ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isumss2 GIF version

Theorem isumss2 11194
Description: Change the index set of a sum by adding zeroes. The nonzero elements are in the contained set 𝐴 and the added zeroes compose the rest of the containing set 𝐵 which needs to be summable. (Contributed by Mario Carneiro, 15-Jul-2013.) (Revised by Jim Kingdon, 24-Sep-2022.)
Hypotheses
Ref Expression
isumss2.ss (𝜑𝐴𝐵)
isumss2.adc (𝜑 → ∀𝑗𝐵 DECID 𝑗𝐴)
isumss2.c (𝜑 → ∀𝑘𝐴 𝐶 ∈ ℂ)
isumss2.b (𝜑 → ((𝑀 ∈ ℤ ∧ 𝐵 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐵) ∨ 𝐵 ∈ Fin))
Assertion
Ref Expression
isumss2 (𝜑 → Σ𝑘𝐴 𝐶 = Σ𝑘𝐵 if(𝑘𝐴, 𝐶, 0))
Distinct variable groups:   𝐴,𝑗   𝐴,𝑘   𝐵,𝑗   𝐵,𝑘   𝑗,𝑀
Allowed substitution hints:   𝜑(𝑗,𝑘)   𝐶(𝑗,𝑘)   𝑀(𝑘)

Proof of Theorem isumss2
Dummy variables 𝑎 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isumss2.ss . . . . 5 (𝜑𝐴𝐵)
21adantr 274 . . . 4 ((𝜑 ∧ (𝑀 ∈ ℤ ∧ 𝐵 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐵)) → 𝐴𝐵)
3 isumss2.c . . . . . 6 (𝜑 → ∀𝑘𝐴 𝐶 ∈ ℂ)
4 iftrue 3484 . . . . . . . 8 (𝑚𝐴 → if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0) = 𝑚 / 𝑘𝐶)
54adantl 275 . . . . . . 7 ((∀𝑘𝐴 𝐶 ∈ ℂ ∧ 𝑚𝐴) → if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0) = 𝑚 / 𝑘𝐶)
6 nfcsb1v 3040 . . . . . . . . . 10 𝑘𝑚 / 𝑘𝐶
76nfel1 2293 . . . . . . . . 9 𝑘𝑚 / 𝑘𝐶 ∈ ℂ
8 csbeq1a 3016 . . . . . . . . . 10 (𝑘 = 𝑚𝐶 = 𝑚 / 𝑘𝐶)
98eleq1d 2209 . . . . . . . . 9 (𝑘 = 𝑚 → (𝐶 ∈ ℂ ↔ 𝑚 / 𝑘𝐶 ∈ ℂ))
107, 9rspc 2787 . . . . . . . 8 (𝑚𝐴 → (∀𝑘𝐴 𝐶 ∈ ℂ → 𝑚 / 𝑘𝐶 ∈ ℂ))
1110impcom 124 . . . . . . 7 ((∀𝑘𝐴 𝐶 ∈ ℂ ∧ 𝑚𝐴) → 𝑚 / 𝑘𝐶 ∈ ℂ)
125, 11eqeltrd 2217 . . . . . 6 ((∀𝑘𝐴 𝐶 ∈ ℂ ∧ 𝑚𝐴) → if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0) ∈ ℂ)
133, 12sylan 281 . . . . 5 ((𝜑𝑚𝐴) → if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0) ∈ ℂ)
1413adantlr 469 . . . 4 (((𝜑 ∧ (𝑀 ∈ ℤ ∧ 𝐵 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐵)) ∧ 𝑚𝐴) → if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0) ∈ ℂ)
15 eldifn 3204 . . . . . 6 (𝑚 ∈ (𝐵𝐴) → ¬ 𝑚𝐴)
1615iffalsed 3489 . . . . 5 (𝑚 ∈ (𝐵𝐴) → if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0) = 0)
1716adantl 275 . . . 4 (((𝜑 ∧ (𝑀 ∈ ℤ ∧ 𝐵 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐵)) ∧ 𝑚 ∈ (𝐵𝐴)) → if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0) = 0)
18 isumss2.adc . . . . . . . . . 10 (𝜑 → ∀𝑗𝐵 DECID 𝑗𝐴)
1918adantr 274 . . . . . . . . 9 ((𝜑 ∧ (𝑀 ∈ ℤ ∧ 𝐵 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐵)) → ∀𝑗𝐵 DECID 𝑗𝐴)
20 eleq1w 2201 . . . . . . . . . . 11 (𝑗 = 𝑎 → (𝑗𝐴𝑎𝐴))
2120dcbid 824 . . . . . . . . . 10 (𝑗 = 𝑎 → (DECID 𝑗𝐴DECID 𝑎𝐴))
2221cbvralv 2657 . . . . . . . . 9 (∀𝑗𝐵 DECID 𝑗𝐴 ↔ ∀𝑎𝐵 DECID 𝑎𝐴)
2319, 22sylib 121 . . . . . . . 8 ((𝜑 ∧ (𝑀 ∈ ℤ ∧ 𝐵 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐵)) → ∀𝑎𝐵 DECID 𝑎𝐴)
2423r19.21bi 2523 . . . . . . 7 (((𝜑 ∧ (𝑀 ∈ ℤ ∧ 𝐵 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐵)) ∧ 𝑎𝐵) → DECID 𝑎𝐴)
2524adantlr 469 . . . . . 6 ((((𝜑 ∧ (𝑀 ∈ ℤ ∧ 𝐵 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐵)) ∧ 𝑎 ∈ (ℤ𝑀)) ∧ 𝑎𝐵) → DECID 𝑎𝐴)
262adantr 274 . . . . . . . . . 10 (((𝜑 ∧ (𝑀 ∈ ℤ ∧ 𝐵 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐵)) ∧ 𝑎 ∈ (ℤ𝑀)) → 𝐴𝐵)
2726ssneld 3104 . . . . . . . . 9 (((𝜑 ∧ (𝑀 ∈ ℤ ∧ 𝐵 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐵)) ∧ 𝑎 ∈ (ℤ𝑀)) → (¬ 𝑎𝐵 → ¬ 𝑎𝐴))
2827imp 123 . . . . . . . 8 ((((𝜑 ∧ (𝑀 ∈ ℤ ∧ 𝐵 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐵)) ∧ 𝑎 ∈ (ℤ𝑀)) ∧ ¬ 𝑎𝐵) → ¬ 𝑎𝐴)
2928olcd 724 . . . . . . 7 ((((𝜑 ∧ (𝑀 ∈ ℤ ∧ 𝐵 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐵)) ∧ 𝑎 ∈ (ℤ𝑀)) ∧ ¬ 𝑎𝐵) → (𝑎𝐴 ∨ ¬ 𝑎𝐴))
30 df-dc 821 . . . . . . 7 (DECID 𝑎𝐴 ↔ (𝑎𝐴 ∨ ¬ 𝑎𝐴))
3129, 30sylibr 133 . . . . . 6 ((((𝜑 ∧ (𝑀 ∈ ℤ ∧ 𝐵 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐵)) ∧ 𝑎 ∈ (ℤ𝑀)) ∧ ¬ 𝑎𝐵) → DECID 𝑎𝐴)
32 eleq1w 2201 . . . . . . . . 9 (𝑗 = 𝑎 → (𝑗𝐵𝑎𝐵))
3332dcbid 824 . . . . . . . 8 (𝑗 = 𝑎 → (DECID 𝑗𝐵DECID 𝑎𝐵))
34 simplr3 1026 . . . . . . . 8 (((𝜑 ∧ (𝑀 ∈ ℤ ∧ 𝐵 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐵)) ∧ 𝑎 ∈ (ℤ𝑀)) → ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐵)
35 simpr 109 . . . . . . . 8 (((𝜑 ∧ (𝑀 ∈ ℤ ∧ 𝐵 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐵)) ∧ 𝑎 ∈ (ℤ𝑀)) → 𝑎 ∈ (ℤ𝑀))
3633, 34, 35rspcdva 2798 . . . . . . 7 (((𝜑 ∧ (𝑀 ∈ ℤ ∧ 𝐵 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐵)) ∧ 𝑎 ∈ (ℤ𝑀)) → DECID 𝑎𝐵)
37 exmiddc 822 . . . . . . 7 (DECID 𝑎𝐵 → (𝑎𝐵 ∨ ¬ 𝑎𝐵))
3836, 37syl 14 . . . . . 6 (((𝜑 ∧ (𝑀 ∈ ℤ ∧ 𝐵 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐵)) ∧ 𝑎 ∈ (ℤ𝑀)) → (𝑎𝐵 ∨ ¬ 𝑎𝐵))
3925, 31, 38mpjaodan 788 . . . . 5 (((𝜑 ∧ (𝑀 ∈ ℤ ∧ 𝐵 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐵)) ∧ 𝑎 ∈ (ℤ𝑀)) → DECID 𝑎𝐴)
4039ralrimiva 2508 . . . 4 ((𝜑 ∧ (𝑀 ∈ ℤ ∧ 𝐵 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐵)) → ∀𝑎 ∈ (ℤ𝑀)DECID 𝑎𝐴)
41 simpr1 988 . . . 4 ((𝜑 ∧ (𝑀 ∈ ℤ ∧ 𝐵 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐵)) → 𝑀 ∈ ℤ)
42 simpr2 989 . . . 4 ((𝜑 ∧ (𝑀 ∈ ℤ ∧ 𝐵 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐵)) → 𝐵 ⊆ (ℤ𝑀))
43 simpr3 990 . . . . 5 ((𝜑 ∧ (𝑀 ∈ ℤ ∧ 𝐵 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐵)) → ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐵)
4433cbvralv 2657 . . . . 5 (∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐵 ↔ ∀𝑎 ∈ (ℤ𝑀)DECID 𝑎𝐵)
4543, 44sylib 121 . . . 4 ((𝜑 ∧ (𝑀 ∈ ℤ ∧ 𝐵 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐵)) → ∀𝑎 ∈ (ℤ𝑀)DECID 𝑎𝐵)
462, 14, 17, 40, 41, 42, 45isumss 11192 . . 3 ((𝜑 ∧ (𝑀 ∈ ℤ ∧ 𝐵 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐵)) → Σ𝑚𝐴 if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0) = Σ𝑚𝐵 if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0))
471adantr 274 . . . 4 ((𝜑𝐵 ∈ Fin) → 𝐴𝐵)
4813adantlr 469 . . . 4 (((𝜑𝐵 ∈ Fin) ∧ 𝑚𝐴) → if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0) ∈ ℂ)
4916adantl 275 . . . 4 (((𝜑𝐵 ∈ Fin) ∧ 𝑚 ∈ (𝐵𝐴)) → if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0) = 0)
5018adantr 274 . . . 4 ((𝜑𝐵 ∈ Fin) → ∀𝑗𝐵 DECID 𝑗𝐴)
51 simpr 109 . . . 4 ((𝜑𝐵 ∈ Fin) → 𝐵 ∈ Fin)
5247, 48, 49, 50, 51fisumss 11193 . . 3 ((𝜑𝐵 ∈ Fin) → Σ𝑚𝐴 if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0) = Σ𝑚𝐵 if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0))
53 isumss2.b . . 3 (𝜑 → ((𝑀 ∈ ℤ ∧ 𝐵 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐵) ∨ 𝐵 ∈ Fin))
5446, 52, 53mpjaodan 788 . 2 (𝜑 → Σ𝑚𝐴 if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0) = Σ𝑚𝐵 if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0))
55 iftrue 3484 . . . 4 (𝑘𝐴 → if(𝑘𝐴, 𝐶, 0) = 𝐶)
5655sumeq2i 11165 . . 3 Σ𝑘𝐴 if(𝑘𝐴, 𝐶, 0) = Σ𝑘𝐴 𝐶
57 nfcv 2282 . . . 4 𝑚if(𝑘𝐴, 𝐶, 0)
58 nfv 1509 . . . . 5 𝑘 𝑚𝐴
59 nfcv 2282 . . . . 5 𝑘0
6058, 6, 59nfif 3505 . . . 4 𝑘if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0)
61 eleq1w 2201 . . . . 5 (𝑘 = 𝑚 → (𝑘𝐴𝑚𝐴))
6261, 8ifbieq1d 3499 . . . 4 (𝑘 = 𝑚 → if(𝑘𝐴, 𝐶, 0) = if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0))
6357, 60, 62cbvsumi 11163 . . 3 Σ𝑘𝐴 if(𝑘𝐴, 𝐶, 0) = Σ𝑚𝐴 if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0)
6456, 63eqtr3i 2163 . 2 Σ𝑘𝐴 𝐶 = Σ𝑚𝐴 if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0)
6557, 60, 62cbvsumi 11163 . 2 Σ𝑘𝐵 if(𝑘𝐴, 𝐶, 0) = Σ𝑚𝐵 if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0)
6654, 64, 653eqtr4g 2198 1 (𝜑 → Σ𝑘𝐴 𝐶 = Σ𝑘𝐵 if(𝑘𝐴, 𝐶, 0))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wo 698  DECID wdc 820  w3a 963   = wceq 1332  wcel 1481  wral 2417  csb 3007  cdif 3073  wss 3076  ifcif 3479  cfv 5131  Fincfn 6642  cc 7642  0cc0 7644  cz 9078  cuz 9350  Σcsu 11154
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-iinf 4510  ax-cnex 7735  ax-resscn 7736  ax-1cn 7737  ax-1re 7738  ax-icn 7739  ax-addcl 7740  ax-addrcl 7741  ax-mulcl 7742  ax-mulrcl 7743  ax-addcom 7744  ax-mulcom 7745  ax-addass 7746  ax-mulass 7747  ax-distr 7748  ax-i2m1 7749  ax-0lt1 7750  ax-1rid 7751  ax-0id 7752  ax-rnegex 7753  ax-precex 7754  ax-cnre 7755  ax-pre-ltirr 7756  ax-pre-ltwlin 7757  ax-pre-lttrn 7758  ax-pre-apti 7759  ax-pre-ltadd 7760  ax-pre-mulgt0 7761  ax-pre-mulext 7762  ax-arch 7763  ax-caucvg 7764
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rmo 2425  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-if 3480  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-tr 4035  df-id 4223  df-po 4226  df-iso 4227  df-iord 4296  df-on 4298  df-ilim 4299  df-suc 4301  df-iom 4513  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-isom 5140  df-riota 5738  df-ov 5785  df-oprab 5786  df-mpo 5787  df-1st 6046  df-2nd 6047  df-recs 6210  df-irdg 6275  df-frec 6296  df-1o 6321  df-oadd 6325  df-er 6437  df-en 6643  df-dom 6644  df-fin 6645  df-pnf 7826  df-mnf 7827  df-xr 7828  df-ltxr 7829  df-le 7830  df-sub 7959  df-neg 7960  df-reap 8361  df-ap 8368  df-div 8457  df-inn 8745  df-2 8803  df-3 8804  df-4 8805  df-n0 9002  df-z 9079  df-uz 9351  df-q 9439  df-rp 9471  df-fz 9822  df-fzo 9951  df-seqfrec 10250  df-exp 10324  df-ihash 10554  df-cj 10646  df-re 10647  df-im 10648  df-rsqrt 10802  df-abs 10803  df-clim 11080  df-sumdc 11155
This theorem is referenced by:  fsumsplit  11208  sumsplitdc  11233  isumlessdc  11297
  Copyright terms: Public domain W3C validator