![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sseq1i | GIF version |
Description: An equality inference for the subclass relationship. (Contributed by NM, 18-Aug-1993.) |
Ref | Expression |
---|---|
sseq1i.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
sseq1i | ⊢ (𝐴 ⊆ 𝐶 ↔ 𝐵 ⊆ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sseq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | sseq1 3202 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 ⊆ 𝐶 ↔ 𝐵 ⊆ 𝐶)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ⊆ 𝐶 ↔ 𝐵 ⊆ 𝐶) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 105 = wceq 1364 ⊆ wss 3153 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-11 1517 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-in 3159 df-ss 3166 |
This theorem is referenced by: eqsstri 3211 eqsstrid 3225 ssab 3249 rabss 3256 uniiunlem 3268 prss 3774 prssg 3775 tpss 3784 iunss 3953 pwtr 4248 ordsucss 4536 elomssom 4637 cores2 5178 dffun2 5264 funimaexglem 5337 idref 5799 ordgt0ge1 6488 3nsssucpw1 7296 prarloclemn 7559 bdeqsuc 15373 bj-omssind 15427 |
Copyright terms: Public domain | W3C validator |