ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eusvnf GIF version

Theorem eusvnf 4431
Description: Even if 𝑥 is free in 𝐴, it is effectively bound when 𝐴(𝑥) is single-valued. (Contributed by NM, 14-Oct-2010.) (Revised by Mario Carneiro, 14-Oct-2016.)
Assertion
Ref Expression
eusvnf (∃!𝑦𝑥 𝑦 = 𝐴𝑥𝐴)
Distinct variable groups:   𝑥,𝑦   𝑦,𝐴
Allowed substitution hint:   𝐴(𝑥)

Proof of Theorem eusvnf
Dummy variables 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 euex 2044 . 2 (∃!𝑦𝑥 𝑦 = 𝐴 → ∃𝑦𝑥 𝑦 = 𝐴)
2 vex 2729 . . . . . . 7 𝑧 ∈ V
3 nfcv 2308 . . . . . . . 8 𝑥𝑧
4 nfcsb1v 3078 . . . . . . . . 9 𝑥𝑧 / 𝑥𝐴
54nfeq2 2320 . . . . . . . 8 𝑥 𝑦 = 𝑧 / 𝑥𝐴
6 csbeq1a 3054 . . . . . . . . 9 (𝑥 = 𝑧𝐴 = 𝑧 / 𝑥𝐴)
76eqeq2d 2177 . . . . . . . 8 (𝑥 = 𝑧 → (𝑦 = 𝐴𝑦 = 𝑧 / 𝑥𝐴))
83, 5, 7spcgf 2808 . . . . . . 7 (𝑧 ∈ V → (∀𝑥 𝑦 = 𝐴𝑦 = 𝑧 / 𝑥𝐴))
92, 8ax-mp 5 . . . . . 6 (∀𝑥 𝑦 = 𝐴𝑦 = 𝑧 / 𝑥𝐴)
10 vex 2729 . . . . . . 7 𝑤 ∈ V
11 nfcv 2308 . . . . . . . 8 𝑥𝑤
12 nfcsb1v 3078 . . . . . . . . 9 𝑥𝑤 / 𝑥𝐴
1312nfeq2 2320 . . . . . . . 8 𝑥 𝑦 = 𝑤 / 𝑥𝐴
14 csbeq1a 3054 . . . . . . . . 9 (𝑥 = 𝑤𝐴 = 𝑤 / 𝑥𝐴)
1514eqeq2d 2177 . . . . . . . 8 (𝑥 = 𝑤 → (𝑦 = 𝐴𝑦 = 𝑤 / 𝑥𝐴))
1611, 13, 15spcgf 2808 . . . . . . 7 (𝑤 ∈ V → (∀𝑥 𝑦 = 𝐴𝑦 = 𝑤 / 𝑥𝐴))
1710, 16ax-mp 5 . . . . . 6 (∀𝑥 𝑦 = 𝐴𝑦 = 𝑤 / 𝑥𝐴)
189, 17eqtr3d 2200 . . . . 5 (∀𝑥 𝑦 = 𝐴𝑧 / 𝑥𝐴 = 𝑤 / 𝑥𝐴)
1918alrimivv 1863 . . . 4 (∀𝑥 𝑦 = 𝐴 → ∀𝑧𝑤𝑧 / 𝑥𝐴 = 𝑤 / 𝑥𝐴)
20 sbnfc2 3105 . . . 4 (𝑥𝐴 ↔ ∀𝑧𝑤𝑧 / 𝑥𝐴 = 𝑤 / 𝑥𝐴)
2119, 20sylibr 133 . . 3 (∀𝑥 𝑦 = 𝐴𝑥𝐴)
2221exlimiv 1586 . 2 (∃𝑦𝑥 𝑦 = 𝐴𝑥𝐴)
231, 22syl 14 1 (∃!𝑦𝑥 𝑦 = 𝐴𝑥𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wal 1341   = wceq 1343  wex 1480  ∃!weu 2014  wcel 2136  wnfc 2295  Vcvv 2726  csb 3045
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-sbc 2952  df-csb 3046
This theorem is referenced by:  eusvnfb  4432  eusv2i  4433
  Copyright terms: Public domain W3C validator