ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isumss2 GIF version

Theorem isumss2 10749
Description: Change the index set of a sum by adding zeroes. The nonzero elements are in the contained set 𝐴 and the added zeroes compose the rest of the containing set 𝐵 which needs to be summable. (Contributed by Mario Carneiro, 15-Jul-2013.) (Revised by Jim Kingdon, 24-Sep-2022.)
Hypotheses
Ref Expression
isumss2.ss (𝜑𝐴𝐵)
isumss2.adc (𝜑 → ∀𝑗𝐵 DECID 𝑗𝐴)
isumss2.c (𝜑 → ∀𝑘𝐴 𝐶 ∈ ℂ)
isumss2.b (𝜑 → ((𝑀 ∈ ℤ ∧ 𝐵 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐵) ∨ 𝐵 ∈ Fin))
Assertion
Ref Expression
isumss2 (𝜑 → Σ𝑘𝐴 𝐶 = Σ𝑘𝐵 if(𝑘𝐴, 𝐶, 0))
Distinct variable groups:   𝐴,𝑗   𝐴,𝑘   𝐵,𝑗   𝐵,𝑘   𝑗,𝑀
Allowed substitution hints:   𝜑(𝑗,𝑘)   𝐶(𝑗,𝑘)   𝑀(𝑘)

Proof of Theorem isumss2
Dummy variables 𝑎 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isumss2.ss . . . . 5 (𝜑𝐴𝐵)
21adantr 270 . . . 4 ((𝜑 ∧ (𝑀 ∈ ℤ ∧ 𝐵 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐵)) → 𝐴𝐵)
3 isumss2.c . . . . . 6 (𝜑 → ∀𝑘𝐴 𝐶 ∈ ℂ)
4 iftrue 3394 . . . . . . . 8 (𝑚𝐴 → if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0) = 𝑚 / 𝑘𝐶)
54adantl 271 . . . . . . 7 ((∀𝑘𝐴 𝐶 ∈ ℂ ∧ 𝑚𝐴) → if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0) = 𝑚 / 𝑘𝐶)
6 nfcsb1v 2961 . . . . . . . . . 10 𝑘𝑚 / 𝑘𝐶
76nfel1 2239 . . . . . . . . 9 𝑘𝑚 / 𝑘𝐶 ∈ ℂ
8 csbeq1a 2939 . . . . . . . . . 10 (𝑘 = 𝑚𝐶 = 𝑚 / 𝑘𝐶)
98eleq1d 2156 . . . . . . . . 9 (𝑘 = 𝑚 → (𝐶 ∈ ℂ ↔ 𝑚 / 𝑘𝐶 ∈ ℂ))
107, 9rspc 2716 . . . . . . . 8 (𝑚𝐴 → (∀𝑘𝐴 𝐶 ∈ ℂ → 𝑚 / 𝑘𝐶 ∈ ℂ))
1110impcom 123 . . . . . . 7 ((∀𝑘𝐴 𝐶 ∈ ℂ ∧ 𝑚𝐴) → 𝑚 / 𝑘𝐶 ∈ ℂ)
125, 11eqeltrd 2164 . . . . . 6 ((∀𝑘𝐴 𝐶 ∈ ℂ ∧ 𝑚𝐴) → if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0) ∈ ℂ)
133, 12sylan 277 . . . . 5 ((𝜑𝑚𝐴) → if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0) ∈ ℂ)
1413adantlr 461 . . . 4 (((𝜑 ∧ (𝑀 ∈ ℤ ∧ 𝐵 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐵)) ∧ 𝑚𝐴) → if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0) ∈ ℂ)
15 eldifn 3121 . . . . . 6 (𝑚 ∈ (𝐵𝐴) → ¬ 𝑚𝐴)
1615iffalsed 3399 . . . . 5 (𝑚 ∈ (𝐵𝐴) → if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0) = 0)
1716adantl 271 . . . 4 (((𝜑 ∧ (𝑀 ∈ ℤ ∧ 𝐵 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐵)) ∧ 𝑚 ∈ (𝐵𝐴)) → if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0) = 0)
18 isumss2.adc . . . . . . . . . 10 (𝜑 → ∀𝑗𝐵 DECID 𝑗𝐴)
1918adantr 270 . . . . . . . . 9 ((𝜑 ∧ (𝑀 ∈ ℤ ∧ 𝐵 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐵)) → ∀𝑗𝐵 DECID 𝑗𝐴)
20 eleq1w 2148 . . . . . . . . . . 11 (𝑗 = 𝑎 → (𝑗𝐴𝑎𝐴))
2120dcbid 786 . . . . . . . . . 10 (𝑗 = 𝑎 → (DECID 𝑗𝐴DECID 𝑎𝐴))
2221cbvralv 2590 . . . . . . . . 9 (∀𝑗𝐵 DECID 𝑗𝐴 ↔ ∀𝑎𝐵 DECID 𝑎𝐴)
2319, 22sylib 120 . . . . . . . 8 ((𝜑 ∧ (𝑀 ∈ ℤ ∧ 𝐵 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐵)) → ∀𝑎𝐵 DECID 𝑎𝐴)
2423r19.21bi 2461 . . . . . . 7 (((𝜑 ∧ (𝑀 ∈ ℤ ∧ 𝐵 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐵)) ∧ 𝑎𝐵) → DECID 𝑎𝐴)
2524adantlr 461 . . . . . 6 ((((𝜑 ∧ (𝑀 ∈ ℤ ∧ 𝐵 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐵)) ∧ 𝑎 ∈ (ℤ𝑀)) ∧ 𝑎𝐵) → DECID 𝑎𝐴)
262adantr 270 . . . . . . . . . 10 (((𝜑 ∧ (𝑀 ∈ ℤ ∧ 𝐵 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐵)) ∧ 𝑎 ∈ (ℤ𝑀)) → 𝐴𝐵)
2726ssneld 3025 . . . . . . . . 9 (((𝜑 ∧ (𝑀 ∈ ℤ ∧ 𝐵 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐵)) ∧ 𝑎 ∈ (ℤ𝑀)) → (¬ 𝑎𝐵 → ¬ 𝑎𝐴))
2827imp 122 . . . . . . . 8 ((((𝜑 ∧ (𝑀 ∈ ℤ ∧ 𝐵 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐵)) ∧ 𝑎 ∈ (ℤ𝑀)) ∧ ¬ 𝑎𝐵) → ¬ 𝑎𝐴)
2928olcd 688 . . . . . . 7 ((((𝜑 ∧ (𝑀 ∈ ℤ ∧ 𝐵 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐵)) ∧ 𝑎 ∈ (ℤ𝑀)) ∧ ¬ 𝑎𝐵) → (𝑎𝐴 ∨ ¬ 𝑎𝐴))
30 df-dc 781 . . . . . . 7 (DECID 𝑎𝐴 ↔ (𝑎𝐴 ∨ ¬ 𝑎𝐴))
3129, 30sylibr 132 . . . . . 6 ((((𝜑 ∧ (𝑀 ∈ ℤ ∧ 𝐵 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐵)) ∧ 𝑎 ∈ (ℤ𝑀)) ∧ ¬ 𝑎𝐵) → DECID 𝑎𝐴)
32 eleq1w 2148 . . . . . . . . 9 (𝑗 = 𝑎 → (𝑗𝐵𝑎𝐵))
3332dcbid 786 . . . . . . . 8 (𝑗 = 𝑎 → (DECID 𝑗𝐵DECID 𝑎𝐵))
34 simplr3 987 . . . . . . . 8 (((𝜑 ∧ (𝑀 ∈ ℤ ∧ 𝐵 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐵)) ∧ 𝑎 ∈ (ℤ𝑀)) → ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐵)
35 simpr 108 . . . . . . . 8 (((𝜑 ∧ (𝑀 ∈ ℤ ∧ 𝐵 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐵)) ∧ 𝑎 ∈ (ℤ𝑀)) → 𝑎 ∈ (ℤ𝑀))
3633, 34, 35rspcdva 2727 . . . . . . 7 (((𝜑 ∧ (𝑀 ∈ ℤ ∧ 𝐵 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐵)) ∧ 𝑎 ∈ (ℤ𝑀)) → DECID 𝑎𝐵)
37 exmiddc 782 . . . . . . 7 (DECID 𝑎𝐵 → (𝑎𝐵 ∨ ¬ 𝑎𝐵))
3836, 37syl 14 . . . . . 6 (((𝜑 ∧ (𝑀 ∈ ℤ ∧ 𝐵 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐵)) ∧ 𝑎 ∈ (ℤ𝑀)) → (𝑎𝐵 ∨ ¬ 𝑎𝐵))
3925, 31, 38mpjaodan 747 . . . . 5 (((𝜑 ∧ (𝑀 ∈ ℤ ∧ 𝐵 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐵)) ∧ 𝑎 ∈ (ℤ𝑀)) → DECID 𝑎𝐴)
4039ralrimiva 2446 . . . 4 ((𝜑 ∧ (𝑀 ∈ ℤ ∧ 𝐵 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐵)) → ∀𝑎 ∈ (ℤ𝑀)DECID 𝑎𝐴)
41 simpr1 949 . . . 4 ((𝜑 ∧ (𝑀 ∈ ℤ ∧ 𝐵 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐵)) → 𝑀 ∈ ℤ)
42 simpr2 950 . . . 4 ((𝜑 ∧ (𝑀 ∈ ℤ ∧ 𝐵 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐵)) → 𝐵 ⊆ (ℤ𝑀))
43 simpr3 951 . . . . 5 ((𝜑 ∧ (𝑀 ∈ ℤ ∧ 𝐵 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐵)) → ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐵)
4433cbvralv 2590 . . . . 5 (∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐵 ↔ ∀𝑎 ∈ (ℤ𝑀)DECID 𝑎𝐵)
4543, 44sylib 120 . . . 4 ((𝜑 ∧ (𝑀 ∈ ℤ ∧ 𝐵 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐵)) → ∀𝑎 ∈ (ℤ𝑀)DECID 𝑎𝐵)
462, 14, 17, 40, 41, 42, 45isumss 10747 . . 3 ((𝜑 ∧ (𝑀 ∈ ℤ ∧ 𝐵 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐵)) → Σ𝑚𝐴 if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0) = Σ𝑚𝐵 if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0))
471adantr 270 . . . 4 ((𝜑𝐵 ∈ Fin) → 𝐴𝐵)
4813adantlr 461 . . . 4 (((𝜑𝐵 ∈ Fin) ∧ 𝑚𝐴) → if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0) ∈ ℂ)
4916adantl 271 . . . 4 (((𝜑𝐵 ∈ Fin) ∧ 𝑚 ∈ (𝐵𝐴)) → if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0) = 0)
5018adantr 270 . . . 4 ((𝜑𝐵 ∈ Fin) → ∀𝑗𝐵 DECID 𝑗𝐴)
51 simpr 108 . . . 4 ((𝜑𝐵 ∈ Fin) → 𝐵 ∈ Fin)
5247, 48, 49, 50, 51fisumss 10748 . . 3 ((𝜑𝐵 ∈ Fin) → Σ𝑚𝐴 if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0) = Σ𝑚𝐵 if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0))
53 isumss2.b . . 3 (𝜑 → ((𝑀 ∈ ℤ ∧ 𝐵 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐵) ∨ 𝐵 ∈ Fin))
5446, 52, 53mpjaodan 747 . 2 (𝜑 → Σ𝑚𝐴 if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0) = Σ𝑚𝐵 if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0))
55 iftrue 3394 . . . 4 (𝑘𝐴 → if(𝑘𝐴, 𝐶, 0) = 𝐶)
5655sumeq2i 10717 . . 3 Σ𝑘𝐴 if(𝑘𝐴, 𝐶, 0) = Σ𝑘𝐴 𝐶
57 nfcv 2228 . . . 4 𝑚if(𝑘𝐴, 𝐶, 0)
58 nfv 1466 . . . . 5 𝑘 𝑚𝐴
59 nfcv 2228 . . . . 5 𝑘0
6058, 6, 59nfif 3415 . . . 4 𝑘if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0)
61 eleq1w 2148 . . . . 5 (𝑘 = 𝑚 → (𝑘𝐴𝑚𝐴))
6261, 8ifbieq1d 3409 . . . 4 (𝑘 = 𝑚 → if(𝑘𝐴, 𝐶, 0) = if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0))
6357, 60, 62cbvsumi 10715 . . 3 Σ𝑘𝐴 if(𝑘𝐴, 𝐶, 0) = Σ𝑚𝐴 if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0)
6456, 63eqtr3i 2110 . 2 Σ𝑘𝐴 𝐶 = Σ𝑚𝐴 if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0)
6557, 60, 62cbvsumi 10715 . 2 Σ𝑘𝐵 if(𝑘𝐴, 𝐶, 0) = Σ𝑚𝐵 if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0)
6654, 64, 653eqtr4g 2145 1 (𝜑 → Σ𝑘𝐴 𝐶 = Σ𝑘𝐵 if(𝑘𝐴, 𝐶, 0))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 102  wo 664  DECID wdc 780  w3a 924   = wceq 1289  wcel 1438  wral 2359  csb 2931  cdif 2994  wss 2997  ifcif 3389  cfv 5002  Fincfn 6437  cc 7327  0cc0 7329  cz 8720  cuz 8988  Σcsu 10706
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-13 1449  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-coll 3946  ax-sep 3949  ax-nul 3957  ax-pow 4001  ax-pr 4027  ax-un 4251  ax-setind 4343  ax-iinf 4393  ax-cnex 7415  ax-resscn 7416  ax-1cn 7417  ax-1re 7418  ax-icn 7419  ax-addcl 7420  ax-addrcl 7421  ax-mulcl 7422  ax-mulrcl 7423  ax-addcom 7424  ax-mulcom 7425  ax-addass 7426  ax-mulass 7427  ax-distr 7428  ax-i2m1 7429  ax-0lt1 7430  ax-1rid 7431  ax-0id 7432  ax-rnegex 7433  ax-precex 7434  ax-cnre 7435  ax-pre-ltirr 7436  ax-pre-ltwlin 7437  ax-pre-lttrn 7438  ax-pre-apti 7439  ax-pre-ltadd 7440  ax-pre-mulgt0 7441  ax-pre-mulext 7442  ax-arch 7443  ax-caucvg 7444
This theorem depends on definitions:  df-bi 115  df-dc 781  df-3or 925  df-3an 926  df-tru 1292  df-fal 1295  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ne 2256  df-nel 2351  df-ral 2364  df-rex 2365  df-reu 2366  df-rmo 2367  df-rab 2368  df-v 2621  df-sbc 2839  df-csb 2932  df-dif 2999  df-un 3001  df-in 3003  df-ss 3010  df-nul 3285  df-if 3390  df-pw 3427  df-sn 3447  df-pr 3448  df-op 3450  df-uni 3649  df-int 3684  df-iun 3727  df-br 3838  df-opab 3892  df-mpt 3893  df-tr 3929  df-id 4111  df-po 4114  df-iso 4115  df-iord 4184  df-on 4186  df-ilim 4187  df-suc 4189  df-iom 4396  df-xp 4434  df-rel 4435  df-cnv 4436  df-co 4437  df-dm 4438  df-rn 4439  df-res 4440  df-ima 4441  df-iota 4967  df-fun 5004  df-fn 5005  df-f 5006  df-f1 5007  df-fo 5008  df-f1o 5009  df-fv 5010  df-isom 5011  df-riota 5590  df-ov 5637  df-oprab 5638  df-mpt2 5639  df-1st 5893  df-2nd 5894  df-recs 6052  df-irdg 6117  df-frec 6138  df-1o 6163  df-oadd 6167  df-er 6272  df-en 6438  df-dom 6439  df-fin 6440  df-pnf 7503  df-mnf 7504  df-xr 7505  df-ltxr 7506  df-le 7507  df-sub 7634  df-neg 7635  df-reap 8028  df-ap 8035  df-div 8114  df-inn 8395  df-2 8452  df-3 8453  df-4 8454  df-n0 8644  df-z 8721  df-uz 8989  df-q 9074  df-rp 9104  df-fz 9394  df-fzo 9519  df-iseq 9818  df-seq3 9819  df-exp 9920  df-ihash 10149  df-cj 10241  df-re 10242  df-im 10243  df-rsqrt 10396  df-abs 10397  df-clim 10631  df-isum 10707
This theorem is referenced by:  fsumsplit  10764  sumsplitdc  10789
  Copyright terms: Public domain W3C validator