| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mspropd | GIF version | ||
| Description: Property deduction for a metric space. (Contributed by Mario Carneiro, 4-Oct-2015.) |
| Ref | Expression |
|---|---|
| xmspropd.1 | ⊢ (𝜑 → 𝐵 = (Base‘𝐾)) |
| xmspropd.2 | ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) |
| xmspropd.3 | ⊢ (𝜑 → ((dist‘𝐾) ↾ (𝐵 × 𝐵)) = ((dist‘𝐿) ↾ (𝐵 × 𝐵))) |
| xmspropd.4 | ⊢ (𝜑 → (TopOpen‘𝐾) = (TopOpen‘𝐿)) |
| Ref | Expression |
|---|---|
| mspropd | ⊢ (𝜑 → (𝐾 ∈ MetSp ↔ 𝐿 ∈ MetSp)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xmspropd.1 | . . . 4 ⊢ (𝜑 → 𝐵 = (Base‘𝐾)) | |
| 2 | xmspropd.2 | . . . 4 ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) | |
| 3 | xmspropd.3 | . . . 4 ⊢ (𝜑 → ((dist‘𝐾) ↾ (𝐵 × 𝐵)) = ((dist‘𝐿) ↾ (𝐵 × 𝐵))) | |
| 4 | xmspropd.4 | . . . 4 ⊢ (𝜑 → (TopOpen‘𝐾) = (TopOpen‘𝐿)) | |
| 5 | 1, 2, 3, 4 | xmspropd 15136 | . . 3 ⊢ (𝜑 → (𝐾 ∈ ∞MetSp ↔ 𝐿 ∈ ∞MetSp)) |
| 6 | 1 | sqxpeqd 4742 | . . . . . . 7 ⊢ (𝜑 → (𝐵 × 𝐵) = ((Base‘𝐾) × (Base‘𝐾))) |
| 7 | 6 | reseq2d 5001 | . . . . . 6 ⊢ (𝜑 → ((dist‘𝐾) ↾ (𝐵 × 𝐵)) = ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾)))) |
| 8 | 3, 7 | eqtr3d 2264 | . . . . 5 ⊢ (𝜑 → ((dist‘𝐿) ↾ (𝐵 × 𝐵)) = ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾)))) |
| 9 | 2 | sqxpeqd 4742 | . . . . . 6 ⊢ (𝜑 → (𝐵 × 𝐵) = ((Base‘𝐿) × (Base‘𝐿))) |
| 10 | 9 | reseq2d 5001 | . . . . 5 ⊢ (𝜑 → ((dist‘𝐿) ↾ (𝐵 × 𝐵)) = ((dist‘𝐿) ↾ ((Base‘𝐿) × (Base‘𝐿)))) |
| 11 | 8, 10 | eqtr3d 2264 | . . . 4 ⊢ (𝜑 → ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) = ((dist‘𝐿) ↾ ((Base‘𝐿) × (Base‘𝐿)))) |
| 12 | 1, 2 | eqtr3d 2264 | . . . . 5 ⊢ (𝜑 → (Base‘𝐾) = (Base‘𝐿)) |
| 13 | 12 | fveq2d 5627 | . . . 4 ⊢ (𝜑 → (Met‘(Base‘𝐾)) = (Met‘(Base‘𝐿))) |
| 14 | 11, 13 | eleq12d 2300 | . . 3 ⊢ (𝜑 → (((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) ∈ (Met‘(Base‘𝐾)) ↔ ((dist‘𝐿) ↾ ((Base‘𝐿) × (Base‘𝐿))) ∈ (Met‘(Base‘𝐿)))) |
| 15 | 5, 14 | anbi12d 473 | . 2 ⊢ (𝜑 → ((𝐾 ∈ ∞MetSp ∧ ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) ∈ (Met‘(Base‘𝐾))) ↔ (𝐿 ∈ ∞MetSp ∧ ((dist‘𝐿) ↾ ((Base‘𝐿) × (Base‘𝐿))) ∈ (Met‘(Base‘𝐿))))) |
| 16 | eqid 2229 | . . 3 ⊢ (TopOpen‘𝐾) = (TopOpen‘𝐾) | |
| 17 | eqid 2229 | . . 3 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
| 18 | eqid 2229 | . . 3 ⊢ ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) = ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) | |
| 19 | 16, 17, 18 | isms 15112 | . 2 ⊢ (𝐾 ∈ MetSp ↔ (𝐾 ∈ ∞MetSp ∧ ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) ∈ (Met‘(Base‘𝐾)))) |
| 20 | eqid 2229 | . . 3 ⊢ (TopOpen‘𝐿) = (TopOpen‘𝐿) | |
| 21 | eqid 2229 | . . 3 ⊢ (Base‘𝐿) = (Base‘𝐿) | |
| 22 | eqid 2229 | . . 3 ⊢ ((dist‘𝐿) ↾ ((Base‘𝐿) × (Base‘𝐿))) = ((dist‘𝐿) ↾ ((Base‘𝐿) × (Base‘𝐿))) | |
| 23 | 20, 21, 22 | isms 15112 | . 2 ⊢ (𝐿 ∈ MetSp ↔ (𝐿 ∈ ∞MetSp ∧ ((dist‘𝐿) ↾ ((Base‘𝐿) × (Base‘𝐿))) ∈ (Met‘(Base‘𝐿)))) |
| 24 | 15, 19, 23 | 3bitr4g 223 | 1 ⊢ (𝜑 → (𝐾 ∈ MetSp ↔ 𝐿 ∈ MetSp)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1395 ∈ wcel 2200 × cxp 4714 ↾ cres 4718 ‘cfv 5314 Basecbs 13018 distcds 13105 TopOpenctopn 13259 Metcmet 14486 ∞MetSpcxms 14995 MetSpcms 14996 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4521 ax-cnex 8078 ax-resscn 8079 ax-1re 8081 ax-addrcl 8084 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4381 df-xp 4722 df-rel 4723 df-cnv 4724 df-co 4725 df-dm 4726 df-rn 4727 df-res 4728 df-ima 4729 df-iota 5274 df-fun 5316 df-fn 5317 df-f 5318 df-f1 5319 df-fo 5320 df-f1o 5321 df-fv 5322 df-ov 5997 df-oprab 5998 df-mpo 5999 df-1st 6276 df-2nd 6277 df-inn 9099 df-2 9157 df-3 9158 df-4 9159 df-5 9160 df-6 9161 df-7 9162 df-8 9163 df-9 9164 df-ndx 13021 df-slot 13022 df-base 13024 df-tset 13115 df-rest 13260 df-topn 13261 df-top 14657 df-topon 14670 df-topsp 14690 df-xms 14998 df-ms 14999 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |