Step | Hyp | Ref
| Expression |
1 | | isumss2.ss |
. . . . 5
⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
2 | 1 | adantr 274 |
. . . 4
⊢ ((𝜑 ∧ (𝑀 ∈ ℤ ∧ 𝐵 ⊆ (ℤ≥‘𝑀) ∧ ∀𝑗 ∈
(ℤ≥‘𝑀)DECID 𝑗 ∈ 𝐵)) → 𝐴 ⊆ 𝐵) |
3 | | isumss2.c |
. . . . . 6
⊢ (𝜑 → ∀𝑘 ∈ 𝐴 𝐶 ∈ ℂ) |
4 | | iftrue 3525 |
. . . . . . . 8
⊢ (𝑚 ∈ 𝐴 → if(𝑚 ∈ 𝐴, ⦋𝑚 / 𝑘⦌𝐶, 0) = ⦋𝑚 / 𝑘⦌𝐶) |
5 | 4 | adantl 275 |
. . . . . . 7
⊢
((∀𝑘 ∈
𝐴 𝐶 ∈ ℂ ∧ 𝑚 ∈ 𝐴) → if(𝑚 ∈ 𝐴, ⦋𝑚 / 𝑘⦌𝐶, 0) = ⦋𝑚 / 𝑘⦌𝐶) |
6 | | nfcsb1v 3078 |
. . . . . . . . . 10
⊢
Ⅎ𝑘⦋𝑚 / 𝑘⦌𝐶 |
7 | 6 | nfel1 2319 |
. . . . . . . . 9
⊢
Ⅎ𝑘⦋𝑚 / 𝑘⦌𝐶 ∈ ℂ |
8 | | csbeq1a 3054 |
. . . . . . . . . 10
⊢ (𝑘 = 𝑚 → 𝐶 = ⦋𝑚 / 𝑘⦌𝐶) |
9 | 8 | eleq1d 2235 |
. . . . . . . . 9
⊢ (𝑘 = 𝑚 → (𝐶 ∈ ℂ ↔ ⦋𝑚 / 𝑘⦌𝐶 ∈ ℂ)) |
10 | 7, 9 | rspc 2824 |
. . . . . . . 8
⊢ (𝑚 ∈ 𝐴 → (∀𝑘 ∈ 𝐴 𝐶 ∈ ℂ → ⦋𝑚 / 𝑘⦌𝐶 ∈ ℂ)) |
11 | 10 | impcom 124 |
. . . . . . 7
⊢
((∀𝑘 ∈
𝐴 𝐶 ∈ ℂ ∧ 𝑚 ∈ 𝐴) → ⦋𝑚 / 𝑘⦌𝐶 ∈ ℂ) |
12 | 5, 11 | eqeltrd 2243 |
. . . . . 6
⊢
((∀𝑘 ∈
𝐴 𝐶 ∈ ℂ ∧ 𝑚 ∈ 𝐴) → if(𝑚 ∈ 𝐴, ⦋𝑚 / 𝑘⦌𝐶, 0) ∈ ℂ) |
13 | 3, 12 | sylan 281 |
. . . . 5
⊢ ((𝜑 ∧ 𝑚 ∈ 𝐴) → if(𝑚 ∈ 𝐴, ⦋𝑚 / 𝑘⦌𝐶, 0) ∈ ℂ) |
14 | 13 | adantlr 469 |
. . . 4
⊢ (((𝜑 ∧ (𝑀 ∈ ℤ ∧ 𝐵 ⊆ (ℤ≥‘𝑀) ∧ ∀𝑗 ∈
(ℤ≥‘𝑀)DECID 𝑗 ∈ 𝐵)) ∧ 𝑚 ∈ 𝐴) → if(𝑚 ∈ 𝐴, ⦋𝑚 / 𝑘⦌𝐶, 0) ∈ ℂ) |
15 | | eldifn 3245 |
. . . . . 6
⊢ (𝑚 ∈ (𝐵 ∖ 𝐴) → ¬ 𝑚 ∈ 𝐴) |
16 | 15 | iffalsed 3530 |
. . . . 5
⊢ (𝑚 ∈ (𝐵 ∖ 𝐴) → if(𝑚 ∈ 𝐴, ⦋𝑚 / 𝑘⦌𝐶, 0) = 0) |
17 | 16 | adantl 275 |
. . . 4
⊢ (((𝜑 ∧ (𝑀 ∈ ℤ ∧ 𝐵 ⊆ (ℤ≥‘𝑀) ∧ ∀𝑗 ∈
(ℤ≥‘𝑀)DECID 𝑗 ∈ 𝐵)) ∧ 𝑚 ∈ (𝐵 ∖ 𝐴)) → if(𝑚 ∈ 𝐴, ⦋𝑚 / 𝑘⦌𝐶, 0) = 0) |
18 | | isumss2.adc |
. . . . . . . . . 10
⊢ (𝜑 → ∀𝑗 ∈ 𝐵 DECID 𝑗 ∈ 𝐴) |
19 | 18 | adantr 274 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑀 ∈ ℤ ∧ 𝐵 ⊆ (ℤ≥‘𝑀) ∧ ∀𝑗 ∈
(ℤ≥‘𝑀)DECID 𝑗 ∈ 𝐵)) → ∀𝑗 ∈ 𝐵 DECID 𝑗 ∈ 𝐴) |
20 | | eleq1w 2227 |
. . . . . . . . . . 11
⊢ (𝑗 = 𝑎 → (𝑗 ∈ 𝐴 ↔ 𝑎 ∈ 𝐴)) |
21 | 20 | dcbid 828 |
. . . . . . . . . 10
⊢ (𝑗 = 𝑎 → (DECID 𝑗 ∈ 𝐴 ↔ DECID 𝑎 ∈ 𝐴)) |
22 | 21 | cbvralv 2692 |
. . . . . . . . 9
⊢
(∀𝑗 ∈
𝐵 DECID
𝑗 ∈ 𝐴 ↔ ∀𝑎 ∈ 𝐵 DECID 𝑎 ∈ 𝐴) |
23 | 19, 22 | sylib 121 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑀 ∈ ℤ ∧ 𝐵 ⊆ (ℤ≥‘𝑀) ∧ ∀𝑗 ∈
(ℤ≥‘𝑀)DECID 𝑗 ∈ 𝐵)) → ∀𝑎 ∈ 𝐵 DECID 𝑎 ∈ 𝐴) |
24 | 23 | r19.21bi 2554 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑀 ∈ ℤ ∧ 𝐵 ⊆ (ℤ≥‘𝑀) ∧ ∀𝑗 ∈
(ℤ≥‘𝑀)DECID 𝑗 ∈ 𝐵)) ∧ 𝑎 ∈ 𝐵) → DECID 𝑎 ∈ 𝐴) |
25 | 24 | adantlr 469 |
. . . . . 6
⊢ ((((𝜑 ∧ (𝑀 ∈ ℤ ∧ 𝐵 ⊆ (ℤ≥‘𝑀) ∧ ∀𝑗 ∈
(ℤ≥‘𝑀)DECID 𝑗 ∈ 𝐵)) ∧ 𝑎 ∈ (ℤ≥‘𝑀)) ∧ 𝑎 ∈ 𝐵) → DECID 𝑎 ∈ 𝐴) |
26 | 2 | adantr 274 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑀 ∈ ℤ ∧ 𝐵 ⊆ (ℤ≥‘𝑀) ∧ ∀𝑗 ∈
(ℤ≥‘𝑀)DECID 𝑗 ∈ 𝐵)) ∧ 𝑎 ∈ (ℤ≥‘𝑀)) → 𝐴 ⊆ 𝐵) |
27 | 26 | ssneld 3144 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑀 ∈ ℤ ∧ 𝐵 ⊆ (ℤ≥‘𝑀) ∧ ∀𝑗 ∈
(ℤ≥‘𝑀)DECID 𝑗 ∈ 𝐵)) ∧ 𝑎 ∈ (ℤ≥‘𝑀)) → (¬ 𝑎 ∈ 𝐵 → ¬ 𝑎 ∈ 𝐴)) |
28 | 27 | imp 123 |
. . . . . . . 8
⊢ ((((𝜑 ∧ (𝑀 ∈ ℤ ∧ 𝐵 ⊆ (ℤ≥‘𝑀) ∧ ∀𝑗 ∈
(ℤ≥‘𝑀)DECID 𝑗 ∈ 𝐵)) ∧ 𝑎 ∈ (ℤ≥‘𝑀)) ∧ ¬ 𝑎 ∈ 𝐵) → ¬ 𝑎 ∈ 𝐴) |
29 | 28 | olcd 724 |
. . . . . . 7
⊢ ((((𝜑 ∧ (𝑀 ∈ ℤ ∧ 𝐵 ⊆ (ℤ≥‘𝑀) ∧ ∀𝑗 ∈
(ℤ≥‘𝑀)DECID 𝑗 ∈ 𝐵)) ∧ 𝑎 ∈ (ℤ≥‘𝑀)) ∧ ¬ 𝑎 ∈ 𝐵) → (𝑎 ∈ 𝐴 ∨ ¬ 𝑎 ∈ 𝐴)) |
30 | | df-dc 825 |
. . . . . . 7
⊢
(DECID 𝑎 ∈ 𝐴 ↔ (𝑎 ∈ 𝐴 ∨ ¬ 𝑎 ∈ 𝐴)) |
31 | 29, 30 | sylibr 133 |
. . . . . 6
⊢ ((((𝜑 ∧ (𝑀 ∈ ℤ ∧ 𝐵 ⊆ (ℤ≥‘𝑀) ∧ ∀𝑗 ∈
(ℤ≥‘𝑀)DECID 𝑗 ∈ 𝐵)) ∧ 𝑎 ∈ (ℤ≥‘𝑀)) ∧ ¬ 𝑎 ∈ 𝐵) → DECID 𝑎 ∈ 𝐴) |
32 | | eleq1w 2227 |
. . . . . . . . 9
⊢ (𝑗 = 𝑎 → (𝑗 ∈ 𝐵 ↔ 𝑎 ∈ 𝐵)) |
33 | 32 | dcbid 828 |
. . . . . . . 8
⊢ (𝑗 = 𝑎 → (DECID 𝑗 ∈ 𝐵 ↔ DECID 𝑎 ∈ 𝐵)) |
34 | | simplr3 1031 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑀 ∈ ℤ ∧ 𝐵 ⊆ (ℤ≥‘𝑀) ∧ ∀𝑗 ∈
(ℤ≥‘𝑀)DECID 𝑗 ∈ 𝐵)) ∧ 𝑎 ∈ (ℤ≥‘𝑀)) → ∀𝑗 ∈
(ℤ≥‘𝑀)DECID 𝑗 ∈ 𝐵) |
35 | | simpr 109 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑀 ∈ ℤ ∧ 𝐵 ⊆ (ℤ≥‘𝑀) ∧ ∀𝑗 ∈
(ℤ≥‘𝑀)DECID 𝑗 ∈ 𝐵)) ∧ 𝑎 ∈ (ℤ≥‘𝑀)) → 𝑎 ∈ (ℤ≥‘𝑀)) |
36 | 33, 34, 35 | rspcdva 2835 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑀 ∈ ℤ ∧ 𝐵 ⊆ (ℤ≥‘𝑀) ∧ ∀𝑗 ∈
(ℤ≥‘𝑀)DECID 𝑗 ∈ 𝐵)) ∧ 𝑎 ∈ (ℤ≥‘𝑀)) → DECID
𝑎 ∈ 𝐵) |
37 | | exmiddc 826 |
. . . . . . 7
⊢
(DECID 𝑎 ∈ 𝐵 → (𝑎 ∈ 𝐵 ∨ ¬ 𝑎 ∈ 𝐵)) |
38 | 36, 37 | syl 14 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑀 ∈ ℤ ∧ 𝐵 ⊆ (ℤ≥‘𝑀) ∧ ∀𝑗 ∈
(ℤ≥‘𝑀)DECID 𝑗 ∈ 𝐵)) ∧ 𝑎 ∈ (ℤ≥‘𝑀)) → (𝑎 ∈ 𝐵 ∨ ¬ 𝑎 ∈ 𝐵)) |
39 | 25, 31, 38 | mpjaodan 788 |
. . . . 5
⊢ (((𝜑 ∧ (𝑀 ∈ ℤ ∧ 𝐵 ⊆ (ℤ≥‘𝑀) ∧ ∀𝑗 ∈
(ℤ≥‘𝑀)DECID 𝑗 ∈ 𝐵)) ∧ 𝑎 ∈ (ℤ≥‘𝑀)) → DECID
𝑎 ∈ 𝐴) |
40 | 39 | ralrimiva 2539 |
. . . 4
⊢ ((𝜑 ∧ (𝑀 ∈ ℤ ∧ 𝐵 ⊆ (ℤ≥‘𝑀) ∧ ∀𝑗 ∈
(ℤ≥‘𝑀)DECID 𝑗 ∈ 𝐵)) → ∀𝑎 ∈ (ℤ≥‘𝑀)DECID 𝑎 ∈ 𝐴) |
41 | | simpr1 993 |
. . . 4
⊢ ((𝜑 ∧ (𝑀 ∈ ℤ ∧ 𝐵 ⊆ (ℤ≥‘𝑀) ∧ ∀𝑗 ∈
(ℤ≥‘𝑀)DECID 𝑗 ∈ 𝐵)) → 𝑀 ∈ ℤ) |
42 | | simpr2 994 |
. . . 4
⊢ ((𝜑 ∧ (𝑀 ∈ ℤ ∧ 𝐵 ⊆ (ℤ≥‘𝑀) ∧ ∀𝑗 ∈
(ℤ≥‘𝑀)DECID 𝑗 ∈ 𝐵)) → 𝐵 ⊆ (ℤ≥‘𝑀)) |
43 | | simpr3 995 |
. . . . 5
⊢ ((𝜑 ∧ (𝑀 ∈ ℤ ∧ 𝐵 ⊆ (ℤ≥‘𝑀) ∧ ∀𝑗 ∈
(ℤ≥‘𝑀)DECID 𝑗 ∈ 𝐵)) → ∀𝑗 ∈ (ℤ≥‘𝑀)DECID 𝑗 ∈ 𝐵) |
44 | 33 | cbvralv 2692 |
. . . . 5
⊢
(∀𝑗 ∈
(ℤ≥‘𝑀)DECID 𝑗 ∈ 𝐵 ↔ ∀𝑎 ∈ (ℤ≥‘𝑀)DECID 𝑎 ∈ 𝐵) |
45 | 43, 44 | sylib 121 |
. . . 4
⊢ ((𝜑 ∧ (𝑀 ∈ ℤ ∧ 𝐵 ⊆ (ℤ≥‘𝑀) ∧ ∀𝑗 ∈
(ℤ≥‘𝑀)DECID 𝑗 ∈ 𝐵)) → ∀𝑎 ∈ (ℤ≥‘𝑀)DECID 𝑎 ∈ 𝐵) |
46 | 2, 14, 17, 40, 41, 42, 45 | isumss 11332 |
. . 3
⊢ ((𝜑 ∧ (𝑀 ∈ ℤ ∧ 𝐵 ⊆ (ℤ≥‘𝑀) ∧ ∀𝑗 ∈
(ℤ≥‘𝑀)DECID 𝑗 ∈ 𝐵)) → Σ𝑚 ∈ 𝐴 if(𝑚 ∈ 𝐴, ⦋𝑚 / 𝑘⦌𝐶, 0) = Σ𝑚 ∈ 𝐵 if(𝑚 ∈ 𝐴, ⦋𝑚 / 𝑘⦌𝐶, 0)) |
47 | 1 | adantr 274 |
. . . 4
⊢ ((𝜑 ∧ 𝐵 ∈ Fin) → 𝐴 ⊆ 𝐵) |
48 | 13 | adantlr 469 |
. . . 4
⊢ (((𝜑 ∧ 𝐵 ∈ Fin) ∧ 𝑚 ∈ 𝐴) → if(𝑚 ∈ 𝐴, ⦋𝑚 / 𝑘⦌𝐶, 0) ∈ ℂ) |
49 | 16 | adantl 275 |
. . . 4
⊢ (((𝜑 ∧ 𝐵 ∈ Fin) ∧ 𝑚 ∈ (𝐵 ∖ 𝐴)) → if(𝑚 ∈ 𝐴, ⦋𝑚 / 𝑘⦌𝐶, 0) = 0) |
50 | 18 | adantr 274 |
. . . 4
⊢ ((𝜑 ∧ 𝐵 ∈ Fin) → ∀𝑗 ∈ 𝐵 DECID 𝑗 ∈ 𝐴) |
51 | | simpr 109 |
. . . 4
⊢ ((𝜑 ∧ 𝐵 ∈ Fin) → 𝐵 ∈ Fin) |
52 | 47, 48, 49, 50, 51 | fisumss 11333 |
. . 3
⊢ ((𝜑 ∧ 𝐵 ∈ Fin) → Σ𝑚 ∈ 𝐴 if(𝑚 ∈ 𝐴, ⦋𝑚 / 𝑘⦌𝐶, 0) = Σ𝑚 ∈ 𝐵 if(𝑚 ∈ 𝐴, ⦋𝑚 / 𝑘⦌𝐶, 0)) |
53 | | isumss2.b |
. . 3
⊢ (𝜑 → ((𝑀 ∈ ℤ ∧ 𝐵 ⊆ (ℤ≥‘𝑀) ∧ ∀𝑗 ∈
(ℤ≥‘𝑀)DECID 𝑗 ∈ 𝐵) ∨ 𝐵 ∈ Fin)) |
54 | 46, 52, 53 | mpjaodan 788 |
. 2
⊢ (𝜑 → Σ𝑚 ∈ 𝐴 if(𝑚 ∈ 𝐴, ⦋𝑚 / 𝑘⦌𝐶, 0) = Σ𝑚 ∈ 𝐵 if(𝑚 ∈ 𝐴, ⦋𝑚 / 𝑘⦌𝐶, 0)) |
55 | | iftrue 3525 |
. . . 4
⊢ (𝑘 ∈ 𝐴 → if(𝑘 ∈ 𝐴, 𝐶, 0) = 𝐶) |
56 | 55 | sumeq2i 11305 |
. . 3
⊢
Σ𝑘 ∈
𝐴 if(𝑘 ∈ 𝐴, 𝐶, 0) = Σ𝑘 ∈ 𝐴 𝐶 |
57 | | nfcv 2308 |
. . . 4
⊢
Ⅎ𝑚if(𝑘 ∈ 𝐴, 𝐶, 0) |
58 | | nfv 1516 |
. . . . 5
⊢
Ⅎ𝑘 𝑚 ∈ 𝐴 |
59 | | nfcv 2308 |
. . . . 5
⊢
Ⅎ𝑘0 |
60 | 58, 6, 59 | nfif 3548 |
. . . 4
⊢
Ⅎ𝑘if(𝑚 ∈ 𝐴, ⦋𝑚 / 𝑘⦌𝐶, 0) |
61 | | eleq1w 2227 |
. . . . 5
⊢ (𝑘 = 𝑚 → (𝑘 ∈ 𝐴 ↔ 𝑚 ∈ 𝐴)) |
62 | 61, 8 | ifbieq1d 3542 |
. . . 4
⊢ (𝑘 = 𝑚 → if(𝑘 ∈ 𝐴, 𝐶, 0) = if(𝑚 ∈ 𝐴, ⦋𝑚 / 𝑘⦌𝐶, 0)) |
63 | 57, 60, 62 | cbvsumi 11303 |
. . 3
⊢
Σ𝑘 ∈
𝐴 if(𝑘 ∈ 𝐴, 𝐶, 0) = Σ𝑚 ∈ 𝐴 if(𝑚 ∈ 𝐴, ⦋𝑚 / 𝑘⦌𝐶, 0) |
64 | 56, 63 | eqtr3i 2188 |
. 2
⊢
Σ𝑘 ∈
𝐴 𝐶 = Σ𝑚 ∈ 𝐴 if(𝑚 ∈ 𝐴, ⦋𝑚 / 𝑘⦌𝐶, 0) |
65 | 57, 60, 62 | cbvsumi 11303 |
. 2
⊢
Σ𝑘 ∈
𝐵 if(𝑘 ∈ 𝐴, 𝐶, 0) = Σ𝑚 ∈ 𝐵 if(𝑚 ∈ 𝐴, ⦋𝑚 / 𝑘⦌𝐶, 0) |
66 | 54, 64, 65 | 3eqtr4g 2224 |
1
⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐶 = Σ𝑘 ∈ 𝐵 if(𝑘 ∈ 𝐴, 𝐶, 0)) |