ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  intopsn GIF version

Theorem intopsn 12652
Description: The internal operation for a set is the trivial operation iff the set is a singleton. (Contributed by FL, 13-Feb-2010.) (Revised by AV, 23-Jan-2020.)
Assertion
Ref Expression
intopsn (( :(𝐵 × 𝐵)⟶𝐵𝑍𝐵) → (𝐵 = {𝑍} ↔ = {⟨⟨𝑍, 𝑍⟩, 𝑍⟩}))

Proof of Theorem intopsn
StepHypRef Expression
1 simpl 109 . . . 4 (( :(𝐵 × 𝐵)⟶𝐵𝑍𝐵) → :(𝐵 × 𝐵)⟶𝐵)
2 id 19 . . . . . 6 (𝐵 = {𝑍} → 𝐵 = {𝑍})
32sqxpeqd 4646 . . . . 5 (𝐵 = {𝑍} → (𝐵 × 𝐵) = ({𝑍} × {𝑍}))
43, 2feq23d 5353 . . . 4 (𝐵 = {𝑍} → ( :(𝐵 × 𝐵)⟶𝐵 :({𝑍} × {𝑍})⟶{𝑍}))
51, 4syl5ibcom 155 . . 3 (( :(𝐵 × 𝐵)⟶𝐵𝑍𝐵) → (𝐵 = {𝑍} → :({𝑍} × {𝑍})⟶{𝑍}))
6 fdm 5363 . . . . . . 7 ( :(𝐵 × 𝐵)⟶𝐵 → dom = (𝐵 × 𝐵))
76eqcomd 2181 . . . . . 6 ( :(𝐵 × 𝐵)⟶𝐵 → (𝐵 × 𝐵) = dom )
87adantr 276 . . . . 5 (( :(𝐵 × 𝐵)⟶𝐵𝑍𝐵) → (𝐵 × 𝐵) = dom )
9 fdm 5363 . . . . . 6 ( :({𝑍} × {𝑍})⟶{𝑍} → dom = ({𝑍} × {𝑍}))
109eqeq2d 2187 . . . . 5 ( :({𝑍} × {𝑍})⟶{𝑍} → ((𝐵 × 𝐵) = dom ↔ (𝐵 × 𝐵) = ({𝑍} × {𝑍})))
118, 10syl5ibcom 155 . . . 4 (( :(𝐵 × 𝐵)⟶𝐵𝑍𝐵) → ( :({𝑍} × {𝑍})⟶{𝑍} → (𝐵 × 𝐵) = ({𝑍} × {𝑍})))
12 xpid11 4843 . . . 4 ((𝐵 × 𝐵) = ({𝑍} × {𝑍}) ↔ 𝐵 = {𝑍})
1311, 12syl6ib 161 . . 3 (( :(𝐵 × 𝐵)⟶𝐵𝑍𝐵) → ( :({𝑍} × {𝑍})⟶{𝑍} → 𝐵 = {𝑍}))
145, 13impbid 129 . 2 (( :(𝐵 × 𝐵)⟶𝐵𝑍𝐵) → (𝐵 = {𝑍} ↔ :({𝑍} × {𝑍})⟶{𝑍}))
15 simpr 110 . . . 4 (( :(𝐵 × 𝐵)⟶𝐵𝑍𝐵) → 𝑍𝐵)
16 xpsng 5683 . . . 4 ((𝑍𝐵𝑍𝐵) → ({𝑍} × {𝑍}) = {⟨𝑍, 𝑍⟩})
1715, 16sylancom 420 . . 3 (( :(𝐵 × 𝐵)⟶𝐵𝑍𝐵) → ({𝑍} × {𝑍}) = {⟨𝑍, 𝑍⟩})
1817feq2d 5345 . 2 (( :(𝐵 × 𝐵)⟶𝐵𝑍𝐵) → ( :({𝑍} × {𝑍})⟶{𝑍} ↔ :{⟨𝑍, 𝑍⟩}⟶{𝑍}))
19 opexg 4222 . . . . 5 ((𝑍𝐵𝑍𝐵) → ⟨𝑍, 𝑍⟩ ∈ V)
2019anidms 397 . . . 4 (𝑍𝐵 → ⟨𝑍, 𝑍⟩ ∈ V)
21 fsng 5681 . . . 4 ((⟨𝑍, 𝑍⟩ ∈ V ∧ 𝑍𝐵) → ( :{⟨𝑍, 𝑍⟩}⟶{𝑍} ↔ = {⟨⟨𝑍, 𝑍⟩, 𝑍⟩}))
2220, 21mpancom 422 . . 3 (𝑍𝐵 → ( :{⟨𝑍, 𝑍⟩}⟶{𝑍} ↔ = {⟨⟨𝑍, 𝑍⟩, 𝑍⟩}))
2322adantl 277 . 2 (( :(𝐵 × 𝐵)⟶𝐵𝑍𝐵) → ( :{⟨𝑍, 𝑍⟩}⟶{𝑍} ↔ = {⟨⟨𝑍, 𝑍⟩, 𝑍⟩}))
2414, 18, 233bitrd 214 1 (( :(𝐵 × 𝐵)⟶𝐵𝑍𝐵) → (𝐵 = {𝑍} ↔ = {⟨⟨𝑍, 𝑍⟩, 𝑍⟩}))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1353  wcel 2146  Vcvv 2735  {csn 3589  cop 3592   × cxp 4618  dom cdm 4620  wf 5204
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-14 2149  ax-ext 2157  ax-sep 4116  ax-pow 4169  ax-pr 4203
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ral 2458  df-rex 2459  df-reu 2460  df-v 2737  df-un 3131  df-in 3133  df-ss 3140  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-br 3999  df-opab 4060  df-mpt 4061  df-id 4287  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-rn 4631  df-fun 5210  df-fn 5211  df-f 5212  df-f1 5213  df-fo 5214  df-f1o 5215
This theorem is referenced by:  mgmb1mgm1  12653
  Copyright terms: Public domain W3C validator