![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > xmspropd | GIF version |
Description: Property deduction for an extended metric space. (Contributed by Mario Carneiro, 4-Oct-2015.) |
Ref | Expression |
---|---|
xmspropd.1 | ⊢ (𝜑 → 𝐵 = (Base‘𝐾)) |
xmspropd.2 | ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) |
xmspropd.3 | ⊢ (𝜑 → ((dist‘𝐾) ↾ (𝐵 × 𝐵)) = ((dist‘𝐿) ↾ (𝐵 × 𝐵))) |
xmspropd.4 | ⊢ (𝜑 → (TopOpen‘𝐾) = (TopOpen‘𝐿)) |
Ref | Expression |
---|---|
xmspropd | ⊢ (𝜑 → (𝐾 ∈ ∞MetSp ↔ 𝐿 ∈ ∞MetSp)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xmspropd.1 | . . . . 5 ⊢ (𝜑 → 𝐵 = (Base‘𝐾)) | |
2 | xmspropd.2 | . . . . 5 ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) | |
3 | 1, 2 | eqtr3d 2228 | . . . 4 ⊢ (𝜑 → (Base‘𝐾) = (Base‘𝐿)) |
4 | xmspropd.4 | . . . 4 ⊢ (𝜑 → (TopOpen‘𝐾) = (TopOpen‘𝐿)) | |
5 | 3, 4 | tpspropd 14204 | . . 3 ⊢ (𝜑 → (𝐾 ∈ TopSp ↔ 𝐿 ∈ TopSp)) |
6 | xmspropd.3 | . . . . . . 7 ⊢ (𝜑 → ((dist‘𝐾) ↾ (𝐵 × 𝐵)) = ((dist‘𝐿) ↾ (𝐵 × 𝐵))) | |
7 | 1 | sqxpeqd 4685 | . . . . . . . 8 ⊢ (𝜑 → (𝐵 × 𝐵) = ((Base‘𝐾) × (Base‘𝐾))) |
8 | 7 | reseq2d 4942 | . . . . . . 7 ⊢ (𝜑 → ((dist‘𝐾) ↾ (𝐵 × 𝐵)) = ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾)))) |
9 | 6, 8 | eqtr3d 2228 | . . . . . 6 ⊢ (𝜑 → ((dist‘𝐿) ↾ (𝐵 × 𝐵)) = ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾)))) |
10 | 2 | sqxpeqd 4685 | . . . . . . 7 ⊢ (𝜑 → (𝐵 × 𝐵) = ((Base‘𝐿) × (Base‘𝐿))) |
11 | 10 | reseq2d 4942 | . . . . . 6 ⊢ (𝜑 → ((dist‘𝐿) ↾ (𝐵 × 𝐵)) = ((dist‘𝐿) ↾ ((Base‘𝐿) × (Base‘𝐿)))) |
12 | 9, 11 | eqtr3d 2228 | . . . . 5 ⊢ (𝜑 → ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) = ((dist‘𝐿) ↾ ((Base‘𝐿) × (Base‘𝐿)))) |
13 | 12 | fveq2d 5558 | . . . 4 ⊢ (𝜑 → (MetOpen‘((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾)))) = (MetOpen‘((dist‘𝐿) ↾ ((Base‘𝐿) × (Base‘𝐿))))) |
14 | 4, 13 | eqeq12d 2208 | . . 3 ⊢ (𝜑 → ((TopOpen‘𝐾) = (MetOpen‘((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾)))) ↔ (TopOpen‘𝐿) = (MetOpen‘((dist‘𝐿) ↾ ((Base‘𝐿) × (Base‘𝐿)))))) |
15 | 5, 14 | anbi12d 473 | . 2 ⊢ (𝜑 → ((𝐾 ∈ TopSp ∧ (TopOpen‘𝐾) = (MetOpen‘((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))))) ↔ (𝐿 ∈ TopSp ∧ (TopOpen‘𝐿) = (MetOpen‘((dist‘𝐿) ↾ ((Base‘𝐿) × (Base‘𝐿))))))) |
16 | eqid 2193 | . . 3 ⊢ (TopOpen‘𝐾) = (TopOpen‘𝐾) | |
17 | eqid 2193 | . . 3 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
18 | eqid 2193 | . . 3 ⊢ ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) = ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) | |
19 | 16, 17, 18 | isxms 14619 | . 2 ⊢ (𝐾 ∈ ∞MetSp ↔ (𝐾 ∈ TopSp ∧ (TopOpen‘𝐾) = (MetOpen‘((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾)))))) |
20 | eqid 2193 | . . 3 ⊢ (TopOpen‘𝐿) = (TopOpen‘𝐿) | |
21 | eqid 2193 | . . 3 ⊢ (Base‘𝐿) = (Base‘𝐿) | |
22 | eqid 2193 | . . 3 ⊢ ((dist‘𝐿) ↾ ((Base‘𝐿) × (Base‘𝐿))) = ((dist‘𝐿) ↾ ((Base‘𝐿) × (Base‘𝐿))) | |
23 | 20, 21, 22 | isxms 14619 | . 2 ⊢ (𝐿 ∈ ∞MetSp ↔ (𝐿 ∈ TopSp ∧ (TopOpen‘𝐿) = (MetOpen‘((dist‘𝐿) ↾ ((Base‘𝐿) × (Base‘𝐿)))))) |
24 | 15, 19, 23 | 3bitr4g 223 | 1 ⊢ (𝜑 → (𝐾 ∈ ∞MetSp ↔ 𝐿 ∈ ∞MetSp)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 ∈ wcel 2164 × cxp 4657 ↾ cres 4661 ‘cfv 5254 Basecbs 12618 distcds 12704 TopOpenctopn 12851 MetOpencmopn 14037 TopSpctps 14198 ∞MetSpcxms 14504 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4144 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-cnex 7963 ax-resscn 7964 ax-1re 7966 ax-addrcl 7969 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2986 df-csb 3081 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-nul 3447 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-iun 3914 df-br 4030 df-opab 4091 df-mpt 4092 df-id 4324 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-ima 4672 df-iota 5215 df-fun 5256 df-fn 5257 df-f 5258 df-f1 5259 df-fo 5260 df-f1o 5261 df-fv 5262 df-ov 5921 df-oprab 5922 df-mpo 5923 df-1st 6193 df-2nd 6194 df-inn 8983 df-2 9041 df-3 9042 df-4 9043 df-5 9044 df-6 9045 df-7 9046 df-8 9047 df-9 9048 df-ndx 12621 df-slot 12622 df-base 12624 df-tset 12714 df-rest 12852 df-topn 12853 df-top 14166 df-topon 14179 df-topsp 14199 df-xms 14507 |
This theorem is referenced by: mspropd 14646 |
Copyright terms: Public domain | W3C validator |