ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mpofvex GIF version

Theorem mpofvex 6109
Description: Sufficient condition for an operation maps-to notation to be set-like. (Contributed by Mario Carneiro, 3-Jul-2019.)
Hypothesis
Ref Expression
fmpo.1 𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)
Assertion
Ref Expression
mpofvex ((∀𝑥𝑦 𝐶𝑉𝑅𝑊𝑆𝑋) → (𝑅𝐹𝑆) ∈ V)
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦
Allowed substitution hints:   𝐶(𝑥,𝑦)   𝑅(𝑥,𝑦)   𝑆(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝑉(𝑥,𝑦)   𝑊(𝑥,𝑦)   𝑋(𝑥,𝑦)

Proof of Theorem mpofvex
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 df-ov 5785 . 2 (𝑅𝐹𝑆) = (𝐹‘⟨𝑅, 𝑆⟩)
2 elex 2700 . . . . . . . . 9 (𝐶𝑉𝐶 ∈ V)
32alimi 1432 . . . . . . . 8 (∀𝑦 𝐶𝑉 → ∀𝑦 𝐶 ∈ V)
4 vex 2692 . . . . . . . . 9 𝑧 ∈ V
5 2ndexg 6074 . . . . . . . . 9 (𝑧 ∈ V → (2nd𝑧) ∈ V)
6 nfcv 2282 . . . . . . . . . 10 𝑦(2nd𝑧)
7 nfcsb1v 3040 . . . . . . . . . . 11 𝑦(2nd𝑧) / 𝑦𝐶
87nfel1 2293 . . . . . . . . . 10 𝑦(2nd𝑧) / 𝑦𝐶 ∈ V
9 csbeq1a 3016 . . . . . . . . . . 11 (𝑦 = (2nd𝑧) → 𝐶 = (2nd𝑧) / 𝑦𝐶)
109eleq1d 2209 . . . . . . . . . 10 (𝑦 = (2nd𝑧) → (𝐶 ∈ V ↔ (2nd𝑧) / 𝑦𝐶 ∈ V))
116, 8, 10spcgf 2771 . . . . . . . . 9 ((2nd𝑧) ∈ V → (∀𝑦 𝐶 ∈ V → (2nd𝑧) / 𝑦𝐶 ∈ V))
124, 5, 11mp2b 8 . . . . . . . 8 (∀𝑦 𝐶 ∈ V → (2nd𝑧) / 𝑦𝐶 ∈ V)
133, 12syl 14 . . . . . . 7 (∀𝑦 𝐶𝑉(2nd𝑧) / 𝑦𝐶 ∈ V)
1413alimi 1432 . . . . . 6 (∀𝑥𝑦 𝐶𝑉 → ∀𝑥(2nd𝑧) / 𝑦𝐶 ∈ V)
15 1stexg 6073 . . . . . . 7 (𝑧 ∈ V → (1st𝑧) ∈ V)
16 nfcv 2282 . . . . . . . 8 𝑥(1st𝑧)
17 nfcsb1v 3040 . . . . . . . . 9 𝑥(1st𝑧) / 𝑥(2nd𝑧) / 𝑦𝐶
1817nfel1 2293 . . . . . . . 8 𝑥(1st𝑧) / 𝑥(2nd𝑧) / 𝑦𝐶 ∈ V
19 csbeq1a 3016 . . . . . . . . 9 (𝑥 = (1st𝑧) → (2nd𝑧) / 𝑦𝐶 = (1st𝑧) / 𝑥(2nd𝑧) / 𝑦𝐶)
2019eleq1d 2209 . . . . . . . 8 (𝑥 = (1st𝑧) → ((2nd𝑧) / 𝑦𝐶 ∈ V ↔ (1st𝑧) / 𝑥(2nd𝑧) / 𝑦𝐶 ∈ V))
2116, 18, 20spcgf 2771 . . . . . . 7 ((1st𝑧) ∈ V → (∀𝑥(2nd𝑧) / 𝑦𝐶 ∈ V → (1st𝑧) / 𝑥(2nd𝑧) / 𝑦𝐶 ∈ V))
224, 15, 21mp2b 8 . . . . . 6 (∀𝑥(2nd𝑧) / 𝑦𝐶 ∈ V → (1st𝑧) / 𝑥(2nd𝑧) / 𝑦𝐶 ∈ V)
2314, 22syl 14 . . . . 5 (∀𝑥𝑦 𝐶𝑉(1st𝑧) / 𝑥(2nd𝑧) / 𝑦𝐶 ∈ V)
2423alrimiv 1847 . . . 4 (∀𝑥𝑦 𝐶𝑉 → ∀𝑧(1st𝑧) / 𝑥(2nd𝑧) / 𝑦𝐶 ∈ V)
25243ad2ant1 1003 . . 3 ((∀𝑥𝑦 𝐶𝑉𝑅𝑊𝑆𝑋) → ∀𝑧(1st𝑧) / 𝑥(2nd𝑧) / 𝑦𝐶 ∈ V)
26 opexg 4158 . . . 4 ((𝑅𝑊𝑆𝑋) → ⟨𝑅, 𝑆⟩ ∈ V)
27263adant1 1000 . . 3 ((∀𝑥𝑦 𝐶𝑉𝑅𝑊𝑆𝑋) → ⟨𝑅, 𝑆⟩ ∈ V)
28 fmpo.1 . . . . 5 𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)
29 mpomptsx 6103 . . . . 5 (𝑥𝐴, 𝑦𝐵𝐶) = (𝑧 𝑥𝐴 ({𝑥} × 𝐵) ↦ (1st𝑧) / 𝑥(2nd𝑧) / 𝑦𝐶)
3028, 29eqtri 2161 . . . 4 𝐹 = (𝑧 𝑥𝐴 ({𝑥} × 𝐵) ↦ (1st𝑧) / 𝑥(2nd𝑧) / 𝑦𝐶)
3130mptfvex 5514 . . 3 ((∀𝑧(1st𝑧) / 𝑥(2nd𝑧) / 𝑦𝐶 ∈ V ∧ ⟨𝑅, 𝑆⟩ ∈ V) → (𝐹‘⟨𝑅, 𝑆⟩) ∈ V)
3225, 27, 31syl2anc 409 . 2 ((∀𝑥𝑦 𝐶𝑉𝑅𝑊𝑆𝑋) → (𝐹‘⟨𝑅, 𝑆⟩) ∈ V)
331, 32eqeltrid 2227 1 ((∀𝑥𝑦 𝐶𝑉𝑅𝑊𝑆𝑋) → (𝑅𝐹𝑆) ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  w3a 963  wal 1330   = wceq 1332  wcel 1481  Vcvv 2689  csb 3007  {csn 3532  cop 3535   ciun 3821  cmpt 3997   × cxp 4545  cfv 5131  (class class class)co 5782  cmpo 5784  1st c1st 6044  2nd c2nd 6045
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-pow 4106  ax-pr 4139  ax-un 4363
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ral 2422  df-rex 2423  df-v 2691  df-sbc 2914  df-csb 3008  df-un 3080  df-in 3082  df-ss 3089  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-id 4223  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-fo 5137  df-fv 5139  df-ov 5785  df-oprab 5786  df-mpo 5787  df-1st 6046  df-2nd 6047
This theorem is referenced by:  mpofvexi  6112  oaexg  6352  omexg  6355  oeiexg  6357
  Copyright terms: Public domain W3C validator