| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > sseq1i | GIF version | ||
| Description: An equality inference for the subclass relationship. (Contributed by NM, 18-Aug-1993.) | 
| Ref | Expression | 
|---|---|
| sseq1i.1 | ⊢ 𝐴 = 𝐵 | 
| Ref | Expression | 
|---|---|
| sseq1i | ⊢ (𝐴 ⊆ 𝐶 ↔ 𝐵 ⊆ 𝐶) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | sseq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | sseq1 3206 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 ⊆ 𝐶 ↔ 𝐵 ⊆ 𝐶)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ⊆ 𝐶 ↔ 𝐵 ⊆ 𝐶) | 
| Colors of variables: wff set class | 
| Syntax hints: ↔ wb 105 = wceq 1364 ⊆ wss 3157 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-in 3163 df-ss 3170 | 
| This theorem is referenced by: eqsstri 3215 eqsstrid 3229 ssab 3253 rabss 3260 uniiunlem 3272 prss 3778 prssg 3779 tpss 3788 iunss 3957 pwtr 4252 ordsucss 4540 elomssom 4641 cores2 5182 dffun2 5268 funimaexglem 5341 idref 5803 ordgt0ge1 6493 3nsssucpw1 7303 prarloclemn 7566 bdeqsuc 15527 bj-omssind 15581 | 
| Copyright terms: Public domain | W3C validator |