) → if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0) = 𝑚 / 𝑘𝐶)
6 nfcsb1v 3035 . . . . . . . . . 10 𝑘𝑚 / 𝑘𝐶
76nfel1 2292 . . . . . . . . 9 𝑘𝑚 / 𝑘𝐶 ∈ ℂ
8 csbeq1a 3012 . . . . . . . . . 10 (𝑘 = 𝑚𝐶 = 𝑚 / 𝑘𝐶)
98eleq1d 2208 . . . . . . . . 9 (𝑘 = 𝑚 → (𝐶 ∈ ℂ ↔ 𝑚 / 𝑘𝐶 ∈ ℂ))
107, 9rspc 2783 . . . . . . . 8 (𝑚𝐴 → (∀𝑘𝐴 𝐶 ∈ ℂ → 𝑚 / 𝑘𝐶 ∈ ℂ))
1110impcom 124 . . . . . . 7 ((∀𝑘𝐴 𝐶 ∈ ℂ ∧ 𝑚𝐴) → 𝑚 / 𝑘𝐶 ∈ ℂ)
125, 11eqeltrd 2216 . . . . . 6 ((∀𝑘𝐴 𝐶 ∈ ℂ ∧ 𝑚𝐴) → if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0) ∈ ℂ)
133, 12sylan 281 . . . . 5 ((𝜑𝑚𝐴) → if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0) ∈ ℂ)
1413adantlr 468 . . . 4 (((𝜑 ∧ (𝑀 ∈ ℤ ∧ 𝐵 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐵)) ∧ 𝑚𝐴) → if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0) ∈ ℂ)
15 eldifn 3199 . . . . . 6 (𝑚 ∈ (𝐵𝐴) → ¬ 𝑚𝐴)
1615iffalsed 3484 . . . . 5 (𝑚 ∈ (𝐵𝐴) → if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0) = 0)
1716adantl 275 . . . 4 (((𝜑 ∧ (𝑀 ∈ ℤ ∧ 𝐵 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐵)) ∧ 𝑚 ∈ (𝐵𝐴)) → if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0) = 0)
18 isumss2.adc . . . . . . . . . 10 (𝜑 → ∀𝑗𝐵 DECID 𝑗𝐴)
1918adantr 274 . . . . . . . . 9 ((𝜑 ∧ (𝑀 ∈ ℤ ∧ 𝐵 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐵)) → ∀𝑗𝐵 DECID 𝑗𝐴)
20 eleq1w 2200 . . . . . . . . . . 11 (𝑗 = 𝑎 → (𝑗𝐴𝑎𝐴))
2120dcbid 823 . . . . . . . . . 10 (𝑗 = 𝑎 → (DECID 𝑗𝐴DECID 𝑎𝐴))
2221cbvralv 2654 . . . . . . . . 9 (∀𝑗𝐵 DECID 𝑗𝐴 ↔ ∀𝑎𝐵 DECID 𝑎𝐴)
2319, 22sylib 121 . . . . . . . 8 ((𝜑 ∧ (𝑀 ∈ ℤ ∧ 𝐵 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐵)) → ∀𝑎𝐵 DECID 𝑎𝐴)
2423r19.21bi 2520 . . . . . . 7 (((𝜑 ∧ (𝑀 ∈ ℤ ∧ 𝐵 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐵)) ∧ 𝑎𝐵) → DECID 𝑎𝐴)
2524adantlr 468 . . . . . 6 ((((𝜑 ∧ (𝑀 ∈ ℤ ∧ 𝐵 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐵)) ∧ 𝑎 ∈ (ℤ𝑀)) ∧ 𝑎𝐵) → DECID 𝑎𝐴)
262adantr 274 . . . . . . . . . 10 (((𝜑 ∧ (𝑀 ∈ ℤ ∧ 𝐵 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐵)) ∧ 𝑎 ∈ (ℤ𝑀)) → 𝐴𝐵)
2726ssneld 3099 . . . . . . . . 9 (((𝜑 ∧ (𝑀 ∈ ℤ ∧ 𝐵 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐵)) ∧ 𝑎 ∈ (ℤ𝑀)) → (¬ 𝑎𝐵 → ¬ 𝑎𝐴))
2827imp 123 . . . . . . . 8 ((((𝜑 ∧ (𝑀 ∈ ℤ ∧ 𝐵 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐵)) ∧ 𝑎 ∈ (ℤ𝑀)) ∧ ¬ 𝑎𝐵) → ¬ 𝑎𝐴)
2928olcd 723 . . . . . . 7 ((((𝜑 ∧ (𝑀 ∈ ℤ ∧ 𝐵 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐵)) ∧ 𝑎 ∈ (ℤ𝑀)) ∧ ¬ 𝑎𝐵) → (𝑎𝐴 ∨ ¬ 𝑎𝐴))
30 df-dc 820 . . . . . . 7 (DECID 𝑎𝐴 ↔ (𝑎𝐴 ∨ ¬ 𝑎𝐴))
3129, 30sylibr 133 . . . . . 6 ((((𝜑 ∧ (𝑀 ∈ ℤ ∧ 𝐵 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐵)) ∧ 𝑎 ∈ (ℤ𝑀)) ∧ ¬ 𝑎𝐵) → DECID 𝑎𝐴)
32 eleq1w 2200 . . . . . . . . 9 (𝑗 = 𝑎 → (𝑗𝐵𝑎𝐵))
3332dcbid 823 . . . . . . . 8 (𝑗 = 𝑎 → (DECID 𝑗𝐵DECID 𝑎𝐵))
34 simplr3 1025 . . . . . . . 8 (((𝜑 ∧ (𝑀 ∈ ℤ ∧ 𝐵 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐵)) ∧ 𝑎 ∈ (ℤ𝑀)) → ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐵)
35 simpr 109 . . . . . . . 8 (((𝜑 ∧ (𝑀 ∈ ℤ ∧ 𝐵 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐵)) ∧ 𝑎 ∈ (ℤ𝑀)) → 𝑎 ∈ (ℤ𝑀))
3633, 34, 35rspcdva 2794 . . . . . . 7 (((𝜑 ∧ (𝑀 ∈ ℤ ∧ 𝐵 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐵)) ∧ 𝑎 ∈ (ℤ𝑀)) → DECID 𝑎𝐵)
37 exmiddc 821 . . . . . . 7 (DECID 𝑎𝐵 → (𝑎𝐵 ∨ ¬ 𝑎𝐵))
3836, 37syl 14 . . . . . 6 (((𝜑 ∧ (𝑀 ∈ ℤ ∧ 𝐵 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐵)) ∧ 𝑎 ∈ (ℤ𝑀)) → (𝑎𝐵 ∨ ¬ 𝑎𝐵))
3925, 31, 38mpjaodan 787 . . . . 5 (((𝜑 ∧ (𝑀 ∈ ℤ ∧ 𝐵 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐵)) ∧ 𝑎 ∈ (ℤ𝑀)) → DECID 𝑎𝐴)
4039ralrimiva 2505 . . . 4 ((𝜑 ∧ (𝑀 ∈ ℤ ∧ 𝐵 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐵)) → ∀𝑎 ∈ (ℤ𝑀)DECID 𝑎𝐴)
41 simpr1 987 . . . 4 ((𝜑 ∧ (𝑀 ∈ ℤ ∧ 𝐵 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐵)) → 𝑀 ∈ ℤ)
42 simpr2 988 . . . 4 ((𝜑 ∧ (𝑀 ∈ ℤ ∧ 𝐵 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐵)) → 𝐵 ⊆ (ℤ𝑀))
43 simpr3 989 . . . . 5 ((𝜑 ∧ (𝑀 ∈ ℤ ∧ 𝐵 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐵)) → ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐵)
4433cbvralv 2654 . . . . 5 (∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐵 ↔ ∀𝑎 ∈ (ℤ𝑀)DECID 𝑎𝐵)
4543, 44sylib 121 . . . 4 ((𝜑 ∧ (𝑀 ∈ ℤ ∧ 𝐵 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐵)) → ∀𝑎 ∈ (ℤ𝑀)DECID 𝑎𝐵)
462, 14, 17, 40, 41, 42, 45isumss 11160 . . 3 ((𝜑 ∧ (𝑀 ∈ ℤ ∧ 𝐵 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐵)) → Σ𝑚𝐴 if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0) = Σ𝑚𝐵 if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0))
471adantr 274 . . . 4 ((𝜑𝐵 ∈ Fin) → 𝐴𝐵)
4813adantlr 468 . . . 4 (((𝜑𝐵 ∈ Fin) ∧ 𝑚𝐴) → if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0) ∈ ℂ)
4916adantl 275 . . . 4 (((𝜑𝐵 ∈ Fin) ∧ 𝑚 ∈ (𝐵𝐴)) → if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0) = 0)
5018adantr 274 . . . 4 ((𝜑𝐵 ∈ Fin) → ∀𝑗𝐵 DECID 𝑗𝐴)
51 simpr 109 . . . 4 ((𝜑𝐵 ∈ Fin) → 𝐵 ∈ Fin)
5247, 48, 49, 50, 51fisumss 11161 . . 3 ((𝜑𝐵 ∈ Fin) → Σ𝑚𝐴 if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0) = Σ𝑚𝐵 if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0))
53 isumss2.b . . 3 (𝜑 → ((𝑀 ∈ ℤ ∧ 𝐵 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐵) ∨ 𝐵 ∈ Fin))
5446, 52, 53mpjaodan 787 . 2 (𝜑 → Σ𝑚𝐴 if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0) = Σ𝑚𝐵 if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0))
55 iftrue 3479 . . . 4 (𝑘𝐴 → if(𝑘𝐴, 𝐶, 0) = 𝐶)
5655sumeq2i 11133 . . 3 Σ𝑘𝐴 if(𝑘𝐴, 𝐶, 0) = Σ𝑘𝐴 𝐶
57 nfcv 2281 . . . 4 𝑚if(𝑘𝐴, 𝐶, 0)
58 nfv 1508 . . . . 5 𝑘 𝑚𝐴
59 nfcv 2281 . . . . 5 𝑘0
6058, 6, 59nfif 3500 . . . 4 𝑘if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0)
61 eleq1w 2200 . . . . 5 (𝑘 = 𝑚 → (𝑘𝐴𝑚𝐴))
6261, 8ifbieq1d 3494 . . . 4 (𝑘 = 𝑚 → if(𝑘𝐴, 𝐶, 0) = if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0))
6357, 60, 62cbvsumi 11131 . . 3 Σ𝑘𝐴 if(𝑘𝐴, 𝐶, 0) = Σ𝑚𝐴 if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0)
6456, 63eqtr3i 2162 . 2 Σ𝑘𝐴 𝐶 = Σ𝑚𝐴 if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0)
6557, 60, 62cbvsumi 11131 . 2 Σ𝑘𝐵 if(𝑘𝐴, 𝐶, 0) = Σ𝑚𝐵 if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0)
6654, 64, 653eqtr4g 2197 1 (𝜑 → Σ𝑘𝐴 𝐶 = Σ𝑘𝐵 if(𝑘𝐴, 𝐶, 0))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wo 697  DECID wdc 819  w3a 962   = wceq 1331  wcel 1480  wral 2416  csb 3003  cdif 3068  wss 3071  ifcif 3474  cfv 5123  Fincfn 6634  cc 7618  0cc0 7620  cz 9054  cuz 9326  Σcsu 11122
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-mulrcl 7719  ax-addcom 7720  ax-mulcom 7721  ax-addass 7722  ax-mulass 7723  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-1rid 7727  ax-0id 7728  ax-rnegex 7729  ax-precex 7730  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-apti 7735  ax-pre-ltadd 7736  ax-pre-mulgt0 7737  ax-pre-mulext 7738  ax-arch 7739  ax-caucvg 7740
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-isom 5132  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-irdg 6267  df-frec 6288  df-1o 6313  df-oadd 6317  df-er 6429  df-en 6635  df-dom 6636  df-fin 6637  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-reap 8337  df-ap 8344  df-div 8433  df-inn 8721  df-2 8779  df-3 8780  df-4 8781  df-n0 8978  df-z 9055  df-uz 9327  df-q 9412  df-rp 9442  df-fz 9791  df-fzo 9920  df-seqfrec 10219  df-exp 10293  df-ihash 10522  df-cj 10614  df-re 10615  df-im 10616  df-rsqrt 10770  df-abs 10771  df-clim 11048  df-sumdc 11123
This theorem is referenced by:  fsumsplit  11176  sumsplitdc  11201  isumlessdc  11265
  Copyright terms: Public domain W3C validator