ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpeq12d GIF version

Theorem xpeq12d 4705
Description: Equality deduction for Cartesian product. (Contributed by NM, 8-Dec-2013.)
Hypotheses
Ref Expression
xpeq1d.1 (𝜑𝐴 = 𝐵)
xpeq12d.2 (𝜑𝐶 = 𝐷)
Assertion
Ref Expression
xpeq12d (𝜑 → (𝐴 × 𝐶) = (𝐵 × 𝐷))

Proof of Theorem xpeq12d
StepHypRef Expression
1 xpeq1d.1 . 2 (𝜑𝐴 = 𝐵)
2 xpeq12d.2 . 2 (𝜑𝐶 = 𝐷)
3 xpeq12 4699 . 2 ((𝐴 = 𝐵𝐶 = 𝐷) → (𝐴 × 𝐶) = (𝐵 × 𝐷))
41, 2, 3syl2anc 411 1 (𝜑 → (𝐴 × 𝐶) = (𝐵 × 𝐷))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1373   × cxp 4678
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-11 1530  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-opab 4111  df-xp 4686
This theorem is referenced by:  sqxpeqd  4706  opeliunxp  4735  mpomptsx  6293  dmmpossx  6295  fmpox  6296  disjxp1  6332  erssxp  6653  cc2lem  7391  cc2  7392  fsum2dlemstep  11795  fisumcom2  11799  fprod2dlemstep  11983  fprodcom2fi  11987  psrval  14478  txbas  14780
  Copyright terms: Public domain W3C validator