| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > lpvtx | GIF version | ||
| Description: The endpoints of a loop (which is an edge at index 𝐽) are two (identical) vertices 𝐴. (Contributed by AV, 1-Feb-2021.) |
| Ref | Expression |
|---|---|
| lpvtx.i | ⊢ 𝐼 = (iEdg‘𝐺) |
| Ref | Expression |
|---|---|
| lpvtx | ⊢ ((𝐺 ∈ UHGraph ∧ 𝐽 ∈ dom 𝐼 ∧ (𝐼‘𝐽) = {𝐴}) → 𝐴 ∈ (Vtx‘𝐺)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 1021 | . . . 4 ⊢ ((𝐺 ∈ UHGraph ∧ 𝐽 ∈ dom 𝐼 ∧ (𝐼‘𝐽) = {𝐴}) → 𝐺 ∈ UHGraph) | |
| 2 | lpvtx.i | . . . . . . 7 ⊢ 𝐼 = (iEdg‘𝐺) | |
| 3 | 2 | uhgrfun 15885 | . . . . . 6 ⊢ (𝐺 ∈ UHGraph → Fun 𝐼) |
| 4 | 3 | funfnd 5349 | . . . . 5 ⊢ (𝐺 ∈ UHGraph → 𝐼 Fn dom 𝐼) |
| 5 | 4 | 3ad2ant1 1042 | . . . 4 ⊢ ((𝐺 ∈ UHGraph ∧ 𝐽 ∈ dom 𝐼 ∧ (𝐼‘𝐽) = {𝐴}) → 𝐼 Fn dom 𝐼) |
| 6 | simp2 1022 | . . . 4 ⊢ ((𝐺 ∈ UHGraph ∧ 𝐽 ∈ dom 𝐼 ∧ (𝐼‘𝐽) = {𝐴}) → 𝐽 ∈ dom 𝐼) | |
| 7 | 2 | uhgrm 15886 | . . . 4 ⊢ ((𝐺 ∈ UHGraph ∧ 𝐼 Fn dom 𝐼 ∧ 𝐽 ∈ dom 𝐼) → ∃𝑗 𝑗 ∈ (𝐼‘𝐽)) |
| 8 | 1, 5, 6, 7 | syl3anc 1271 | . . 3 ⊢ ((𝐺 ∈ UHGraph ∧ 𝐽 ∈ dom 𝐼 ∧ (𝐼‘𝐽) = {𝐴}) → ∃𝑗 𝑗 ∈ (𝐼‘𝐽)) |
| 9 | eleq2 2293 | . . . . 5 ⊢ ((𝐼‘𝐽) = {𝐴} → (𝑗 ∈ (𝐼‘𝐽) ↔ 𝑗 ∈ {𝐴})) | |
| 10 | 9 | exbidv 1871 | . . . 4 ⊢ ((𝐼‘𝐽) = {𝐴} → (∃𝑗 𝑗 ∈ (𝐼‘𝐽) ↔ ∃𝑗 𝑗 ∈ {𝐴})) |
| 11 | 10 | 3ad2ant3 1044 | . . 3 ⊢ ((𝐺 ∈ UHGraph ∧ 𝐽 ∈ dom 𝐼 ∧ (𝐼‘𝐽) = {𝐴}) → (∃𝑗 𝑗 ∈ (𝐼‘𝐽) ↔ ∃𝑗 𝑗 ∈ {𝐴})) |
| 12 | 8, 11 | mpbid 147 | . 2 ⊢ ((𝐺 ∈ UHGraph ∧ 𝐽 ∈ dom 𝐼 ∧ (𝐼‘𝐽) = {𝐴}) → ∃𝑗 𝑗 ∈ {𝐴}) |
| 13 | eqid 2229 | . . . . . 6 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
| 14 | 13, 2 | uhgrss 15883 | . . . . 5 ⊢ ((𝐺 ∈ UHGraph ∧ 𝐽 ∈ dom 𝐼) → (𝐼‘𝐽) ⊆ (Vtx‘𝐺)) |
| 15 | 14 | 3adant3 1041 | . . . 4 ⊢ ((𝐺 ∈ UHGraph ∧ 𝐽 ∈ dom 𝐼 ∧ (𝐼‘𝐽) = {𝐴}) → (𝐼‘𝐽) ⊆ (Vtx‘𝐺)) |
| 16 | sseq1 3247 | . . . . 5 ⊢ ((𝐼‘𝐽) = {𝐴} → ((𝐼‘𝐽) ⊆ (Vtx‘𝐺) ↔ {𝐴} ⊆ (Vtx‘𝐺))) | |
| 17 | 16 | 3ad2ant3 1044 | . . . 4 ⊢ ((𝐺 ∈ UHGraph ∧ 𝐽 ∈ dom 𝐼 ∧ (𝐼‘𝐽) = {𝐴}) → ((𝐼‘𝐽) ⊆ (Vtx‘𝐺) ↔ {𝐴} ⊆ (Vtx‘𝐺))) |
| 18 | 15, 17 | mpbid 147 | . . 3 ⊢ ((𝐺 ∈ UHGraph ∧ 𝐽 ∈ dom 𝐼 ∧ (𝐼‘𝐽) = {𝐴}) → {𝐴} ⊆ (Vtx‘𝐺)) |
| 19 | snmb 3788 | . . . 4 ⊢ (𝐴 ∈ V ↔ ∃𝑗 𝑗 ∈ {𝐴}) | |
| 20 | snssg 3802 | . . . 4 ⊢ (𝐴 ∈ V → (𝐴 ∈ (Vtx‘𝐺) ↔ {𝐴} ⊆ (Vtx‘𝐺))) | |
| 21 | 19, 20 | sylbir 135 | . . 3 ⊢ (∃𝑗 𝑗 ∈ {𝐴} → (𝐴 ∈ (Vtx‘𝐺) ↔ {𝐴} ⊆ (Vtx‘𝐺))) |
| 22 | 18, 21 | syl5ibrcom 157 | . 2 ⊢ ((𝐺 ∈ UHGraph ∧ 𝐽 ∈ dom 𝐼 ∧ (𝐼‘𝐽) = {𝐴}) → (∃𝑗 𝑗 ∈ {𝐴} → 𝐴 ∈ (Vtx‘𝐺))) |
| 23 | 12, 22 | mpd 13 | 1 ⊢ ((𝐺 ∈ UHGraph ∧ 𝐽 ∈ dom 𝐼 ∧ (𝐼‘𝐽) = {𝐴}) → 𝐴 ∈ (Vtx‘𝐺)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∧ w3a 1002 = wceq 1395 ∃wex 1538 ∈ wcel 2200 Vcvv 2799 ⊆ wss 3197 {csn 3666 dom cdm 4719 Fn wfn 5313 ‘cfv 5318 Vtxcvtx 15821 iEdgciedg 15822 UHGraphcuhgr 15875 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-cnex 8098 ax-resscn 8099 ax-1cn 8100 ax-1re 8101 ax-icn 8102 ax-addcl 8103 ax-addrcl 8104 ax-mulcl 8105 ax-addcom 8107 ax-mulcom 8108 ax-addass 8109 ax-mulass 8110 ax-distr 8111 ax-i2m1 8112 ax-1rid 8114 ax-0id 8115 ax-rnegex 8116 ax-cnre 8118 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-fo 5324 df-fv 5326 df-riota 5960 df-ov 6010 df-oprab 6011 df-mpo 6012 df-1st 6292 df-2nd 6293 df-sub 8327 df-inn 9119 df-2 9177 df-3 9178 df-4 9179 df-5 9180 df-6 9181 df-7 9182 df-8 9183 df-9 9184 df-n0 9378 df-dec 9587 df-ndx 13043 df-slot 13044 df-base 13046 df-edgf 15814 df-vtx 15823 df-iedg 15824 df-uhgrm 15877 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |