Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > pnfxr | GIF version |
Description: Plus infinity belongs to the set of extended reals. (Contributed by NM, 13-Oct-2005.) (Proof shortened by Anthony Hart, 29-Aug-2011.) |
Ref | Expression |
---|---|
pnfxr | ⊢ +∞ ∈ ℝ* |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssun2 3286 | . . 3 ⊢ {+∞, -∞} ⊆ (ℝ ∪ {+∞, -∞}) | |
2 | df-pnf 7935 | . . . . 5 ⊢ +∞ = 𝒫 ∪ ℂ | |
3 | cnex 7877 | . . . . . . 7 ⊢ ℂ ∈ V | |
4 | 3 | uniex 4415 | . . . . . 6 ⊢ ∪ ℂ ∈ V |
5 | 4 | pwex 4162 | . . . . 5 ⊢ 𝒫 ∪ ℂ ∈ V |
6 | 2, 5 | eqeltri 2239 | . . . 4 ⊢ +∞ ∈ V |
7 | 6 | prid1 3682 | . . 3 ⊢ +∞ ∈ {+∞, -∞} |
8 | 1, 7 | sselii 3139 | . 2 ⊢ +∞ ∈ (ℝ ∪ {+∞, -∞}) |
9 | df-xr 7937 | . 2 ⊢ ℝ* = (ℝ ∪ {+∞, -∞}) | |
10 | 8, 9 | eleqtrri 2242 | 1 ⊢ +∞ ∈ ℝ* |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2136 Vcvv 2726 ∪ cun 3114 𝒫 cpw 3559 {cpr 3577 ∪ cuni 3789 ℂcc 7751 ℝcr 7752 +∞cpnf 7930 -∞cmnf 7931 ℝ*cxr 7932 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-un 4411 ax-cnex 7844 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-rex 2450 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-uni 3790 df-pnf 7935 df-xr 7937 |
This theorem is referenced by: pnfex 7952 pnfnemnf 7953 xnn0xr 9182 xrltnr 9715 ltpnf 9716 mnfltpnf 9721 pnfnlt 9723 pnfge 9725 xrlttri3 9733 xnn0dcle 9738 nltpnft 9750 xgepnf 9752 xrrebnd 9755 xrre 9756 xrre2 9757 xnegcl 9768 xaddf 9780 xaddval 9781 xaddpnf1 9782 xaddpnf2 9783 pnfaddmnf 9786 mnfaddpnf 9787 xrex 9792 xaddass2 9806 xltadd1 9812 xlt2add 9816 xsubge0 9817 xposdif 9818 xleaddadd 9823 elioc2 9872 elico2 9873 elicc2 9874 ioomax 9884 iccmax 9885 ioopos 9886 elioopnf 9903 elicopnf 9905 unirnioo 9909 elxrge0 9914 dfrp2 10199 elicore 10202 hashinfom 10691 rexico 11163 xrmaxiflemcl 11186 xrmaxadd 11202 fprodge0 11578 fprodge1 11580 pcxcl 12243 pc2dvds 12261 pcadd 12271 xblpnfps 13038 xblpnf 13039 xblss2ps 13044 blssec 13078 blpnfctr 13079 reopnap 13178 blssioo 13185 |
Copyright terms: Public domain | W3C validator |