Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > xmspropd | GIF version |
Description: Property deduction for an extended metric space. (Contributed by Mario Carneiro, 4-Oct-2015.) |
Ref | Expression |
---|---|
xmspropd.1 | ⊢ (𝜑 → 𝐵 = (Base‘𝐾)) |
xmspropd.2 | ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) |
xmspropd.3 | ⊢ (𝜑 → ((dist‘𝐾) ↾ (𝐵 × 𝐵)) = ((dist‘𝐿) ↾ (𝐵 × 𝐵))) |
xmspropd.4 | ⊢ (𝜑 → (TopOpen‘𝐾) = (TopOpen‘𝐿)) |
Ref | Expression |
---|---|
xmspropd | ⊢ (𝜑 → (𝐾 ∈ ∞MetSp ↔ 𝐿 ∈ ∞MetSp)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xmspropd.1 | . . . . 5 ⊢ (𝜑 → 𝐵 = (Base‘𝐾)) | |
2 | xmspropd.2 | . . . . 5 ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) | |
3 | 1, 2 | eqtr3d 2205 | . . . 4 ⊢ (𝜑 → (Base‘𝐾) = (Base‘𝐿)) |
4 | xmspropd.4 | . . . 4 ⊢ (𝜑 → (TopOpen‘𝐾) = (TopOpen‘𝐿)) | |
5 | 3, 4 | tpspropd 12828 | . . 3 ⊢ (𝜑 → (𝐾 ∈ TopSp ↔ 𝐿 ∈ TopSp)) |
6 | xmspropd.3 | . . . . . . 7 ⊢ (𝜑 → ((dist‘𝐾) ↾ (𝐵 × 𝐵)) = ((dist‘𝐿) ↾ (𝐵 × 𝐵))) | |
7 | 1 | sqxpeqd 4637 | . . . . . . . 8 ⊢ (𝜑 → (𝐵 × 𝐵) = ((Base‘𝐾) × (Base‘𝐾))) |
8 | 7 | reseq2d 4891 | . . . . . . 7 ⊢ (𝜑 → ((dist‘𝐾) ↾ (𝐵 × 𝐵)) = ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾)))) |
9 | 6, 8 | eqtr3d 2205 | . . . . . 6 ⊢ (𝜑 → ((dist‘𝐿) ↾ (𝐵 × 𝐵)) = ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾)))) |
10 | 2 | sqxpeqd 4637 | . . . . . . 7 ⊢ (𝜑 → (𝐵 × 𝐵) = ((Base‘𝐿) × (Base‘𝐿))) |
11 | 10 | reseq2d 4891 | . . . . . 6 ⊢ (𝜑 → ((dist‘𝐿) ↾ (𝐵 × 𝐵)) = ((dist‘𝐿) ↾ ((Base‘𝐿) × (Base‘𝐿)))) |
12 | 9, 11 | eqtr3d 2205 | . . . . 5 ⊢ (𝜑 → ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) = ((dist‘𝐿) ↾ ((Base‘𝐿) × (Base‘𝐿)))) |
13 | 12 | fveq2d 5500 | . . . 4 ⊢ (𝜑 → (MetOpen‘((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾)))) = (MetOpen‘((dist‘𝐿) ↾ ((Base‘𝐿) × (Base‘𝐿))))) |
14 | 4, 13 | eqeq12d 2185 | . . 3 ⊢ (𝜑 → ((TopOpen‘𝐾) = (MetOpen‘((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾)))) ↔ (TopOpen‘𝐿) = (MetOpen‘((dist‘𝐿) ↾ ((Base‘𝐿) × (Base‘𝐿)))))) |
15 | 5, 14 | anbi12d 470 | . 2 ⊢ (𝜑 → ((𝐾 ∈ TopSp ∧ (TopOpen‘𝐾) = (MetOpen‘((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))))) ↔ (𝐿 ∈ TopSp ∧ (TopOpen‘𝐿) = (MetOpen‘((dist‘𝐿) ↾ ((Base‘𝐿) × (Base‘𝐿))))))) |
16 | eqid 2170 | . . 3 ⊢ (TopOpen‘𝐾) = (TopOpen‘𝐾) | |
17 | eqid 2170 | . . 3 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
18 | eqid 2170 | . . 3 ⊢ ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) = ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) | |
19 | 16, 17, 18 | isxms 13245 | . 2 ⊢ (𝐾 ∈ ∞MetSp ↔ (𝐾 ∈ TopSp ∧ (TopOpen‘𝐾) = (MetOpen‘((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾)))))) |
20 | eqid 2170 | . . 3 ⊢ (TopOpen‘𝐿) = (TopOpen‘𝐿) | |
21 | eqid 2170 | . . 3 ⊢ (Base‘𝐿) = (Base‘𝐿) | |
22 | eqid 2170 | . . 3 ⊢ ((dist‘𝐿) ↾ ((Base‘𝐿) × (Base‘𝐿))) = ((dist‘𝐿) ↾ ((Base‘𝐿) × (Base‘𝐿))) | |
23 | 20, 21, 22 | isxms 13245 | . 2 ⊢ (𝐿 ∈ ∞MetSp ↔ (𝐿 ∈ TopSp ∧ (TopOpen‘𝐿) = (MetOpen‘((dist‘𝐿) ↾ ((Base‘𝐿) × (Base‘𝐿)))))) |
24 | 15, 19, 23 | 3bitr4g 222 | 1 ⊢ (𝜑 → (𝐾 ∈ ∞MetSp ↔ 𝐿 ∈ ∞MetSp)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 = wceq 1348 ∈ wcel 2141 × cxp 4609 ↾ cres 4613 ‘cfv 5198 Basecbs 12416 distcds 12489 TopOpenctopn 12580 MetOpencmopn 12779 TopSpctps 12822 ∞MetSpcxms 13130 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-cnex 7865 ax-resscn 7866 ax-1re 7868 ax-addrcl 7871 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-ov 5856 df-oprab 5857 df-mpo 5858 df-1st 6119 df-2nd 6120 df-inn 8879 df-2 8937 df-3 8938 df-4 8939 df-5 8940 df-6 8941 df-7 8942 df-8 8943 df-9 8944 df-ndx 12419 df-slot 12420 df-base 12422 df-tset 12499 df-rest 12581 df-topn 12582 df-top 12790 df-topon 12803 df-topsp 12823 df-xms 13133 |
This theorem is referenced by: mspropd 13272 |
Copyright terms: Public domain | W3C validator |