| Step | Hyp | Ref
| Expression |
| 1 | | isumss2.ss |
. . . . 5
⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
| 2 | 1 | adantr 276 |
. . . 4
⊢ ((𝜑 ∧ (𝑀 ∈ ℤ ∧ 𝐵 ⊆ (ℤ≥‘𝑀) ∧ ∀𝑗 ∈
(ℤ≥‘𝑀)DECID 𝑗 ∈ 𝐵)) → 𝐴 ⊆ 𝐵) |
| 3 | | isumss2.c |
. . . . . 6
⊢ (𝜑 → ∀𝑘 ∈ 𝐴 𝐶 ∈ ℂ) |
| 4 | | iftrue 3567 |
. . . . . . . 8
⊢ (𝑚 ∈ 𝐴 → if(𝑚 ∈ 𝐴, ⦋𝑚 / 𝑘⦌𝐶, 0) = ⦋𝑚 / 𝑘⦌𝐶) |
| 5 | 4 | adantl 277 |
. . . . . . 7
⊢
((∀𝑘 ∈
𝐴 𝐶 ∈ ℂ ∧ 𝑚 ∈ 𝐴) → if(𝑚 ∈ 𝐴, ⦋𝑚 / 𝑘⦌𝐶, 0) = ⦋𝑚 / 𝑘⦌𝐶) |
| 6 | | nfcsb1v 3117 |
. . . . . . . . . 10
⊢
Ⅎ𝑘⦋𝑚 / 𝑘⦌𝐶 |
| 7 | 6 | nfel1 2350 |
. . . . . . . . 9
⊢
Ⅎ𝑘⦋𝑚 / 𝑘⦌𝐶 ∈ ℂ |
| 8 | | csbeq1a 3093 |
. . . . . . . . . 10
⊢ (𝑘 = 𝑚 → 𝐶 = ⦋𝑚 / 𝑘⦌𝐶) |
| 9 | 8 | eleq1d 2265 |
. . . . . . . . 9
⊢ (𝑘 = 𝑚 → (𝐶 ∈ ℂ ↔ ⦋𝑚 / 𝑘⦌𝐶 ∈ ℂ)) |
| 10 | 7, 9 | rspc 2862 |
. . . . . . . 8
⊢ (𝑚 ∈ 𝐴 → (∀𝑘 ∈ 𝐴 𝐶 ∈ ℂ → ⦋𝑚 / 𝑘⦌𝐶 ∈ ℂ)) |
| 11 | 10 | impcom 125 |
. . . . . . 7
⊢
((∀𝑘 ∈
𝐴 𝐶 ∈ ℂ ∧ 𝑚 ∈ 𝐴) → ⦋𝑚 / 𝑘⦌𝐶 ∈ ℂ) |
| 12 | 5, 11 | eqeltrd 2273 |
. . . . . 6
⊢
((∀𝑘 ∈
𝐴 𝐶 ∈ ℂ ∧ 𝑚 ∈ 𝐴) → if(𝑚 ∈ 𝐴, ⦋𝑚 / 𝑘⦌𝐶, 0) ∈ ℂ) |
| 13 | 3, 12 | sylan 283 |
. . . . 5
⊢ ((𝜑 ∧ 𝑚 ∈ 𝐴) → if(𝑚 ∈ 𝐴, ⦋𝑚 / 𝑘⦌𝐶, 0) ∈ ℂ) |
| 14 | 13 | adantlr 477 |
. . . 4
⊢ (((𝜑 ∧ (𝑀 ∈ ℤ ∧ 𝐵 ⊆ (ℤ≥‘𝑀) ∧ ∀𝑗 ∈
(ℤ≥‘𝑀)DECID 𝑗 ∈ 𝐵)) ∧ 𝑚 ∈ 𝐴) → if(𝑚 ∈ 𝐴, ⦋𝑚 / 𝑘⦌𝐶, 0) ∈ ℂ) |
| 15 | | eldifn 3287 |
. . . . . 6
⊢ (𝑚 ∈ (𝐵 ∖ 𝐴) → ¬ 𝑚 ∈ 𝐴) |
| 16 | 15 | iffalsed 3572 |
. . . . 5
⊢ (𝑚 ∈ (𝐵 ∖ 𝐴) → if(𝑚 ∈ 𝐴, ⦋𝑚 / 𝑘⦌𝐶, 0) = 0) |
| 17 | 16 | adantl 277 |
. . . 4
⊢ (((𝜑 ∧ (𝑀 ∈ ℤ ∧ 𝐵 ⊆ (ℤ≥‘𝑀) ∧ ∀𝑗 ∈
(ℤ≥‘𝑀)DECID 𝑗 ∈ 𝐵)) ∧ 𝑚 ∈ (𝐵 ∖ 𝐴)) → if(𝑚 ∈ 𝐴, ⦋𝑚 / 𝑘⦌𝐶, 0) = 0) |
| 18 | | isumss2.adc |
. . . . . . . . . 10
⊢ (𝜑 → ∀𝑗 ∈ 𝐵 DECID 𝑗 ∈ 𝐴) |
| 19 | 18 | adantr 276 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑀 ∈ ℤ ∧ 𝐵 ⊆ (ℤ≥‘𝑀) ∧ ∀𝑗 ∈
(ℤ≥‘𝑀)DECID 𝑗 ∈ 𝐵)) → ∀𝑗 ∈ 𝐵 DECID 𝑗 ∈ 𝐴) |
| 20 | | eleq1w 2257 |
. . . . . . . . . . 11
⊢ (𝑗 = 𝑎 → (𝑗 ∈ 𝐴 ↔ 𝑎 ∈ 𝐴)) |
| 21 | 20 | dcbid 839 |
. . . . . . . . . 10
⊢ (𝑗 = 𝑎 → (DECID 𝑗 ∈ 𝐴 ↔ DECID 𝑎 ∈ 𝐴)) |
| 22 | 21 | cbvralv 2729 |
. . . . . . . . 9
⊢
(∀𝑗 ∈
𝐵 DECID
𝑗 ∈ 𝐴 ↔ ∀𝑎 ∈ 𝐵 DECID 𝑎 ∈ 𝐴) |
| 23 | 19, 22 | sylib 122 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑀 ∈ ℤ ∧ 𝐵 ⊆ (ℤ≥‘𝑀) ∧ ∀𝑗 ∈
(ℤ≥‘𝑀)DECID 𝑗 ∈ 𝐵)) → ∀𝑎 ∈ 𝐵 DECID 𝑎 ∈ 𝐴) |
| 24 | 23 | r19.21bi 2585 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑀 ∈ ℤ ∧ 𝐵 ⊆ (ℤ≥‘𝑀) ∧ ∀𝑗 ∈
(ℤ≥‘𝑀)DECID 𝑗 ∈ 𝐵)) ∧ 𝑎 ∈ 𝐵) → DECID 𝑎 ∈ 𝐴) |
| 25 | 24 | adantlr 477 |
. . . . . 6
⊢ ((((𝜑 ∧ (𝑀 ∈ ℤ ∧ 𝐵 ⊆ (ℤ≥‘𝑀) ∧ ∀𝑗 ∈
(ℤ≥‘𝑀)DECID 𝑗 ∈ 𝐵)) ∧ 𝑎 ∈ (ℤ≥‘𝑀)) ∧ 𝑎 ∈ 𝐵) → DECID 𝑎 ∈ 𝐴) |
| 26 | 2 | adantr 276 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑀 ∈ ℤ ∧ 𝐵 ⊆ (ℤ≥‘𝑀) ∧ ∀𝑗 ∈
(ℤ≥‘𝑀)DECID 𝑗 ∈ 𝐵)) ∧ 𝑎 ∈ (ℤ≥‘𝑀)) → 𝐴 ⊆ 𝐵) |
| 27 | 26 | ssneld 3186 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑀 ∈ ℤ ∧ 𝐵 ⊆ (ℤ≥‘𝑀) ∧ ∀𝑗 ∈
(ℤ≥‘𝑀)DECID 𝑗 ∈ 𝐵)) ∧ 𝑎 ∈ (ℤ≥‘𝑀)) → (¬ 𝑎 ∈ 𝐵 → ¬ 𝑎 ∈ 𝐴)) |
| 28 | 27 | imp 124 |
. . . . . . . 8
⊢ ((((𝜑 ∧ (𝑀 ∈ ℤ ∧ 𝐵 ⊆ (ℤ≥‘𝑀) ∧ ∀𝑗 ∈
(ℤ≥‘𝑀)DECID 𝑗 ∈ 𝐵)) ∧ 𝑎 ∈ (ℤ≥‘𝑀)) ∧ ¬ 𝑎 ∈ 𝐵) → ¬ 𝑎 ∈ 𝐴) |
| 29 | 28 | olcd 735 |
. . . . . . 7
⊢ ((((𝜑 ∧ (𝑀 ∈ ℤ ∧ 𝐵 ⊆ (ℤ≥‘𝑀) ∧ ∀𝑗 ∈
(ℤ≥‘𝑀)DECID 𝑗 ∈ 𝐵)) ∧ 𝑎 ∈ (ℤ≥‘𝑀)) ∧ ¬ 𝑎 ∈ 𝐵) → (𝑎 ∈ 𝐴 ∨ ¬ 𝑎 ∈ 𝐴)) |
| 30 | | df-dc 836 |
. . . . . . 7
⊢
(DECID 𝑎 ∈ 𝐴 ↔ (𝑎 ∈ 𝐴 ∨ ¬ 𝑎 ∈ 𝐴)) |
| 31 | 29, 30 | sylibr 134 |
. . . . . 6
⊢ ((((𝜑 ∧ (𝑀 ∈ ℤ ∧ 𝐵 ⊆ (ℤ≥‘𝑀) ∧ ∀𝑗 ∈
(ℤ≥‘𝑀)DECID 𝑗 ∈ 𝐵)) ∧ 𝑎 ∈ (ℤ≥‘𝑀)) ∧ ¬ 𝑎 ∈ 𝐵) → DECID 𝑎 ∈ 𝐴) |
| 32 | | eleq1w 2257 |
. . . . . . . . 9
⊢ (𝑗 = 𝑎 → (𝑗 ∈ 𝐵 ↔ 𝑎 ∈ 𝐵)) |
| 33 | 32 | dcbid 839 |
. . . . . . . 8
⊢ (𝑗 = 𝑎 → (DECID 𝑗 ∈ 𝐵 ↔ DECID 𝑎 ∈ 𝐵)) |
| 34 | | simplr3 1043 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑀 ∈ ℤ ∧ 𝐵 ⊆ (ℤ≥‘𝑀) ∧ ∀𝑗 ∈
(ℤ≥‘𝑀)DECID 𝑗 ∈ 𝐵)) ∧ 𝑎 ∈ (ℤ≥‘𝑀)) → ∀𝑗 ∈
(ℤ≥‘𝑀)DECID 𝑗 ∈ 𝐵) |
| 35 | | simpr 110 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑀 ∈ ℤ ∧ 𝐵 ⊆ (ℤ≥‘𝑀) ∧ ∀𝑗 ∈
(ℤ≥‘𝑀)DECID 𝑗 ∈ 𝐵)) ∧ 𝑎 ∈ (ℤ≥‘𝑀)) → 𝑎 ∈ (ℤ≥‘𝑀)) |
| 36 | 33, 34, 35 | rspcdva 2873 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑀 ∈ ℤ ∧ 𝐵 ⊆ (ℤ≥‘𝑀) ∧ ∀𝑗 ∈
(ℤ≥‘𝑀)DECID 𝑗 ∈ 𝐵)) ∧ 𝑎 ∈ (ℤ≥‘𝑀)) → DECID
𝑎 ∈ 𝐵) |
| 37 | | exmiddc 837 |
. . . . . . 7
⊢
(DECID 𝑎 ∈ 𝐵 → (𝑎 ∈ 𝐵 ∨ ¬ 𝑎 ∈ 𝐵)) |
| 38 | 36, 37 | syl 14 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑀 ∈ ℤ ∧ 𝐵 ⊆ (ℤ≥‘𝑀) ∧ ∀𝑗 ∈
(ℤ≥‘𝑀)DECID 𝑗 ∈ 𝐵)) ∧ 𝑎 ∈ (ℤ≥‘𝑀)) → (𝑎 ∈ 𝐵 ∨ ¬ 𝑎 ∈ 𝐵)) |
| 39 | 25, 31, 38 | mpjaodan 799 |
. . . . 5
⊢ (((𝜑 ∧ (𝑀 ∈ ℤ ∧ 𝐵 ⊆ (ℤ≥‘𝑀) ∧ ∀𝑗 ∈
(ℤ≥‘𝑀)DECID 𝑗 ∈ 𝐵)) ∧ 𝑎 ∈ (ℤ≥‘𝑀)) → DECID
𝑎 ∈ 𝐴) |
| 40 | 39 | ralrimiva 2570 |
. . . 4
⊢ ((𝜑 ∧ (𝑀 ∈ ℤ ∧ 𝐵 ⊆ (ℤ≥‘𝑀) ∧ ∀𝑗 ∈
(ℤ≥‘𝑀)DECID 𝑗 ∈ 𝐵)) → ∀𝑎 ∈ (ℤ≥‘𝑀)DECID 𝑎 ∈ 𝐴) |
| 41 | | simpr1 1005 |
. . . 4
⊢ ((𝜑 ∧ (𝑀 ∈ ℤ ∧ 𝐵 ⊆ (ℤ≥‘𝑀) ∧ ∀𝑗 ∈
(ℤ≥‘𝑀)DECID 𝑗 ∈ 𝐵)) → 𝑀 ∈ ℤ) |
| 42 | | simpr2 1006 |
. . . 4
⊢ ((𝜑 ∧ (𝑀 ∈ ℤ ∧ 𝐵 ⊆ (ℤ≥‘𝑀) ∧ ∀𝑗 ∈
(ℤ≥‘𝑀)DECID 𝑗 ∈ 𝐵)) → 𝐵 ⊆ (ℤ≥‘𝑀)) |
| 43 | | simpr3 1007 |
. . . . 5
⊢ ((𝜑 ∧ (𝑀 ∈ ℤ ∧ 𝐵 ⊆ (ℤ≥‘𝑀) ∧ ∀𝑗 ∈
(ℤ≥‘𝑀)DECID 𝑗 ∈ 𝐵)) → ∀𝑗 ∈ (ℤ≥‘𝑀)DECID 𝑗 ∈ 𝐵) |
| 44 | 33 | cbvralv 2729 |
. . . . 5
⊢
(∀𝑗 ∈
(ℤ≥‘𝑀)DECID 𝑗 ∈ 𝐵 ↔ ∀𝑎 ∈ (ℤ≥‘𝑀)DECID 𝑎 ∈ 𝐵) |
| 45 | 43, 44 | sylib 122 |
. . . 4
⊢ ((𝜑 ∧ (𝑀 ∈ ℤ ∧ 𝐵 ⊆ (ℤ≥‘𝑀) ∧ ∀𝑗 ∈
(ℤ≥‘𝑀)DECID 𝑗 ∈ 𝐵)) → ∀𝑎 ∈ (ℤ≥‘𝑀)DECID 𝑎 ∈ 𝐵) |
| 46 | 2, 14, 17, 40, 41, 42, 45 | isumss 11573 |
. . 3
⊢ ((𝜑 ∧ (𝑀 ∈ ℤ ∧ 𝐵 ⊆ (ℤ≥‘𝑀) ∧ ∀𝑗 ∈
(ℤ≥‘𝑀)DECID 𝑗 ∈ 𝐵)) → Σ𝑚 ∈ 𝐴 if(𝑚 ∈ 𝐴, ⦋𝑚 / 𝑘⦌𝐶, 0) = Σ𝑚 ∈ 𝐵 if(𝑚 ∈ 𝐴, ⦋𝑚 / 𝑘⦌𝐶, 0)) |
| 47 | 1 | adantr 276 |
. . . 4
⊢ ((𝜑 ∧ 𝐵 ∈ Fin) → 𝐴 ⊆ 𝐵) |
| 48 | 13 | adantlr 477 |
. . . 4
⊢ (((𝜑 ∧ 𝐵 ∈ Fin) ∧ 𝑚 ∈ 𝐴) → if(𝑚 ∈ 𝐴, ⦋𝑚 / 𝑘⦌𝐶, 0) ∈ ℂ) |
| 49 | 16 | adantl 277 |
. . . 4
⊢ (((𝜑 ∧ 𝐵 ∈ Fin) ∧ 𝑚 ∈ (𝐵 ∖ 𝐴)) → if(𝑚 ∈ 𝐴, ⦋𝑚 / 𝑘⦌𝐶, 0) = 0) |
| 50 | 18 | adantr 276 |
. . . 4
⊢ ((𝜑 ∧ 𝐵 ∈ Fin) → ∀𝑗 ∈ 𝐵 DECID 𝑗 ∈ 𝐴) |
| 51 | | simpr 110 |
. . . 4
⊢ ((𝜑 ∧ 𝐵 ∈ Fin) → 𝐵 ∈ Fin) |
| 52 | 47, 48, 49, 50, 51 | fisumss 11574 |
. . 3
⊢ ((𝜑 ∧ 𝐵 ∈ Fin) → Σ𝑚 ∈ 𝐴 if(𝑚 ∈ 𝐴, ⦋𝑚 / 𝑘⦌𝐶, 0) = Σ𝑚 ∈ 𝐵 if(𝑚 ∈ 𝐴, ⦋𝑚 / 𝑘⦌𝐶, 0)) |
| 53 | | isumss2.b |
. . 3
⊢ (𝜑 → ((𝑀 ∈ ℤ ∧ 𝐵 ⊆ (ℤ≥‘𝑀) ∧ ∀𝑗 ∈
(ℤ≥‘𝑀)DECID 𝑗 ∈ 𝐵) ∨ 𝐵 ∈ Fin)) |
| 54 | 46, 52, 53 | mpjaodan 799 |
. 2
⊢ (𝜑 → Σ𝑚 ∈ 𝐴 if(𝑚 ∈ 𝐴, ⦋𝑚 / 𝑘⦌𝐶, 0) = Σ𝑚 ∈ 𝐵 if(𝑚 ∈ 𝐴, ⦋𝑚 / 𝑘⦌𝐶, 0)) |
| 55 | | iftrue 3567 |
. . . 4
⊢ (𝑘 ∈ 𝐴 → if(𝑘 ∈ 𝐴, 𝐶, 0) = 𝐶) |
| 56 | 55 | sumeq2i 11546 |
. . 3
⊢
Σ𝑘 ∈
𝐴 if(𝑘 ∈ 𝐴, 𝐶, 0) = Σ𝑘 ∈ 𝐴 𝐶 |
| 57 | | nfcv 2339 |
. . . 4
⊢
Ⅎ𝑚if(𝑘 ∈ 𝐴, 𝐶, 0) |
| 58 | | nfv 1542 |
. . . . 5
⊢
Ⅎ𝑘 𝑚 ∈ 𝐴 |
| 59 | | nfcv 2339 |
. . . . 5
⊢
Ⅎ𝑘0 |
| 60 | 58, 6, 59 | nfif 3590 |
. . . 4
⊢
Ⅎ𝑘if(𝑚 ∈ 𝐴, ⦋𝑚 / 𝑘⦌𝐶, 0) |
| 61 | | eleq1w 2257 |
. . . . 5
⊢ (𝑘 = 𝑚 → (𝑘 ∈ 𝐴 ↔ 𝑚 ∈ 𝐴)) |
| 62 | 61, 8 | ifbieq1d 3584 |
. . . 4
⊢ (𝑘 = 𝑚 → if(𝑘 ∈ 𝐴, 𝐶, 0) = if(𝑚 ∈ 𝐴, ⦋𝑚 / 𝑘⦌𝐶, 0)) |
| 63 | 57, 60, 62 | cbvsumi 11544 |
. . 3
⊢
Σ𝑘 ∈
𝐴 if(𝑘 ∈ 𝐴, 𝐶, 0) = Σ𝑚 ∈ 𝐴 if(𝑚 ∈ 𝐴, ⦋𝑚 / 𝑘⦌𝐶, 0) |
| 64 | 56, 63 | eqtr3i 2219 |
. 2
⊢
Σ𝑘 ∈
𝐴 𝐶 = Σ𝑚 ∈ 𝐴 if(𝑚 ∈ 𝐴, ⦋𝑚 / 𝑘⦌𝐶, 0) |
| 65 | 57, 60, 62 | cbvsumi 11544 |
. 2
⊢
Σ𝑘 ∈
𝐵 if(𝑘 ∈ 𝐴, 𝐶, 0) = Σ𝑚 ∈ 𝐵 if(𝑚 ∈ 𝐴, ⦋𝑚 / 𝑘⦌𝐶, 0) |
| 66 | 54, 64, 65 | 3eqtr4g 2254 |
1
⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐶 = Σ𝑘 ∈ 𝐵 if(𝑘 ∈ 𝐴, 𝐶, 0)) |