| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pnfxr | GIF version | ||
| Description: Plus infinity belongs to the set of extended reals. (Contributed by NM, 13-Oct-2005.) (Proof shortened by Anthony Hart, 29-Aug-2011.) |
| Ref | Expression |
|---|---|
| pnfxr | ⊢ +∞ ∈ ℝ* |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssun2 3368 | . . 3 ⊢ {+∞, -∞} ⊆ (ℝ ∪ {+∞, -∞}) | |
| 2 | df-pnf 8171 | . . . . 5 ⊢ +∞ = 𝒫 ∪ ℂ | |
| 3 | cnex 8111 | . . . . . . 7 ⊢ ℂ ∈ V | |
| 4 | 3 | uniex 4525 | . . . . . 6 ⊢ ∪ ℂ ∈ V |
| 5 | 4 | pwex 4266 | . . . . 5 ⊢ 𝒫 ∪ ℂ ∈ V |
| 6 | 2, 5 | eqeltri 2302 | . . . 4 ⊢ +∞ ∈ V |
| 7 | 6 | prid1 3772 | . . 3 ⊢ +∞ ∈ {+∞, -∞} |
| 8 | 1, 7 | sselii 3221 | . 2 ⊢ +∞ ∈ (ℝ ∪ {+∞, -∞}) |
| 9 | df-xr 8173 | . 2 ⊢ ℝ* = (ℝ ∪ {+∞, -∞}) | |
| 10 | 8, 9 | eleqtrri 2305 | 1 ⊢ +∞ ∈ ℝ* |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2200 Vcvv 2799 ∪ cun 3195 𝒫 cpw 3649 {cpr 3667 ∪ cuni 3887 ℂcc 7985 ℝcr 7986 +∞cpnf 8166 -∞cmnf 8167 ℝ*cxr 8168 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-un 4521 ax-cnex 8078 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-uni 3888 df-pnf 8171 df-xr 8173 |
| This theorem is referenced by: pnfex 8188 pnfnemnf 8189 xnn0xr 9425 xrltnr 9963 ltpnf 9964 mnfltpnf 9969 pnfnlt 9971 pnfge 9973 xrlttri3 9981 xnn0dcle 9986 nltpnft 9998 xgepnf 10000 xrrebnd 10003 xrre 10004 xrre2 10005 xnegcl 10016 xaddf 10028 xaddval 10029 xaddpnf1 10030 xaddpnf2 10031 pnfaddmnf 10034 mnfaddpnf 10035 xrex 10040 xaddass2 10054 xltadd1 10060 xlt2add 10064 xsubge0 10065 xposdif 10066 xleaddadd 10071 elioc2 10120 elico2 10121 elicc2 10122 ioomax 10132 iccmax 10133 ioopos 10134 elioopnf 10151 elicopnf 10153 unirnioo 10157 elxrge0 10162 dfrp2 10470 elicore 10473 xqltnle 10474 hashinfom 10987 rexico 11718 xrmaxiflemcl 11742 xrmaxadd 11758 fprodge0 12134 fprodge1 12136 pcxcl 12820 pc2dvds 12839 pcadd 12849 xblpnfps 15057 xblpnf 15058 xblss2ps 15063 blssec 15097 blpnfctr 15098 reopnap 15205 blssioo 15212 |
| Copyright terms: Public domain | W3C validator |