| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sseq1i | GIF version | ||
| Description: An equality inference for the subclass relationship. (Contributed by NM, 18-Aug-1993.) |
| Ref | Expression |
|---|---|
| sseq1i.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| sseq1i | ⊢ (𝐴 ⊆ 𝐶 ↔ 𝐵 ⊆ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | sseq1 3217 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 ⊆ 𝐶 ↔ 𝐵 ⊆ 𝐶)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ⊆ 𝐶 ↔ 𝐵 ⊆ 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 = wceq 1373 ⊆ wss 3167 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-11 1530 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-in 3173 df-ss 3180 |
| This theorem is referenced by: eqsstri 3226 eqsstrid 3240 ssab 3264 rabss 3271 uniiunlem 3283 prss 3791 prssg 3792 tpss 3801 iunss 3970 pwtr 4267 ordsucss 4556 elomssom 4657 cores2 5200 dffun2 5286 funimaexglem 5362 idref 5832 ordgt0ge1 6528 3nsssucpw1 7355 prarloclemn 7619 bdeqsuc 15891 bj-omssind 15945 |
| Copyright terms: Public domain | W3C validator |