![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sseq1i | GIF version |
Description: An equality inference for the subclass relationship. (Contributed by NM, 18-Aug-1993.) |
Ref | Expression |
---|---|
sseq1i.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
sseq1i | ⊢ (𝐴 ⊆ 𝐶 ↔ 𝐵 ⊆ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sseq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | sseq1 3086 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 ⊆ 𝐶 ↔ 𝐵 ⊆ 𝐶)) | |
3 | 1, 2 | ax-mp 7 | 1 ⊢ (𝐴 ⊆ 𝐶 ↔ 𝐵 ⊆ 𝐶) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 104 = wceq 1314 ⊆ wss 3037 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1406 ax-7 1407 ax-gen 1408 ax-ie1 1452 ax-ie2 1453 ax-8 1465 ax-11 1467 ax-4 1470 ax-17 1489 ax-i9 1493 ax-ial 1497 ax-i5r 1498 ax-ext 2097 |
This theorem depends on definitions: df-bi 116 df-nf 1420 df-sb 1719 df-clab 2102 df-cleq 2108 df-clel 2111 df-in 3043 df-ss 3050 |
This theorem is referenced by: eqsstri 3095 eqsstrid 3109 ssab 3133 rabss 3140 uniiunlem 3151 prss 3642 prssg 3643 tpss 3651 iunss 3820 pwtr 4101 ordsucss 4380 elnn 4479 cores2 5009 dffun2 5091 funimaexglem 5164 idref 5612 ordgt0ge1 6286 prarloclemn 7255 bdeqsuc 12771 bj-omssind 12825 |
Copyright terms: Public domain | W3C validator |