Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mspropd | GIF version |
Description: Property deduction for a metric space. (Contributed by Mario Carneiro, 4-Oct-2015.) |
Ref | Expression |
---|---|
xmspropd.1 | ⊢ (𝜑 → 𝐵 = (Base‘𝐾)) |
xmspropd.2 | ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) |
xmspropd.3 | ⊢ (𝜑 → ((dist‘𝐾) ↾ (𝐵 × 𝐵)) = ((dist‘𝐿) ↾ (𝐵 × 𝐵))) |
xmspropd.4 | ⊢ (𝜑 → (TopOpen‘𝐾) = (TopOpen‘𝐿)) |
Ref | Expression |
---|---|
mspropd | ⊢ (𝜑 → (𝐾 ∈ MetSp ↔ 𝐿 ∈ MetSp)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xmspropd.1 | . . . 4 ⊢ (𝜑 → 𝐵 = (Base‘𝐾)) | |
2 | xmspropd.2 | . . . 4 ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) | |
3 | xmspropd.3 | . . . 4 ⊢ (𝜑 → ((dist‘𝐾) ↾ (𝐵 × 𝐵)) = ((dist‘𝐿) ↾ (𝐵 × 𝐵))) | |
4 | xmspropd.4 | . . . 4 ⊢ (𝜑 → (TopOpen‘𝐾) = (TopOpen‘𝐿)) | |
5 | 1, 2, 3, 4 | xmspropd 13117 | . . 3 ⊢ (𝜑 → (𝐾 ∈ ∞MetSp ↔ 𝐿 ∈ ∞MetSp)) |
6 | 1 | sqxpeqd 4630 | . . . . . . 7 ⊢ (𝜑 → (𝐵 × 𝐵) = ((Base‘𝐾) × (Base‘𝐾))) |
7 | 6 | reseq2d 4884 | . . . . . 6 ⊢ (𝜑 → ((dist‘𝐾) ↾ (𝐵 × 𝐵)) = ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾)))) |
8 | 3, 7 | eqtr3d 2200 | . . . . 5 ⊢ (𝜑 → ((dist‘𝐿) ↾ (𝐵 × 𝐵)) = ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾)))) |
9 | 2 | sqxpeqd 4630 | . . . . . 6 ⊢ (𝜑 → (𝐵 × 𝐵) = ((Base‘𝐿) × (Base‘𝐿))) |
10 | 9 | reseq2d 4884 | . . . . 5 ⊢ (𝜑 → ((dist‘𝐿) ↾ (𝐵 × 𝐵)) = ((dist‘𝐿) ↾ ((Base‘𝐿) × (Base‘𝐿)))) |
11 | 8, 10 | eqtr3d 2200 | . . . 4 ⊢ (𝜑 → ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) = ((dist‘𝐿) ↾ ((Base‘𝐿) × (Base‘𝐿)))) |
12 | 1, 2 | eqtr3d 2200 | . . . . 5 ⊢ (𝜑 → (Base‘𝐾) = (Base‘𝐿)) |
13 | 12 | fveq2d 5490 | . . . 4 ⊢ (𝜑 → (Met‘(Base‘𝐾)) = (Met‘(Base‘𝐿))) |
14 | 11, 13 | eleq12d 2237 | . . 3 ⊢ (𝜑 → (((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) ∈ (Met‘(Base‘𝐾)) ↔ ((dist‘𝐿) ↾ ((Base‘𝐿) × (Base‘𝐿))) ∈ (Met‘(Base‘𝐿)))) |
15 | 5, 14 | anbi12d 465 | . 2 ⊢ (𝜑 → ((𝐾 ∈ ∞MetSp ∧ ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) ∈ (Met‘(Base‘𝐾))) ↔ (𝐿 ∈ ∞MetSp ∧ ((dist‘𝐿) ↾ ((Base‘𝐿) × (Base‘𝐿))) ∈ (Met‘(Base‘𝐿))))) |
16 | eqid 2165 | . . 3 ⊢ (TopOpen‘𝐾) = (TopOpen‘𝐾) | |
17 | eqid 2165 | . . 3 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
18 | eqid 2165 | . . 3 ⊢ ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) = ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) | |
19 | 16, 17, 18 | isms 13093 | . 2 ⊢ (𝐾 ∈ MetSp ↔ (𝐾 ∈ ∞MetSp ∧ ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) ∈ (Met‘(Base‘𝐾)))) |
20 | eqid 2165 | . . 3 ⊢ (TopOpen‘𝐿) = (TopOpen‘𝐿) | |
21 | eqid 2165 | . . 3 ⊢ (Base‘𝐿) = (Base‘𝐿) | |
22 | eqid 2165 | . . 3 ⊢ ((dist‘𝐿) ↾ ((Base‘𝐿) × (Base‘𝐿))) = ((dist‘𝐿) ↾ ((Base‘𝐿) × (Base‘𝐿))) | |
23 | 20, 21, 22 | isms 13093 | . 2 ⊢ (𝐿 ∈ MetSp ↔ (𝐿 ∈ ∞MetSp ∧ ((dist‘𝐿) ↾ ((Base‘𝐿) × (Base‘𝐿))) ∈ (Met‘(Base‘𝐿)))) |
24 | 15, 19, 23 | 3bitr4g 222 | 1 ⊢ (𝜑 → (𝐾 ∈ MetSp ↔ 𝐿 ∈ MetSp)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 = wceq 1343 ∈ wcel 2136 × cxp 4602 ↾ cres 4606 ‘cfv 5188 Basecbs 12394 distcds 12466 TopOpenctopn 12557 Metcmet 12621 ∞MetSpcxms 12976 MetSpcms 12977 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-cnex 7844 ax-resscn 7845 ax-1re 7847 ax-addrcl 7850 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-ov 5845 df-oprab 5846 df-mpo 5847 df-1st 6108 df-2nd 6109 df-inn 8858 df-2 8916 df-3 8917 df-4 8918 df-5 8919 df-6 8920 df-7 8921 df-8 8922 df-9 8923 df-ndx 12397 df-slot 12398 df-base 12400 df-tset 12476 df-rest 12558 df-topn 12559 df-top 12636 df-topon 12649 df-topsp 12669 df-xms 12979 df-ms 12980 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |