Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sseq1i | GIF version |
Description: An equality inference for the subclass relationship. (Contributed by NM, 18-Aug-1993.) |
Ref | Expression |
---|---|
sseq1i.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
sseq1i | ⊢ (𝐴 ⊆ 𝐶 ↔ 𝐵 ⊆ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sseq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | sseq1 3151 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 ⊆ 𝐶 ↔ 𝐵 ⊆ 𝐶)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ⊆ 𝐶 ↔ 𝐵 ⊆ 𝐶) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 104 = wceq 1335 ⊆ wss 3102 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-11 1486 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-ext 2139 |
This theorem depends on definitions: df-bi 116 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-in 3108 df-ss 3115 |
This theorem is referenced by: eqsstri 3160 eqsstrid 3174 ssab 3198 rabss 3205 uniiunlem 3216 prss 3712 prssg 3713 tpss 3721 iunss 3890 pwtr 4178 ordsucss 4461 elomssom 4562 cores2 5095 dffun2 5177 funimaexglem 5250 idref 5702 ordgt0ge1 6376 3nsssucpw1 7154 prarloclemn 7402 bdeqsuc 13416 bj-omssind 13470 |
Copyright terms: Public domain | W3C validator |