Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > pnfxr | GIF version |
Description: Plus infinity belongs to the set of extended reals. (Contributed by NM, 13-Oct-2005.) (Proof shortened by Anthony Hart, 29-Aug-2011.) |
Ref | Expression |
---|---|
pnfxr | ⊢ +∞ ∈ ℝ* |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssun2 3291 | . . 3 ⊢ {+∞, -∞} ⊆ (ℝ ∪ {+∞, -∞}) | |
2 | df-pnf 7956 | . . . . 5 ⊢ +∞ = 𝒫 ∪ ℂ | |
3 | cnex 7898 | . . . . . . 7 ⊢ ℂ ∈ V | |
4 | 3 | uniex 4422 | . . . . . 6 ⊢ ∪ ℂ ∈ V |
5 | 4 | pwex 4169 | . . . . 5 ⊢ 𝒫 ∪ ℂ ∈ V |
6 | 2, 5 | eqeltri 2243 | . . . 4 ⊢ +∞ ∈ V |
7 | 6 | prid1 3689 | . . 3 ⊢ +∞ ∈ {+∞, -∞} |
8 | 1, 7 | sselii 3144 | . 2 ⊢ +∞ ∈ (ℝ ∪ {+∞, -∞}) |
9 | df-xr 7958 | . 2 ⊢ ℝ* = (ℝ ∪ {+∞, -∞}) | |
10 | 8, 9 | eleqtrri 2246 | 1 ⊢ +∞ ∈ ℝ* |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2141 Vcvv 2730 ∪ cun 3119 𝒫 cpw 3566 {cpr 3584 ∪ cuni 3796 ℂcc 7772 ℝcr 7773 +∞cpnf 7951 -∞cmnf 7952 ℝ*cxr 7953 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-un 4418 ax-cnex 7865 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-rex 2454 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-uni 3797 df-pnf 7956 df-xr 7958 |
This theorem is referenced by: pnfex 7973 pnfnemnf 7974 xnn0xr 9203 xrltnr 9736 ltpnf 9737 mnfltpnf 9742 pnfnlt 9744 pnfge 9746 xrlttri3 9754 xnn0dcle 9759 nltpnft 9771 xgepnf 9773 xrrebnd 9776 xrre 9777 xrre2 9778 xnegcl 9789 xaddf 9801 xaddval 9802 xaddpnf1 9803 xaddpnf2 9804 pnfaddmnf 9807 mnfaddpnf 9808 xrex 9813 xaddass2 9827 xltadd1 9833 xlt2add 9837 xsubge0 9838 xposdif 9839 xleaddadd 9844 elioc2 9893 elico2 9894 elicc2 9895 ioomax 9905 iccmax 9906 ioopos 9907 elioopnf 9924 elicopnf 9926 unirnioo 9930 elxrge0 9935 dfrp2 10220 elicore 10223 hashinfom 10712 rexico 11185 xrmaxiflemcl 11208 xrmaxadd 11224 fprodge0 11600 fprodge1 11602 pcxcl 12265 pc2dvds 12283 pcadd 12293 xblpnfps 13192 xblpnf 13193 xblss2ps 13198 blssec 13232 blpnfctr 13233 reopnap 13332 blssioo 13339 |
Copyright terms: Public domain | W3C validator |