ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpeq12d GIF version

Theorem xpeq12d 4744
Description: Equality deduction for Cartesian product. (Contributed by NM, 8-Dec-2013.)
Hypotheses
Ref Expression
xpeq1d.1 (𝜑𝐴 = 𝐵)
xpeq12d.2 (𝜑𝐶 = 𝐷)
Assertion
Ref Expression
xpeq12d (𝜑 → (𝐴 × 𝐶) = (𝐵 × 𝐷))

Proof of Theorem xpeq12d
StepHypRef Expression
1 xpeq1d.1 . 2 (𝜑𝐴 = 𝐵)
2 xpeq12d.2 . 2 (𝜑𝐶 = 𝐷)
3 xpeq12 4738 . 2 ((𝐴 = 𝐵𝐶 = 𝐷) → (𝐴 × 𝐶) = (𝐵 × 𝐷))
41, 2, 3syl2anc 411 1 (𝜑 → (𝐴 × 𝐶) = (𝐵 × 𝐷))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1395   × cxp 4717
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-11 1552  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-opab 4146  df-xp 4725
This theorem is referenced by:  sqxpeqd  4745  opeliunxp  4774  mpomptsx  6349  dmmpossx  6351  fmpox  6352  disjxp1  6388  erssxp  6711  cc2lem  7460  cc2  7461  fsum2dlemstep  11953  fisumcom2  11957  fprod2dlemstep  12141  fprodcom2fi  12145  psrval  14638  txbas  14940
  Copyright terms: Public domain W3C validator