ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpeq12d GIF version

Theorem xpeq12d 4688
Description: Equality deduction for Cartesian product. (Contributed by NM, 8-Dec-2013.)
Hypotheses
Ref Expression
xpeq1d.1 (𝜑𝐴 = 𝐵)
xpeq12d.2 (𝜑𝐶 = 𝐷)
Assertion
Ref Expression
xpeq12d (𝜑 → (𝐴 × 𝐶) = (𝐵 × 𝐷))

Proof of Theorem xpeq12d
StepHypRef Expression
1 xpeq1d.1 . 2 (𝜑𝐴 = 𝐵)
2 xpeq12d.2 . 2 (𝜑𝐶 = 𝐷)
3 xpeq12 4682 . 2 ((𝐴 = 𝐵𝐶 = 𝐷) → (𝐴 × 𝐶) = (𝐵 × 𝐷))
41, 2, 3syl2anc 411 1 (𝜑 → (𝐴 × 𝐶) = (𝐵 × 𝐷))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364   × cxp 4661
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-11 1520  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-opab 4095  df-xp 4669
This theorem is referenced by:  sqxpeqd  4689  opeliunxp  4718  mpomptsx  6255  dmmpossx  6257  fmpox  6258  disjxp1  6294  erssxp  6615  cc2lem  7333  cc2  7334  fsum2dlemstep  11599  fisumcom2  11603  fprod2dlemstep  11787  fprodcom2fi  11791  psrval  14220  txbas  14494
  Copyright terms: Public domain W3C validator