Step | Hyp | Ref
| Expression |
1 | | euex 2049 |
. 2
⊢
(∃!𝑦∀𝑥 𝑦 = 𝐴 → ∃𝑦∀𝑥 𝑦 = 𝐴) |
2 | | vex 2733 |
. . . . . . 7
⊢ 𝑧 ∈ V |
3 | | nfcv 2312 |
. . . . . . . 8
⊢
Ⅎ𝑥𝑧 |
4 | | nfcsb1v 3082 |
. . . . . . . . 9
⊢
Ⅎ𝑥⦋𝑧 / 𝑥⦌𝐴 |
5 | 4 | nfeq2 2324 |
. . . . . . . 8
⊢
Ⅎ𝑥 𝑦 = ⦋𝑧 / 𝑥⦌𝐴 |
6 | | csbeq1a 3058 |
. . . . . . . . 9
⊢ (𝑥 = 𝑧 → 𝐴 = ⦋𝑧 / 𝑥⦌𝐴) |
7 | 6 | eqeq2d 2182 |
. . . . . . . 8
⊢ (𝑥 = 𝑧 → (𝑦 = 𝐴 ↔ 𝑦 = ⦋𝑧 / 𝑥⦌𝐴)) |
8 | 3, 5, 7 | spcgf 2812 |
. . . . . . 7
⊢ (𝑧 ∈ V → (∀𝑥 𝑦 = 𝐴 → 𝑦 = ⦋𝑧 / 𝑥⦌𝐴)) |
9 | 2, 8 | ax-mp 5 |
. . . . . 6
⊢
(∀𝑥 𝑦 = 𝐴 → 𝑦 = ⦋𝑧 / 𝑥⦌𝐴) |
10 | | vex 2733 |
. . . . . . 7
⊢ 𝑤 ∈ V |
11 | | nfcv 2312 |
. . . . . . . 8
⊢
Ⅎ𝑥𝑤 |
12 | | nfcsb1v 3082 |
. . . . . . . . 9
⊢
Ⅎ𝑥⦋𝑤 / 𝑥⦌𝐴 |
13 | 12 | nfeq2 2324 |
. . . . . . . 8
⊢
Ⅎ𝑥 𝑦 = ⦋𝑤 / 𝑥⦌𝐴 |
14 | | csbeq1a 3058 |
. . . . . . . . 9
⊢ (𝑥 = 𝑤 → 𝐴 = ⦋𝑤 / 𝑥⦌𝐴) |
15 | 14 | eqeq2d 2182 |
. . . . . . . 8
⊢ (𝑥 = 𝑤 → (𝑦 = 𝐴 ↔ 𝑦 = ⦋𝑤 / 𝑥⦌𝐴)) |
16 | 11, 13, 15 | spcgf 2812 |
. . . . . . 7
⊢ (𝑤 ∈ V → (∀𝑥 𝑦 = 𝐴 → 𝑦 = ⦋𝑤 / 𝑥⦌𝐴)) |
17 | 10, 16 | ax-mp 5 |
. . . . . 6
⊢
(∀𝑥 𝑦 = 𝐴 → 𝑦 = ⦋𝑤 / 𝑥⦌𝐴) |
18 | 9, 17 | eqtr3d 2205 |
. . . . 5
⊢
(∀𝑥 𝑦 = 𝐴 → ⦋𝑧 / 𝑥⦌𝐴 = ⦋𝑤 / 𝑥⦌𝐴) |
19 | 18 | alrimivv 1868 |
. . . 4
⊢
(∀𝑥 𝑦 = 𝐴 → ∀𝑧∀𝑤⦋𝑧 / 𝑥⦌𝐴 = ⦋𝑤 / 𝑥⦌𝐴) |
20 | | sbnfc2 3109 |
. . . 4
⊢
(Ⅎ𝑥𝐴 ↔ ∀𝑧∀𝑤⦋𝑧 / 𝑥⦌𝐴 = ⦋𝑤 / 𝑥⦌𝐴) |
21 | 19, 20 | sylibr 133 |
. . 3
⊢
(∀𝑥 𝑦 = 𝐴 → Ⅎ𝑥𝐴) |
22 | 21 | exlimiv 1591 |
. 2
⊢
(∃𝑦∀𝑥 𝑦 = 𝐴 → Ⅎ𝑥𝐴) |
23 | 1, 22 | syl 14 |
1
⊢
(∃!𝑦∀𝑥 𝑦 = 𝐴 → Ⅎ𝑥𝐴) |