ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mpofvex GIF version

Theorem mpofvex 6263
Description: Sufficient condition for an operation maps-to notation to be set-like. (Contributed by Mario Carneiro, 3-Jul-2019.)
Hypothesis
Ref Expression
mpofvex.1 𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)
Assertion
Ref Expression
mpofvex ((∀𝑥𝑦 𝐶𝑉𝑅𝑊𝑆𝑋) → (𝑅𝐹𝑆) ∈ V)
Distinct variable groups:   𝑥,𝐴,𝑦   𝑦,𝐵
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥,𝑦)   𝑅(𝑥,𝑦)   𝑆(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝑉(𝑥,𝑦)   𝑊(𝑥,𝑦)   𝑋(𝑥,𝑦)

Proof of Theorem mpofvex
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 df-ov 5925 . 2 (𝑅𝐹𝑆) = (𝐹‘⟨𝑅, 𝑆⟩)
2 elex 2774 . . . . . . . . 9 (𝐶𝑉𝐶 ∈ V)
32alimi 1469 . . . . . . . 8 (∀𝑦 𝐶𝑉 → ∀𝑦 𝐶 ∈ V)
4 vex 2766 . . . . . . . . 9 𝑧 ∈ V
5 2ndexg 6226 . . . . . . . . 9 (𝑧 ∈ V → (2nd𝑧) ∈ V)
6 nfcv 2339 . . . . . . . . . 10 𝑦(2nd𝑧)
7 nfcsb1v 3117 . . . . . . . . . . 11 𝑦(2nd𝑧) / 𝑦𝐶
87nfel1 2350 . . . . . . . . . 10 𝑦(2nd𝑧) / 𝑦𝐶 ∈ V
9 csbeq1a 3093 . . . . . . . . . . 11 (𝑦 = (2nd𝑧) → 𝐶 = (2nd𝑧) / 𝑦𝐶)
109eleq1d 2265 . . . . . . . . . 10 (𝑦 = (2nd𝑧) → (𝐶 ∈ V ↔ (2nd𝑧) / 𝑦𝐶 ∈ V))
116, 8, 10spcgf 2846 . . . . . . . . 9 ((2nd𝑧) ∈ V → (∀𝑦 𝐶 ∈ V → (2nd𝑧) / 𝑦𝐶 ∈ V))
124, 5, 11mp2b 8 . . . . . . . 8 (∀𝑦 𝐶 ∈ V → (2nd𝑧) / 𝑦𝐶 ∈ V)
133, 12syl 14 . . . . . . 7 (∀𝑦 𝐶𝑉(2nd𝑧) / 𝑦𝐶 ∈ V)
1413alimi 1469 . . . . . 6 (∀𝑥𝑦 𝐶𝑉 → ∀𝑥(2nd𝑧) / 𝑦𝐶 ∈ V)
15 1stexg 6225 . . . . . . 7 (𝑧 ∈ V → (1st𝑧) ∈ V)
16 nfcv 2339 . . . . . . . 8 𝑥(1st𝑧)
17 nfcsb1v 3117 . . . . . . . . 9 𝑥(1st𝑧) / 𝑥(2nd𝑧) / 𝑦𝐶
1817nfel1 2350 . . . . . . . 8 𝑥(1st𝑧) / 𝑥(2nd𝑧) / 𝑦𝐶 ∈ V
19 csbeq1a 3093 . . . . . . . . 9 (𝑥 = (1st𝑧) → (2nd𝑧) / 𝑦𝐶 = (1st𝑧) / 𝑥(2nd𝑧) / 𝑦𝐶)
2019eleq1d 2265 . . . . . . . 8 (𝑥 = (1st𝑧) → ((2nd𝑧) / 𝑦𝐶 ∈ V ↔ (1st𝑧) / 𝑥(2nd𝑧) / 𝑦𝐶 ∈ V))
2116, 18, 20spcgf 2846 . . . . . . 7 ((1st𝑧) ∈ V → (∀𝑥(2nd𝑧) / 𝑦𝐶 ∈ V → (1st𝑧) / 𝑥(2nd𝑧) / 𝑦𝐶 ∈ V))
224, 15, 21mp2b 8 . . . . . 6 (∀𝑥(2nd𝑧) / 𝑦𝐶 ∈ V → (1st𝑧) / 𝑥(2nd𝑧) / 𝑦𝐶 ∈ V)
2314, 22syl 14 . . . . 5 (∀𝑥𝑦 𝐶𝑉(1st𝑧) / 𝑥(2nd𝑧) / 𝑦𝐶 ∈ V)
2423alrimiv 1888 . . . 4 (∀𝑥𝑦 𝐶𝑉 → ∀𝑧(1st𝑧) / 𝑥(2nd𝑧) / 𝑦𝐶 ∈ V)
25243ad2ant1 1020 . . 3 ((∀𝑥𝑦 𝐶𝑉𝑅𝑊𝑆𝑋) → ∀𝑧(1st𝑧) / 𝑥(2nd𝑧) / 𝑦𝐶 ∈ V)
26 opexg 4261 . . . 4 ((𝑅𝑊𝑆𝑋) → ⟨𝑅, 𝑆⟩ ∈ V)
27263adant1 1017 . . 3 ((∀𝑥𝑦 𝐶𝑉𝑅𝑊𝑆𝑋) → ⟨𝑅, 𝑆⟩ ∈ V)
28 mpofvex.1 . . . . 5 𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)
29 mpomptsx 6255 . . . . 5 (𝑥𝐴, 𝑦𝐵𝐶) = (𝑧 𝑥𝐴 ({𝑥} × 𝐵) ↦ (1st𝑧) / 𝑥(2nd𝑧) / 𝑦𝐶)
3028, 29eqtri 2217 . . . 4 𝐹 = (𝑧 𝑥𝐴 ({𝑥} × 𝐵) ↦ (1st𝑧) / 𝑥(2nd𝑧) / 𝑦𝐶)
3130mptfvex 5647 . . 3 ((∀𝑧(1st𝑧) / 𝑥(2nd𝑧) / 𝑦𝐶 ∈ V ∧ ⟨𝑅, 𝑆⟩ ∈ V) → (𝐹‘⟨𝑅, 𝑆⟩) ∈ V)
3225, 27, 31syl2anc 411 . 2 ((∀𝑥𝑦 𝐶𝑉𝑅𝑊𝑆𝑋) → (𝐹‘⟨𝑅, 𝑆⟩) ∈ V)
331, 32eqeltrid 2283 1 ((∀𝑥𝑦 𝐶𝑉𝑅𝑊𝑆𝑋) → (𝑅𝐹𝑆) ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  w3a 980  wal 1362   = wceq 1364  wcel 2167  Vcvv 2763  csb 3084  {csn 3622  cop 3625   ciun 3916  cmpt 4094   × cxp 4661  cfv 5258  (class class class)co 5922  cmpo 5924  1st c1st 6196  2nd c2nd 6197
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-sbc 2990  df-csb 3085  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-fo 5264  df-fv 5266  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199
This theorem is referenced by:  mpofvexi  6264  oaexg  6506  omexg  6509  oeiexg  6511  rhmex  13713
  Copyright terms: Public domain W3C validator