Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpeq12d GIF version

Theorem xpeq12d 4564
 Description: Equality deduction for Cartesian product. (Contributed by NM, 8-Dec-2013.)
Hypotheses
Ref Expression
xpeq1d.1 (𝜑𝐴 = 𝐵)
xpeq12d.2 (𝜑𝐶 = 𝐷)
Assertion
Ref Expression
xpeq12d (𝜑 → (𝐴 × 𝐶) = (𝐵 × 𝐷))

Proof of Theorem xpeq12d
StepHypRef Expression
1 xpeq1d.1 . 2 (𝜑𝐴 = 𝐵)
2 xpeq12d.2 . 2 (𝜑𝐶 = 𝐷)
3 xpeq12 4558 . 2 ((𝐴 = 𝐵𝐶 = 𝐷) → (𝐴 × 𝐶) = (𝐵 × 𝐷))
41, 2, 3syl2anc 408 1 (𝜑 → (𝐴 × 𝐶) = (𝐵 × 𝐷))
 Colors of variables: wff set class Syntax hints:   → wi 4   = wceq 1331   × cxp 4537 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-11 1484  ax-4 1487  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121 This theorem depends on definitions:  df-bi 116  df-tru 1334  df-nf 1437  df-sb 1736  df-clab 2126  df-cleq 2132  df-clel 2135  df-opab 3990  df-xp 4545 This theorem is referenced by:  sqxpeqd  4565  opeliunxp  4594  mpomptsx  6095  dmmpossx  6097  fmpox  6098  disjxp1  6133  erssxp  6452  cc2lem  7081  cc2  7082  fsum2dlemstep  11210  fisumcom2  11214  txbas  12436
 Copyright terms: Public domain W3C validator