| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > lpvtx | GIF version | ||
| Description: The endpoints of a loop (which is an edge at index 𝐽) are two (identical) vertices 𝐴. (Contributed by AV, 1-Feb-2021.) |
| Ref | Expression |
|---|---|
| lpvtx.i | ⊢ 𝐼 = (iEdg‘𝐺) |
| Ref | Expression |
|---|---|
| lpvtx | ⊢ ((𝐺 ∈ UHGraph ∧ 𝐽 ∈ dom 𝐼 ∧ (𝐼‘𝐽) = {𝐴}) → 𝐴 ∈ (Vtx‘𝐺)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 1000 | . . . 4 ⊢ ((𝐺 ∈ UHGraph ∧ 𝐽 ∈ dom 𝐼 ∧ (𝐼‘𝐽) = {𝐴}) → 𝐺 ∈ UHGraph) | |
| 2 | lpvtx.i | . . . . . . 7 ⊢ 𝐼 = (iEdg‘𝐺) | |
| 3 | 2 | uhgrfun 15717 | . . . . . 6 ⊢ (𝐺 ∈ UHGraph → Fun 𝐼) |
| 4 | 3 | funfnd 5307 | . . . . 5 ⊢ (𝐺 ∈ UHGraph → 𝐼 Fn dom 𝐼) |
| 5 | 4 | 3ad2ant1 1021 | . . . 4 ⊢ ((𝐺 ∈ UHGraph ∧ 𝐽 ∈ dom 𝐼 ∧ (𝐼‘𝐽) = {𝐴}) → 𝐼 Fn dom 𝐼) |
| 6 | simp2 1001 | . . . 4 ⊢ ((𝐺 ∈ UHGraph ∧ 𝐽 ∈ dom 𝐼 ∧ (𝐼‘𝐽) = {𝐴}) → 𝐽 ∈ dom 𝐼) | |
| 7 | 2 | uhgrm 15718 | . . . 4 ⊢ ((𝐺 ∈ UHGraph ∧ 𝐼 Fn dom 𝐼 ∧ 𝐽 ∈ dom 𝐼) → ∃𝑗 𝑗 ∈ (𝐼‘𝐽)) |
| 8 | 1, 5, 6, 7 | syl3anc 1250 | . . 3 ⊢ ((𝐺 ∈ UHGraph ∧ 𝐽 ∈ dom 𝐼 ∧ (𝐼‘𝐽) = {𝐴}) → ∃𝑗 𝑗 ∈ (𝐼‘𝐽)) |
| 9 | eleq2 2270 | . . . . 5 ⊢ ((𝐼‘𝐽) = {𝐴} → (𝑗 ∈ (𝐼‘𝐽) ↔ 𝑗 ∈ {𝐴})) | |
| 10 | 9 | exbidv 1849 | . . . 4 ⊢ ((𝐼‘𝐽) = {𝐴} → (∃𝑗 𝑗 ∈ (𝐼‘𝐽) ↔ ∃𝑗 𝑗 ∈ {𝐴})) |
| 11 | 10 | 3ad2ant3 1023 | . . 3 ⊢ ((𝐺 ∈ UHGraph ∧ 𝐽 ∈ dom 𝐼 ∧ (𝐼‘𝐽) = {𝐴}) → (∃𝑗 𝑗 ∈ (𝐼‘𝐽) ↔ ∃𝑗 𝑗 ∈ {𝐴})) |
| 12 | 8, 11 | mpbid 147 | . 2 ⊢ ((𝐺 ∈ UHGraph ∧ 𝐽 ∈ dom 𝐼 ∧ (𝐼‘𝐽) = {𝐴}) → ∃𝑗 𝑗 ∈ {𝐴}) |
| 13 | eqid 2206 | . . . . . 6 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
| 14 | 13, 2 | uhgrss 15715 | . . . . 5 ⊢ ((𝐺 ∈ UHGraph ∧ 𝐽 ∈ dom 𝐼) → (𝐼‘𝐽) ⊆ (Vtx‘𝐺)) |
| 15 | 14 | 3adant3 1020 | . . . 4 ⊢ ((𝐺 ∈ UHGraph ∧ 𝐽 ∈ dom 𝐼 ∧ (𝐼‘𝐽) = {𝐴}) → (𝐼‘𝐽) ⊆ (Vtx‘𝐺)) |
| 16 | sseq1 3217 | . . . . 5 ⊢ ((𝐼‘𝐽) = {𝐴} → ((𝐼‘𝐽) ⊆ (Vtx‘𝐺) ↔ {𝐴} ⊆ (Vtx‘𝐺))) | |
| 17 | 16 | 3ad2ant3 1023 | . . . 4 ⊢ ((𝐺 ∈ UHGraph ∧ 𝐽 ∈ dom 𝐼 ∧ (𝐼‘𝐽) = {𝐴}) → ((𝐼‘𝐽) ⊆ (Vtx‘𝐺) ↔ {𝐴} ⊆ (Vtx‘𝐺))) |
| 18 | 15, 17 | mpbid 147 | . . 3 ⊢ ((𝐺 ∈ UHGraph ∧ 𝐽 ∈ dom 𝐼 ∧ (𝐼‘𝐽) = {𝐴}) → {𝐴} ⊆ (Vtx‘𝐺)) |
| 19 | snmb 3755 | . . . 4 ⊢ (𝐴 ∈ V ↔ ∃𝑗 𝑗 ∈ {𝐴}) | |
| 20 | snssg 3769 | . . . 4 ⊢ (𝐴 ∈ V → (𝐴 ∈ (Vtx‘𝐺) ↔ {𝐴} ⊆ (Vtx‘𝐺))) | |
| 21 | 19, 20 | sylbir 135 | . . 3 ⊢ (∃𝑗 𝑗 ∈ {𝐴} → (𝐴 ∈ (Vtx‘𝐺) ↔ {𝐴} ⊆ (Vtx‘𝐺))) |
| 22 | 18, 21 | syl5ibrcom 157 | . 2 ⊢ ((𝐺 ∈ UHGraph ∧ 𝐽 ∈ dom 𝐼 ∧ (𝐼‘𝐽) = {𝐴}) → (∃𝑗 𝑗 ∈ {𝐴} → 𝐴 ∈ (Vtx‘𝐺))) |
| 23 | 12, 22 | mpd 13 | 1 ⊢ ((𝐺 ∈ UHGraph ∧ 𝐽 ∈ dom 𝐼 ∧ (𝐼‘𝐽) = {𝐴}) → 𝐴 ∈ (Vtx‘𝐺)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∧ w3a 981 = wceq 1373 ∃wex 1516 ∈ wcel 2177 Vcvv 2773 ⊆ wss 3167 {csn 3634 dom cdm 4679 Fn wfn 5271 ‘cfv 5276 Vtxcvtx 15655 iEdgciedg 15656 UHGraphcuhgr 15707 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4166 ax-pow 4222 ax-pr 4257 ax-un 4484 ax-setind 4589 ax-cnex 8023 ax-resscn 8024 ax-1cn 8025 ax-1re 8026 ax-icn 8027 ax-addcl 8028 ax-addrcl 8029 ax-mulcl 8030 ax-addcom 8032 ax-mulcom 8033 ax-addass 8034 ax-mulass 8035 ax-distr 8036 ax-i2m1 8037 ax-1rid 8039 ax-0id 8040 ax-rnegex 8041 ax-cnre 8043 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3000 df-csb 3095 df-dif 3169 df-un 3171 df-in 3173 df-ss 3180 df-if 3573 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-uni 3853 df-int 3888 df-br 4048 df-opab 4110 df-mpt 4111 df-id 4344 df-xp 4685 df-rel 4686 df-cnv 4687 df-co 4688 df-dm 4689 df-rn 4690 df-res 4691 df-iota 5237 df-fun 5278 df-fn 5279 df-f 5280 df-fo 5282 df-fv 5284 df-riota 5906 df-ov 5954 df-oprab 5955 df-mpo 5956 df-1st 6233 df-2nd 6234 df-sub 8252 df-inn 9044 df-2 9102 df-3 9103 df-4 9104 df-5 9105 df-6 9106 df-7 9107 df-8 9108 df-9 9109 df-n0 9303 df-dec 9512 df-ndx 12879 df-slot 12880 df-base 12882 df-edgf 15648 df-vtx 15657 df-iedg 15658 df-uhgrm 15709 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |