Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  eusvnf GIF version

Theorem eusvnf 4382
 Description: Even if 𝑥 is free in 𝐴, it is effectively bound when 𝐴(𝑥) is single-valued. (Contributed by NM, 14-Oct-2010.) (Revised by Mario Carneiro, 14-Oct-2016.)
Assertion
Ref Expression
eusvnf (∃!𝑦𝑥 𝑦 = 𝐴𝑥𝐴)
Distinct variable groups:   𝑥,𝑦   𝑦,𝐴
Allowed substitution hint:   𝐴(𝑥)

Proof of Theorem eusvnf
Dummy variables 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 euex 2030 . 2 (∃!𝑦𝑥 𝑦 = 𝐴 → ∃𝑦𝑥 𝑦 = 𝐴)
2 vex 2692 . . . . . . 7 𝑧 ∈ V
3 nfcv 2282 . . . . . . . 8 𝑥𝑧
4 nfcsb1v 3040 . . . . . . . . 9 𝑥𝑧 / 𝑥𝐴
54nfeq2 2294 . . . . . . . 8 𝑥 𝑦 = 𝑧 / 𝑥𝐴
6 csbeq1a 3016 . . . . . . . . 9 (𝑥 = 𝑧𝐴 = 𝑧 / 𝑥𝐴)
76eqeq2d 2152 . . . . . . . 8 (𝑥 = 𝑧 → (𝑦 = 𝐴𝑦 = 𝑧 / 𝑥𝐴))
83, 5, 7spcgf 2771 . . . . . . 7 (𝑧 ∈ V → (∀𝑥 𝑦 = 𝐴𝑦 = 𝑧 / 𝑥𝐴))
92, 8ax-mp 5 . . . . . 6 (∀𝑥 𝑦 = 𝐴𝑦 = 𝑧 / 𝑥𝐴)
10 vex 2692 . . . . . . 7 𝑤 ∈ V
11 nfcv 2282 . . . . . . . 8 𝑥𝑤
12 nfcsb1v 3040 . . . . . . . . 9 𝑥𝑤 / 𝑥𝐴
1312nfeq2 2294 . . . . . . . 8 𝑥 𝑦 = 𝑤 / 𝑥𝐴
14 csbeq1a 3016 . . . . . . . . 9 (𝑥 = 𝑤𝐴 = 𝑤 / 𝑥𝐴)
1514eqeq2d 2152 . . . . . . . 8 (𝑥 = 𝑤 → (𝑦 = 𝐴𝑦 = 𝑤 / 𝑥𝐴))
1611, 13, 15spcgf 2771 . . . . . . 7 (𝑤 ∈ V → (∀𝑥 𝑦 = 𝐴𝑦 = 𝑤 / 𝑥𝐴))
1710, 16ax-mp 5 . . . . . 6 (∀𝑥 𝑦 = 𝐴𝑦 = 𝑤 / 𝑥𝐴)
189, 17eqtr3d 2175 . . . . 5 (∀𝑥 𝑦 = 𝐴𝑧 / 𝑥𝐴 = 𝑤 / 𝑥𝐴)
1918alrimivv 1848 . . . 4 (∀𝑥 𝑦 = 𝐴 → ∀𝑧𝑤𝑧 / 𝑥𝐴 = 𝑤 / 𝑥𝐴)
20 sbnfc2 3065 . . . 4 (𝑥𝐴 ↔ ∀𝑧𝑤𝑧 / 𝑥𝐴 = 𝑤 / 𝑥𝐴)
2119, 20sylibr 133 . . 3 (∀𝑥 𝑦 = 𝐴𝑥𝐴)
2221exlimiv 1578 . 2 (∃𝑦𝑥 𝑦 = 𝐴𝑥𝐴)
231, 22syl 14 1 (∃!𝑦𝑥 𝑦 = 𝐴𝑥𝐴)
 Colors of variables: wff set class Syntax hints:   → wi 4  ∀wal 1330   = wceq 1332  ∃wex 1469   ∈ wcel 1481  ∃!weu 2000  Ⅎwnfc 2269  Vcvv 2689  ⦋csb 3007 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122 This theorem depends on definitions:  df-bi 116  df-tru 1335  df-nf 1438  df-sb 1737  df-eu 2003  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-v 2691  df-sbc 2914  df-csb 3008 This theorem is referenced by:  eusvnfb  4383  eusv2i  4384
 Copyright terms: Public domain W3C validator