ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isumss2 GIF version

Theorem isumss2 11334
Description: Change the index set of a sum by adding zeroes. The nonzero elements are in the contained set 𝐴 and the added zeroes compose the rest of the containing set 𝐵 which needs to be summable. (Contributed by Mario Carneiro, 15-Jul-2013.) (Revised by Jim Kingdon, 24-Sep-2022.)
Hypotheses
Ref Expression
isumss2.ss (𝜑𝐴𝐵)
isumss2.adc (𝜑 → ∀𝑗𝐵 DECID 𝑗𝐴)
isumss2.c (𝜑 → ∀𝑘𝐴 𝐶 ∈ ℂ)
isumss2.b (𝜑 → ((𝑀 ∈ ℤ ∧ 𝐵 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐵) ∨ 𝐵 ∈ Fin))
Assertion
Ref Expression
isumss2 (𝜑 → Σ𝑘𝐴 𝐶 = Σ𝑘𝐵 if(𝑘𝐴, 𝐶, 0))
Distinct variable groups:   𝐴,𝑗   𝐴,𝑘   𝐵,𝑗   𝐵,𝑘   𝑗,𝑀
Allowed substitution hints:   𝜑(𝑗,𝑘)   𝐶(𝑗,𝑘)   𝑀(𝑘)

Proof of Theorem isumss2
Dummy variables 𝑎 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isumss2.ss . . . . 5 (𝜑𝐴𝐵)
21adantr 274 . . . 4 ((𝜑 ∧ (𝑀 ∈ ℤ ∧ 𝐵 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐵)) → 𝐴𝐵)
3 isumss2.c . . . . . 6 (𝜑 → ∀𝑘𝐴 𝐶 ∈ ℂ)
4 iftrue 3525 . . . . . . . 8 (𝑚𝐴 → if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0) = 𝑚 / 𝑘𝐶)
54adantl 275 . . . . . . 7 ((∀𝑘𝐴 𝐶 ∈ ℂ ∧ 𝑚𝐴) → if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0) = 𝑚 / 𝑘𝐶)
6 nfcsb1v 3078 . . . . . . . . . 10 𝑘𝑚 / 𝑘𝐶
76nfel1 2319 . . . . . . . . 9 𝑘𝑚 / 𝑘𝐶 ∈ ℂ
8 csbeq1a 3054 . . . . . . . . . 10 (𝑘 = 𝑚𝐶 = 𝑚 / 𝑘𝐶)
98eleq1d 2235 . . . . . . . . 9 (𝑘 = 𝑚 → (𝐶 ∈ ℂ ↔ 𝑚 / 𝑘𝐶 ∈ ℂ))
107, 9rspc 2824 . . . . . . . 8 (𝑚𝐴 → (∀𝑘𝐴 𝐶 ∈ ℂ → 𝑚 / 𝑘𝐶 ∈ ℂ))
1110impcom 124 . . . . . . 7 ((∀𝑘𝐴 𝐶 ∈ ℂ ∧ 𝑚𝐴) → 𝑚 / 𝑘𝐶 ∈ ℂ)
125, 11eqeltrd 2243 . . . . . 6 ((∀𝑘𝐴 𝐶 ∈ ℂ ∧ 𝑚𝐴) → if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0) ∈ ℂ)
133, 12sylan 281 . . . . 5 ((𝜑𝑚𝐴) → if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0) ∈ ℂ)
1413adantlr 469 . . . 4 (((𝜑 ∧ (𝑀 ∈ ℤ ∧ 𝐵 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐵)) ∧ 𝑚𝐴) → if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0) ∈ ℂ)
15 eldifn 3245 . . . . . 6 (𝑚 ∈ (𝐵𝐴) → ¬ 𝑚𝐴)
1615iffalsed 3530 . . . . 5 (𝑚 ∈ (𝐵𝐴) → if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0) = 0)
1716adantl 275 . . . 4 (((𝜑 ∧ (𝑀 ∈ ℤ ∧ 𝐵 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐵)) ∧ 𝑚 ∈ (𝐵𝐴)) → if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0) = 0)
18 isumss2.adc . . . . . . . . . 10 (𝜑 → ∀𝑗𝐵 DECID 𝑗𝐴)
1918adantr 274 . . . . . . . . 9 ((𝜑 ∧ (𝑀 ∈ ℤ ∧ 𝐵 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐵)) → ∀𝑗𝐵 DECID 𝑗𝐴)
20 eleq1w 2227 . . . . . . . . . . 11 (𝑗 = 𝑎 → (𝑗𝐴𝑎𝐴))
2120dcbid 828 . . . . . . . . . 10 (𝑗 = 𝑎 → (DECID 𝑗𝐴DECID 𝑎𝐴))
2221cbvralv 2692 . . . . . . . . 9 (∀𝑗𝐵 DECID 𝑗𝐴 ↔ ∀𝑎𝐵 DECID 𝑎𝐴)
2319, 22sylib 121 . . . . . . . 8 ((𝜑 ∧ (𝑀 ∈ ℤ ∧ 𝐵 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐵)) → ∀𝑎𝐵 DECID 𝑎𝐴)
2423r19.21bi 2554 . . . . . . 7 (((𝜑 ∧ (𝑀 ∈ ℤ ∧ 𝐵 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐵)) ∧ 𝑎𝐵) → DECID 𝑎𝐴)
2524adantlr 469 . . . . . 6 ((((𝜑 ∧ (𝑀 ∈ ℤ ∧ 𝐵 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐵)) ∧ 𝑎 ∈ (ℤ𝑀)) ∧ 𝑎𝐵) → DECID 𝑎𝐴)
262adantr 274 . . . . . . . . . 10 (((𝜑 ∧ (𝑀 ∈ ℤ ∧ 𝐵 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐵)) ∧ 𝑎 ∈ (ℤ𝑀)) → 𝐴𝐵)
2726ssneld 3144 . . . . . . . . 9 (((𝜑 ∧ (𝑀 ∈ ℤ ∧ 𝐵 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐵)) ∧ 𝑎 ∈ (ℤ𝑀)) → (¬ 𝑎𝐵 → ¬ 𝑎𝐴))
2827imp 123 . . . . . . . 8 ((((𝜑 ∧ (𝑀 ∈ ℤ ∧ 𝐵 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐵)) ∧ 𝑎 ∈ (ℤ𝑀)) ∧ ¬ 𝑎𝐵) → ¬ 𝑎𝐴)
2928olcd 724 . . . . . . 7 ((((𝜑 ∧ (𝑀 ∈ ℤ ∧ 𝐵 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐵)) ∧ 𝑎 ∈ (ℤ𝑀)) ∧ ¬ 𝑎𝐵) → (𝑎𝐴 ∨ ¬ 𝑎𝐴))
30 df-dc 825 . . . . . . 7 (DECID 𝑎𝐴 ↔ (𝑎𝐴 ∨ ¬ 𝑎𝐴))
3129, 30sylibr 133 . . . . . 6 ((((𝜑 ∧ (𝑀 ∈ ℤ ∧ 𝐵 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐵)) ∧ 𝑎 ∈ (ℤ𝑀)) ∧ ¬ 𝑎𝐵) → DECID 𝑎𝐴)
32 eleq1w 2227 . . . . . . . . 9 (𝑗 = 𝑎 → (𝑗𝐵𝑎𝐵))
3332dcbid 828 . . . . . . . 8 (𝑗 = 𝑎 → (DECID 𝑗𝐵DECID 𝑎𝐵))
34 simplr3 1031 . . . . . . . 8 (((𝜑 ∧ (𝑀 ∈ ℤ ∧ 𝐵 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐵)) ∧ 𝑎 ∈ (ℤ𝑀)) → ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐵)
35 simpr 109 . . . . . . . 8 (((𝜑 ∧ (𝑀 ∈ ℤ ∧ 𝐵 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐵)) ∧ 𝑎 ∈ (ℤ𝑀)) → 𝑎 ∈ (ℤ𝑀))
3633, 34, 35rspcdva 2835 . . . . . . 7 (((𝜑 ∧ (𝑀 ∈ ℤ ∧ 𝐵 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐵)) ∧ 𝑎 ∈ (ℤ𝑀)) → DECID 𝑎𝐵)
37 exmiddc 826 . . . . . . 7 (DECID 𝑎𝐵 → (𝑎𝐵 ∨ ¬ 𝑎𝐵))
3836, 37syl 14 . . . . . 6 (((𝜑 ∧ (𝑀 ∈ ℤ ∧ 𝐵 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐵)) ∧ 𝑎 ∈ (ℤ𝑀)) → (𝑎𝐵 ∨ ¬ 𝑎𝐵))
3925, 31, 38mpjaodan 788 . . . . 5 (((𝜑 ∧ (𝑀 ∈ ℤ ∧ 𝐵 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐵)) ∧ 𝑎 ∈ (ℤ𝑀)) → DECID 𝑎𝐴)
4039ralrimiva 2539 . . . 4 ((𝜑 ∧ (𝑀 ∈ ℤ ∧ 𝐵 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐵)) → ∀𝑎 ∈ (ℤ𝑀)DECID 𝑎𝐴)
41 simpr1 993 . . . 4 ((𝜑 ∧ (𝑀 ∈ ℤ ∧ 𝐵 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐵)) → 𝑀 ∈ ℤ)
42 simpr2 994 . . . 4 ((𝜑 ∧ (𝑀 ∈ ℤ ∧ 𝐵 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐵)) → 𝐵 ⊆ (ℤ𝑀))
43 simpr3 995 . . . . 5 ((𝜑 ∧ (𝑀 ∈ ℤ ∧ 𝐵 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐵)) → ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐵)
4433cbvralv 2692 . . . . 5 (∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐵 ↔ ∀𝑎 ∈ (ℤ𝑀)DECID 𝑎𝐵)
4543, 44sylib 121 . . . 4 ((𝜑 ∧ (𝑀 ∈ ℤ ∧ 𝐵 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐵)) → ∀𝑎 ∈ (ℤ𝑀)DECID 𝑎𝐵)
462, 14, 17, 40, 41, 42, 45isumss 11332 . . 3 ((𝜑 ∧ (𝑀 ∈ ℤ ∧ 𝐵 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐵)) → Σ𝑚𝐴 if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0) = Σ𝑚𝐵 if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0))
471adantr 274 . . . 4 ((𝜑𝐵 ∈ Fin) → 𝐴𝐵)
4813adantlr 469 . . . 4 (((𝜑𝐵 ∈ Fin) ∧ 𝑚𝐴) → if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0) ∈ ℂ)
4916adantl 275 . . . 4 (((𝜑𝐵 ∈ Fin) ∧ 𝑚 ∈ (𝐵𝐴)) → if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0) = 0)
5018adantr 274 . . . 4 ((𝜑𝐵 ∈ Fin) → ∀𝑗𝐵 DECID 𝑗𝐴)
51 simpr 109 . . . 4 ((𝜑𝐵 ∈ Fin) → 𝐵 ∈ Fin)
5247, 48, 49, 50, 51fisumss 11333 . . 3 ((𝜑𝐵 ∈ Fin) → Σ𝑚𝐴 if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0) = Σ𝑚𝐵 if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0))
53 isumss2.b . . 3 (𝜑 → ((𝑀 ∈ ℤ ∧ 𝐵 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐵) ∨ 𝐵 ∈ Fin))
5446, 52, 53mpjaodan 788 . 2 (𝜑 → Σ𝑚𝐴 if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0) = Σ𝑚𝐵 if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0))
55 iftrue 3525 . . . 4 (𝑘𝐴 → if(𝑘𝐴, 𝐶, 0) = 𝐶)
5655sumeq2i 11305 . . 3 Σ𝑘𝐴 if(𝑘𝐴, 𝐶, 0) = Σ𝑘𝐴 𝐶
57 nfcv 2308 . . . 4 𝑚if(𝑘𝐴, 𝐶, 0)
58 nfv 1516 . . . . 5 𝑘 𝑚𝐴
59 nfcv 2308 . . . . 5 𝑘0
6058, 6, 59nfif 3548 . . . 4 𝑘if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0)
61 eleq1w 2227 . . . . 5 (𝑘 = 𝑚 → (𝑘𝐴𝑚𝐴))
6261, 8ifbieq1d 3542 . . . 4 (𝑘 = 𝑚 → if(𝑘𝐴, 𝐶, 0) = if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0))
6357, 60, 62cbvsumi 11303 . . 3 Σ𝑘𝐴 if(𝑘𝐴, 𝐶, 0) = Σ𝑚𝐴 if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0)
6456, 63eqtr3i 2188 . 2 Σ𝑘𝐴 𝐶 = Σ𝑚𝐴 if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0)
6557, 60, 62cbvsumi 11303 . 2 Σ𝑘𝐵 if(𝑘𝐴, 𝐶, 0) = Σ𝑚𝐵 if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0)
6654, 64, 653eqtr4g 2224 1 (𝜑 → Σ𝑘𝐴 𝐶 = Σ𝑘𝐵 if(𝑘𝐴, 𝐶, 0))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wo 698  DECID wdc 824  w3a 968   = wceq 1343  wcel 2136  wral 2444  csb 3045  cdif 3113  wss 3116  ifcif 3520  cfv 5188  Fincfn 6706  cc 7751  0cc0 7753  cz 9191  cuz 9466  Σcsu 11294
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871  ax-arch 7872  ax-caucvg 7873
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-ilim 4347  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-isom 5197  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-irdg 6338  df-frec 6359  df-1o 6384  df-oadd 6388  df-er 6501  df-en 6707  df-dom 6708  df-fin 6709  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-inn 8858  df-2 8916  df-3 8917  df-4 8918  df-n0 9115  df-z 9192  df-uz 9467  df-q 9558  df-rp 9590  df-fz 9945  df-fzo 10078  df-seqfrec 10381  df-exp 10455  df-ihash 10689  df-cj 10784  df-re 10785  df-im 10786  df-rsqrt 10940  df-abs 10941  df-clim 11220  df-sumdc 11295
This theorem is referenced by:  fsumsplit  11348  sumsplitdc  11373  isumlessdc  11437  sumhashdc  12277
  Copyright terms: Public domain W3C validator