Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sselid | GIF version |
Description: Membership inference from subclass relationship. (Contributed by NM, 25-Jun-2014.) |
Ref | Expression |
---|---|
sseli.1 | ⊢ 𝐴 ⊆ 𝐵 |
sselid.2 | ⊢ (𝜑 → 𝐶 ∈ 𝐴) |
Ref | Expression |
---|---|
sselid | ⊢ (𝜑 → 𝐶 ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sselid.2 | . 2 ⊢ (𝜑 → 𝐶 ∈ 𝐴) | |
2 | sseli.1 | . . 3 ⊢ 𝐴 ⊆ 𝐵 | |
3 | 2 | sseli 3136 | . 2 ⊢ (𝐶 ∈ 𝐴 → 𝐶 ∈ 𝐵) |
4 | 1, 3 | syl 14 | 1 ⊢ (𝜑 → 𝐶 ∈ 𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2135 ⊆ wss 3114 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1434 ax-7 1435 ax-gen 1436 ax-ie1 1480 ax-ie2 1481 ax-8 1491 ax-11 1493 ax-4 1497 ax-17 1513 ax-i9 1517 ax-ial 1521 ax-i5r 1522 ax-ext 2146 |
This theorem depends on definitions: df-bi 116 df-nf 1448 df-sb 1750 df-clab 2151 df-cleq 2157 df-clel 2160 df-in 3120 df-ss 3127 |
This theorem is referenced by: mptrcl 5565 riotacl 5809 riotasbc 5810 elmpocl 6033 ofrval 6057 f1od2 6197 mpoxopn0yelv 6201 tpostpos 6226 smores 6254 supubti 6958 suplubti 6959 prarloclemcalc 7437 rereceu 7824 recriota 7825 rexrd 7942 eqord1 8375 nnred 8864 nncnd 8865 un0addcl 9141 un0mulcl 9142 nnnn0d 9161 nn0red 9162 nn0xnn0d 9180 suprzclex 9283 nn0zd 9305 zred 9307 rpred 9626 ige2m1fz 10039 zmodfzp1 10277 seq3caopr2 10411 expcl2lemap 10461 m1expcl 10472 summodclem2a 11316 zsumdc 11319 clim2prod 11474 ntrivcvgap 11483 prodmodclem2a 11511 zproddc 11514 zsupssdc 11881 lcmn0cl 11994 isprm5lem 12067 eulerthlemrprm 12155 eulerthlema 12156 eulerthlemh 12157 eulerthlemth 12158 prmdivdiv 12163 ennnfonelemg 12330 lmrcl 12789 lmss 12844 upxp 12870 isxms2 13050 iooretopg 13126 tgqioo 13145 limccoap 13245 dvcl 13250 dvidlemap 13258 dvcnp2cntop 13261 isomninnlem 13802 trilpolemeq1 13812 trilpolemlt1 13813 iswomninnlem 13821 iswomni0 13823 ismkvnnlem 13824 nconstwlpolemgt0 13835 |
Copyright terms: Public domain | W3C validator |