| Step | Hyp | Ref
 | Expression | 
| 1 |   | euex 2075 | 
. 2
⊢
(∃!𝑦∀𝑥 𝑦 = 𝐴 → ∃𝑦∀𝑥 𝑦 = 𝐴) | 
| 2 |   | vex 2766 | 
. . . . . . 7
⊢ 𝑧 ∈ V | 
| 3 |   | nfcv 2339 | 
. . . . . . . 8
⊢
Ⅎ𝑥𝑧 | 
| 4 |   | nfcsb1v 3117 | 
. . . . . . . . 9
⊢
Ⅎ𝑥⦋𝑧 / 𝑥⦌𝐴 | 
| 5 | 4 | nfeq2 2351 | 
. . . . . . . 8
⊢
Ⅎ𝑥 𝑦 = ⦋𝑧 / 𝑥⦌𝐴 | 
| 6 |   | csbeq1a 3093 | 
. . . . . . . . 9
⊢ (𝑥 = 𝑧 → 𝐴 = ⦋𝑧 / 𝑥⦌𝐴) | 
| 7 | 6 | eqeq2d 2208 | 
. . . . . . . 8
⊢ (𝑥 = 𝑧 → (𝑦 = 𝐴 ↔ 𝑦 = ⦋𝑧 / 𝑥⦌𝐴)) | 
| 8 | 3, 5, 7 | spcgf 2846 | 
. . . . . . 7
⊢ (𝑧 ∈ V → (∀𝑥 𝑦 = 𝐴 → 𝑦 = ⦋𝑧 / 𝑥⦌𝐴)) | 
| 9 | 2, 8 | ax-mp 5 | 
. . . . . 6
⊢
(∀𝑥 𝑦 = 𝐴 → 𝑦 = ⦋𝑧 / 𝑥⦌𝐴) | 
| 10 |   | vex 2766 | 
. . . . . . 7
⊢ 𝑤 ∈ V | 
| 11 |   | nfcv 2339 | 
. . . . . . . 8
⊢
Ⅎ𝑥𝑤 | 
| 12 |   | nfcsb1v 3117 | 
. . . . . . . . 9
⊢
Ⅎ𝑥⦋𝑤 / 𝑥⦌𝐴 | 
| 13 | 12 | nfeq2 2351 | 
. . . . . . . 8
⊢
Ⅎ𝑥 𝑦 = ⦋𝑤 / 𝑥⦌𝐴 | 
| 14 |   | csbeq1a 3093 | 
. . . . . . . . 9
⊢ (𝑥 = 𝑤 → 𝐴 = ⦋𝑤 / 𝑥⦌𝐴) | 
| 15 | 14 | eqeq2d 2208 | 
. . . . . . . 8
⊢ (𝑥 = 𝑤 → (𝑦 = 𝐴 ↔ 𝑦 = ⦋𝑤 / 𝑥⦌𝐴)) | 
| 16 | 11, 13, 15 | spcgf 2846 | 
. . . . . . 7
⊢ (𝑤 ∈ V → (∀𝑥 𝑦 = 𝐴 → 𝑦 = ⦋𝑤 / 𝑥⦌𝐴)) | 
| 17 | 10, 16 | ax-mp 5 | 
. . . . . 6
⊢
(∀𝑥 𝑦 = 𝐴 → 𝑦 = ⦋𝑤 / 𝑥⦌𝐴) | 
| 18 | 9, 17 | eqtr3d 2231 | 
. . . . 5
⊢
(∀𝑥 𝑦 = 𝐴 → ⦋𝑧 / 𝑥⦌𝐴 = ⦋𝑤 / 𝑥⦌𝐴) | 
| 19 | 18 | alrimivv 1889 | 
. . . 4
⊢
(∀𝑥 𝑦 = 𝐴 → ∀𝑧∀𝑤⦋𝑧 / 𝑥⦌𝐴 = ⦋𝑤 / 𝑥⦌𝐴) | 
| 20 |   | sbnfc2 3145 | 
. . . 4
⊢
(Ⅎ𝑥𝐴 ↔ ∀𝑧∀𝑤⦋𝑧 / 𝑥⦌𝐴 = ⦋𝑤 / 𝑥⦌𝐴) | 
| 21 | 19, 20 | sylibr 134 | 
. . 3
⊢
(∀𝑥 𝑦 = 𝐴 → Ⅎ𝑥𝐴) | 
| 22 | 21 | exlimiv 1612 | 
. 2
⊢
(∃𝑦∀𝑥 𝑦 = 𝐴 → Ⅎ𝑥𝐴) | 
| 23 | 1, 22 | syl 14 | 
1
⊢
(∃!𝑦∀𝑥 𝑦 = 𝐴 → Ⅎ𝑥𝐴) |