![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mspropd | GIF version |
Description: Property deduction for a metric space. (Contributed by Mario Carneiro, 4-Oct-2015.) |
Ref | Expression |
---|---|
xmspropd.1 | ⊢ (𝜑 → 𝐵 = (Base‘𝐾)) |
xmspropd.2 | ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) |
xmspropd.3 | ⊢ (𝜑 → ((dist‘𝐾) ↾ (𝐵 × 𝐵)) = ((dist‘𝐿) ↾ (𝐵 × 𝐵))) |
xmspropd.4 | ⊢ (𝜑 → (TopOpen‘𝐾) = (TopOpen‘𝐿)) |
Ref | Expression |
---|---|
mspropd | ⊢ (𝜑 → (𝐾 ∈ MetSp ↔ 𝐿 ∈ MetSp)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xmspropd.1 | . . . 4 ⊢ (𝜑 → 𝐵 = (Base‘𝐾)) | |
2 | xmspropd.2 | . . . 4 ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) | |
3 | xmspropd.3 | . . . 4 ⊢ (𝜑 → ((dist‘𝐾) ↾ (𝐵 × 𝐵)) = ((dist‘𝐿) ↾ (𝐵 × 𝐵))) | |
4 | xmspropd.4 | . . . 4 ⊢ (𝜑 → (TopOpen‘𝐾) = (TopOpen‘𝐿)) | |
5 | 1, 2, 3, 4 | xmspropd 14117 | . . 3 ⊢ (𝜑 → (𝐾 ∈ ∞MetSp ↔ 𝐿 ∈ ∞MetSp)) |
6 | 1 | sqxpeqd 4654 | . . . . . . 7 ⊢ (𝜑 → (𝐵 × 𝐵) = ((Base‘𝐾) × (Base‘𝐾))) |
7 | 6 | reseq2d 4909 | . . . . . 6 ⊢ (𝜑 → ((dist‘𝐾) ↾ (𝐵 × 𝐵)) = ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾)))) |
8 | 3, 7 | eqtr3d 2212 | . . . . 5 ⊢ (𝜑 → ((dist‘𝐿) ↾ (𝐵 × 𝐵)) = ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾)))) |
9 | 2 | sqxpeqd 4654 | . . . . . 6 ⊢ (𝜑 → (𝐵 × 𝐵) = ((Base‘𝐿) × (Base‘𝐿))) |
10 | 9 | reseq2d 4909 | . . . . 5 ⊢ (𝜑 → ((dist‘𝐿) ↾ (𝐵 × 𝐵)) = ((dist‘𝐿) ↾ ((Base‘𝐿) × (Base‘𝐿)))) |
11 | 8, 10 | eqtr3d 2212 | . . . 4 ⊢ (𝜑 → ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) = ((dist‘𝐿) ↾ ((Base‘𝐿) × (Base‘𝐿)))) |
12 | 1, 2 | eqtr3d 2212 | . . . . 5 ⊢ (𝜑 → (Base‘𝐾) = (Base‘𝐿)) |
13 | 12 | fveq2d 5521 | . . . 4 ⊢ (𝜑 → (Met‘(Base‘𝐾)) = (Met‘(Base‘𝐿))) |
14 | 11, 13 | eleq12d 2248 | . . 3 ⊢ (𝜑 → (((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) ∈ (Met‘(Base‘𝐾)) ↔ ((dist‘𝐿) ↾ ((Base‘𝐿) × (Base‘𝐿))) ∈ (Met‘(Base‘𝐿)))) |
15 | 5, 14 | anbi12d 473 | . 2 ⊢ (𝜑 → ((𝐾 ∈ ∞MetSp ∧ ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) ∈ (Met‘(Base‘𝐾))) ↔ (𝐿 ∈ ∞MetSp ∧ ((dist‘𝐿) ↾ ((Base‘𝐿) × (Base‘𝐿))) ∈ (Met‘(Base‘𝐿))))) |
16 | eqid 2177 | . . 3 ⊢ (TopOpen‘𝐾) = (TopOpen‘𝐾) | |
17 | eqid 2177 | . . 3 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
18 | eqid 2177 | . . 3 ⊢ ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) = ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) | |
19 | 16, 17, 18 | isms 14093 | . 2 ⊢ (𝐾 ∈ MetSp ↔ (𝐾 ∈ ∞MetSp ∧ ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) ∈ (Met‘(Base‘𝐾)))) |
20 | eqid 2177 | . . 3 ⊢ (TopOpen‘𝐿) = (TopOpen‘𝐿) | |
21 | eqid 2177 | . . 3 ⊢ (Base‘𝐿) = (Base‘𝐿) | |
22 | eqid 2177 | . . 3 ⊢ ((dist‘𝐿) ↾ ((Base‘𝐿) × (Base‘𝐿))) = ((dist‘𝐿) ↾ ((Base‘𝐿) × (Base‘𝐿))) | |
23 | 20, 21, 22 | isms 14093 | . 2 ⊢ (𝐿 ∈ MetSp ↔ (𝐿 ∈ ∞MetSp ∧ ((dist‘𝐿) ↾ ((Base‘𝐿) × (Base‘𝐿))) ∈ (Met‘(Base‘𝐿)))) |
24 | 15, 19, 23 | 3bitr4g 223 | 1 ⊢ (𝜑 → (𝐾 ∈ MetSp ↔ 𝐿 ∈ MetSp)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1353 ∈ wcel 2148 × cxp 4626 ↾ cres 4630 ‘cfv 5218 Basecbs 12465 distcds 12548 TopOpenctopn 12695 Metcmet 13581 ∞MetSpcxms 13976 MetSpcms 13977 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-coll 4120 ax-sep 4123 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-cnex 7905 ax-resscn 7906 ax-1re 7908 ax-addrcl 7911 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-reu 2462 df-rab 2464 df-v 2741 df-sbc 2965 df-csb 3060 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-nul 3425 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-int 3847 df-iun 3890 df-br 4006 df-opab 4067 df-mpt 4068 df-id 4295 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-res 4640 df-ima 4641 df-iota 5180 df-fun 5220 df-fn 5221 df-f 5222 df-f1 5223 df-fo 5224 df-f1o 5225 df-fv 5226 df-ov 5881 df-oprab 5882 df-mpo 5883 df-1st 6144 df-2nd 6145 df-inn 8923 df-2 8981 df-3 8982 df-4 8983 df-5 8984 df-6 8985 df-7 8986 df-8 8987 df-9 8988 df-ndx 12468 df-slot 12469 df-base 12471 df-tset 12558 df-rest 12696 df-topn 12697 df-top 13638 df-topon 13651 df-topsp 13671 df-xms 13979 df-ms 13980 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |