ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isumss2 GIF version

Theorem isumss2 11539
Description: Change the index set of a sum by adding zeroes. The nonzero elements are in the contained set 𝐴 and the added zeroes compose the rest of the containing set 𝐵 which needs to be summable. (Contributed by Mario Carneiro, 15-Jul-2013.) (Revised by Jim Kingdon, 24-Sep-2022.)
Hypotheses
Ref Expression
isumss2.ss (𝜑𝐴𝐵)
isumss2.adc (𝜑 → ∀𝑗𝐵 DECID 𝑗𝐴)
isumss2.c (𝜑 → ∀𝑘𝐴 𝐶 ∈ ℂ)
isumss2.b (𝜑 → ((𝑀 ∈ ℤ ∧ 𝐵 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐵) ∨ 𝐵 ∈ Fin))
Assertion
Ref Expression
isumss2 (𝜑 → Σ𝑘𝐴 𝐶 = Σ𝑘𝐵 if(𝑘𝐴, 𝐶, 0))
Distinct variable groups:   𝐴,𝑗   𝐴,𝑘   𝐵,𝑗   𝐵,𝑘   𝑗,𝑀
Allowed substitution hints:   𝜑(𝑗,𝑘)   𝐶(𝑗,𝑘)   𝑀(𝑘)

Proof of Theorem isumss2
Dummy variables 𝑎 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isumss2.ss . . . . 5 (𝜑𝐴𝐵)
21adantr 276 . . . 4 ((𝜑 ∧ (𝑀 ∈ ℤ ∧ 𝐵 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐵)) → 𝐴𝐵)
3 isumss2.c . . . . . 6 (𝜑 → ∀𝑘𝐴 𝐶 ∈ ℂ)
4 iftrue 3563 . . . . . . . 8 (𝑚𝐴 → if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0) = 𝑚 / 𝑘𝐶)
54adantl 277 . . . . . . 7 ((∀𝑘𝐴 𝐶 ∈ ℂ ∧ 𝑚𝐴) → if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0) = 𝑚 / 𝑘𝐶)
6 nfcsb1v 3114 . . . . . . . . . 10 𝑘𝑚 / 𝑘𝐶
76nfel1 2347 . . . . . . . . 9 𝑘𝑚 / 𝑘𝐶 ∈ ℂ
8 csbeq1a 3090 . . . . . . . . . 10 (𝑘 = 𝑚𝐶 = 𝑚 / 𝑘𝐶)
98eleq1d 2262 . . . . . . . . 9 (𝑘 = 𝑚 → (𝐶 ∈ ℂ ↔ 𝑚 / 𝑘𝐶 ∈ ℂ))
107, 9rspc 2859 . . . . . . . 8 (𝑚𝐴 → (∀𝑘𝐴 𝐶 ∈ ℂ → 𝑚 / 𝑘𝐶 ∈ ℂ))
1110impcom 125 . . . . . . 7 ((∀𝑘𝐴 𝐶 ∈ ℂ ∧ 𝑚𝐴) → 𝑚 / 𝑘𝐶 ∈ ℂ)
125, 11eqeltrd 2270 . . . . . 6 ((∀𝑘𝐴 𝐶 ∈ ℂ ∧ 𝑚𝐴) → if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0) ∈ ℂ)
133, 12sylan 283 . . . . 5 ((𝜑𝑚𝐴) → if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0) ∈ ℂ)
1413adantlr 477 . . . 4 (((𝜑 ∧ (𝑀 ∈ ℤ ∧ 𝐵 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐵)) ∧ 𝑚𝐴) → if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0) ∈ ℂ)
15 eldifn 3283 . . . . . 6 (𝑚 ∈ (𝐵𝐴) → ¬ 𝑚𝐴)
1615iffalsed 3568 . . . . 5 (𝑚 ∈ (𝐵𝐴) → if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0) = 0)
1716adantl 277 . . . 4 (((𝜑 ∧ (𝑀 ∈ ℤ ∧ 𝐵 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐵)) ∧ 𝑚 ∈ (𝐵𝐴)) → if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0) = 0)
18 isumss2.adc . . . . . . . . . 10 (𝜑 → ∀𝑗𝐵 DECID 𝑗𝐴)
1918adantr 276 . . . . . . . . 9 ((𝜑 ∧ (𝑀 ∈ ℤ ∧ 𝐵 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐵)) → ∀𝑗𝐵 DECID 𝑗𝐴)
20 eleq1w 2254 . . . . . . . . . . 11 (𝑗 = 𝑎 → (𝑗𝐴𝑎𝐴))
2120dcbid 839 . . . . . . . . . 10 (𝑗 = 𝑎 → (DECID 𝑗𝐴DECID 𝑎𝐴))
2221cbvralv 2726 . . . . . . . . 9 (∀𝑗𝐵 DECID 𝑗𝐴 ↔ ∀𝑎𝐵 DECID 𝑎𝐴)
2319, 22sylib 122 . . . . . . . 8 ((𝜑 ∧ (𝑀 ∈ ℤ ∧ 𝐵 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐵)) → ∀𝑎𝐵 DECID 𝑎𝐴)
2423r19.21bi 2582 . . . . . . 7 (((𝜑 ∧ (𝑀 ∈ ℤ ∧ 𝐵 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐵)) ∧ 𝑎𝐵) → DECID 𝑎𝐴)
2524adantlr 477 . . . . . 6 ((((𝜑 ∧ (𝑀 ∈ ℤ ∧ 𝐵 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐵)) ∧ 𝑎 ∈ (ℤ𝑀)) ∧ 𝑎𝐵) → DECID 𝑎𝐴)
262adantr 276 . . . . . . . . . 10 (((𝜑 ∧ (𝑀 ∈ ℤ ∧ 𝐵 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐵)) ∧ 𝑎 ∈ (ℤ𝑀)) → 𝐴𝐵)
2726ssneld 3182 . . . . . . . . 9 (((𝜑 ∧ (𝑀 ∈ ℤ ∧ 𝐵 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐵)) ∧ 𝑎 ∈ (ℤ𝑀)) → (¬ 𝑎𝐵 → ¬ 𝑎𝐴))
2827imp 124 . . . . . . . 8 ((((𝜑 ∧ (𝑀 ∈ ℤ ∧ 𝐵 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐵)) ∧ 𝑎 ∈ (ℤ𝑀)) ∧ ¬ 𝑎𝐵) → ¬ 𝑎𝐴)
2928olcd 735 . . . . . . 7 ((((𝜑 ∧ (𝑀 ∈ ℤ ∧ 𝐵 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐵)) ∧ 𝑎 ∈ (ℤ𝑀)) ∧ ¬ 𝑎𝐵) → (𝑎𝐴 ∨ ¬ 𝑎𝐴))
30 df-dc 836 . . . . . . 7 (DECID 𝑎𝐴 ↔ (𝑎𝐴 ∨ ¬ 𝑎𝐴))
3129, 30sylibr 134 . . . . . 6 ((((𝜑 ∧ (𝑀 ∈ ℤ ∧ 𝐵 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐵)) ∧ 𝑎 ∈ (ℤ𝑀)) ∧ ¬ 𝑎𝐵) → DECID 𝑎𝐴)
32 eleq1w 2254 . . . . . . . . 9 (𝑗 = 𝑎 → (𝑗𝐵𝑎𝐵))
3332dcbid 839 . . . . . . . 8 (𝑗 = 𝑎 → (DECID 𝑗𝐵DECID 𝑎𝐵))
34 simplr3 1043 . . . . . . . 8 (((𝜑 ∧ (𝑀 ∈ ℤ ∧ 𝐵 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐵)) ∧ 𝑎 ∈ (ℤ𝑀)) → ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐵)
35 simpr 110 . . . . . . . 8 (((𝜑 ∧ (𝑀 ∈ ℤ ∧ 𝐵 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐵)) ∧ 𝑎 ∈ (ℤ𝑀)) → 𝑎 ∈ (ℤ𝑀))
3633, 34, 35rspcdva 2870 . . . . . . 7 (((𝜑 ∧ (𝑀 ∈ ℤ ∧ 𝐵 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐵)) ∧ 𝑎 ∈ (ℤ𝑀)) → DECID 𝑎𝐵)
37 exmiddc 837 . . . . . . 7 (DECID 𝑎𝐵 → (𝑎𝐵 ∨ ¬ 𝑎𝐵))
3836, 37syl 14 . . . . . 6 (((𝜑 ∧ (𝑀 ∈ ℤ ∧ 𝐵 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐵)) ∧ 𝑎 ∈ (ℤ𝑀)) → (𝑎𝐵 ∨ ¬ 𝑎𝐵))
3925, 31, 38mpjaodan 799 . . . . 5 (((𝜑 ∧ (𝑀 ∈ ℤ ∧ 𝐵 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐵)) ∧ 𝑎 ∈ (ℤ𝑀)) → DECID 𝑎𝐴)
4039ralrimiva 2567 . . . 4 ((𝜑 ∧ (𝑀 ∈ ℤ ∧ 𝐵 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐵)) → ∀𝑎 ∈ (ℤ𝑀)DECID 𝑎𝐴)
41 simpr1 1005 . . . 4 ((𝜑 ∧ (𝑀 ∈ ℤ ∧ 𝐵 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐵)) → 𝑀 ∈ ℤ)
42 simpr2 1006 . . . 4 ((𝜑 ∧ (𝑀 ∈ ℤ ∧ 𝐵 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐵)) → 𝐵 ⊆ (ℤ𝑀))
43 simpr3 1007 . . . . 5 ((𝜑 ∧ (𝑀 ∈ ℤ ∧ 𝐵 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐵)) → ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐵)
4433cbvralv 2726 . . . . 5 (∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐵 ↔ ∀𝑎 ∈ (ℤ𝑀)DECID 𝑎𝐵)
4543, 44sylib 122 . . . 4 ((𝜑 ∧ (𝑀 ∈ ℤ ∧ 𝐵 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐵)) → ∀𝑎 ∈ (ℤ𝑀)DECID 𝑎𝐵)
462, 14, 17, 40, 41, 42, 45isumss 11537 . . 3 ((𝜑 ∧ (𝑀 ∈ ℤ ∧ 𝐵 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐵)) → Σ𝑚𝐴 if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0) = Σ𝑚𝐵 if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0))
471adantr 276 . . . 4 ((𝜑𝐵 ∈ Fin) → 𝐴𝐵)
4813adantlr 477 . . . 4 (((𝜑𝐵 ∈ Fin) ∧ 𝑚𝐴) → if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0) ∈ ℂ)
4916adantl 277 . . . 4 (((𝜑𝐵 ∈ Fin) ∧ 𝑚 ∈ (𝐵𝐴)) → if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0) = 0)
5018adantr 276 . . . 4 ((𝜑𝐵 ∈ Fin) → ∀𝑗𝐵 DECID 𝑗𝐴)
51 simpr 110 . . . 4 ((𝜑𝐵 ∈ Fin) → 𝐵 ∈ Fin)
5247, 48, 49, 50, 51fisumss 11538 . . 3 ((𝜑𝐵 ∈ Fin) → Σ𝑚𝐴 if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0) = Σ𝑚𝐵 if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0))
53 isumss2.b . . 3 (𝜑 → ((𝑀 ∈ ℤ ∧ 𝐵 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐵) ∨ 𝐵 ∈ Fin))
5446, 52, 53mpjaodan 799 . 2 (𝜑 → Σ𝑚𝐴 if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0) = Σ𝑚𝐵 if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0))
55 iftrue 3563 . . . 4 (𝑘𝐴 → if(𝑘𝐴, 𝐶, 0) = 𝐶)
5655sumeq2i 11510 . . 3 Σ𝑘𝐴 if(𝑘𝐴, 𝐶, 0) = Σ𝑘𝐴 𝐶
57 nfcv 2336 . . . 4 𝑚if(𝑘𝐴, 𝐶, 0)
58 nfv 1539 . . . . 5 𝑘 𝑚𝐴
59 nfcv 2336 . . . . 5 𝑘0
6058, 6, 59nfif 3586 . . . 4 𝑘if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0)
61 eleq1w 2254 . . . . 5 (𝑘 = 𝑚 → (𝑘𝐴𝑚𝐴))
6261, 8ifbieq1d 3580 . . . 4 (𝑘 = 𝑚 → if(𝑘𝐴, 𝐶, 0) = if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0))
6357, 60, 62cbvsumi 11508 . . 3 Σ𝑘𝐴 if(𝑘𝐴, 𝐶, 0) = Σ𝑚𝐴 if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0)
6456, 63eqtr3i 2216 . 2 Σ𝑘𝐴 𝐶 = Σ𝑚𝐴 if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0)
6557, 60, 62cbvsumi 11508 . 2 Σ𝑘𝐵 if(𝑘𝐴, 𝐶, 0) = Σ𝑚𝐵 if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0)
6654, 64, 653eqtr4g 2251 1 (𝜑 → Σ𝑘𝐴 𝐶 = Σ𝑘𝐵 if(𝑘𝐴, 𝐶, 0))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wo 709  DECID wdc 835  w3a 980   = wceq 1364  wcel 2164  wral 2472  csb 3081  cdif 3151  wss 3154  ifcif 3558  cfv 5255  Fincfn 6796  cc 7872  0cc0 7874  cz 9320  cuz 9595  Σcsu 11499
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-iinf 4621  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-mulrcl 7973  ax-addcom 7974  ax-mulcom 7975  ax-addass 7976  ax-mulass 7977  ax-distr 7978  ax-i2m1 7979  ax-0lt1 7980  ax-1rid 7981  ax-0id 7982  ax-rnegex 7983  ax-precex 7984  ax-cnre 7985  ax-pre-ltirr 7986  ax-pre-ltwlin 7987  ax-pre-lttrn 7988  ax-pre-apti 7989  ax-pre-ltadd 7990  ax-pre-mulgt0 7991  ax-pre-mulext 7992  ax-arch 7993  ax-caucvg 7994
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-if 3559  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-id 4325  df-po 4328  df-iso 4329  df-iord 4398  df-on 4400  df-ilim 4401  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-recs 6360  df-irdg 6425  df-frec 6446  df-1o 6471  df-oadd 6475  df-er 6589  df-en 6797  df-dom 6798  df-fin 6799  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061  df-le 8062  df-sub 8194  df-neg 8195  df-reap 8596  df-ap 8603  df-div 8694  df-inn 8985  df-2 9043  df-3 9044  df-4 9045  df-n0 9244  df-z 9321  df-uz 9596  df-q 9688  df-rp 9723  df-fz 10078  df-fzo 10212  df-seqfrec 10522  df-exp 10613  df-ihash 10850  df-cj 10989  df-re 10990  df-im 10991  df-rsqrt 11145  df-abs 11146  df-clim 11425  df-sumdc 11500
This theorem is referenced by:  fsumsplit  11553  sumsplitdc  11578  isumlessdc  11642  sumhashdc  12488
  Copyright terms: Public domain W3C validator