| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pnfxr | GIF version | ||
| Description: Plus infinity belongs to the set of extended reals. (Contributed by NM, 13-Oct-2005.) (Proof shortened by Anthony Hart, 29-Aug-2011.) |
| Ref | Expression |
|---|---|
| pnfxr | ⊢ +∞ ∈ ℝ* |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssun2 3339 | . . 3 ⊢ {+∞, -∞} ⊆ (ℝ ∪ {+∞, -∞}) | |
| 2 | df-pnf 8122 | . . . . 5 ⊢ +∞ = 𝒫 ∪ ℂ | |
| 3 | cnex 8062 | . . . . . . 7 ⊢ ℂ ∈ V | |
| 4 | 3 | uniex 4489 | . . . . . 6 ⊢ ∪ ℂ ∈ V |
| 5 | 4 | pwex 4232 | . . . . 5 ⊢ 𝒫 ∪ ℂ ∈ V |
| 6 | 2, 5 | eqeltri 2279 | . . . 4 ⊢ +∞ ∈ V |
| 7 | 6 | prid1 3741 | . . 3 ⊢ +∞ ∈ {+∞, -∞} |
| 8 | 1, 7 | sselii 3192 | . 2 ⊢ +∞ ∈ (ℝ ∪ {+∞, -∞}) |
| 9 | df-xr 8124 | . 2 ⊢ ℝ* = (ℝ ∪ {+∞, -∞}) | |
| 10 | 8, 9 | eleqtrri 2282 | 1 ⊢ +∞ ∈ ℝ* |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2177 Vcvv 2773 ∪ cun 3166 𝒫 cpw 3618 {cpr 3636 ∪ cuni 3853 ℂcc 7936 ℝcr 7937 +∞cpnf 8117 -∞cmnf 8118 ℝ*cxr 8119 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4167 ax-pow 4223 ax-un 4485 ax-cnex 8029 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-rex 2491 df-v 2775 df-un 3172 df-in 3174 df-ss 3181 df-pw 3620 df-sn 3641 df-pr 3642 df-uni 3854 df-pnf 8122 df-xr 8124 |
| This theorem is referenced by: pnfex 8139 pnfnemnf 8140 xnn0xr 9376 xrltnr 9914 ltpnf 9915 mnfltpnf 9920 pnfnlt 9922 pnfge 9924 xrlttri3 9932 xnn0dcle 9937 nltpnft 9949 xgepnf 9951 xrrebnd 9954 xrre 9955 xrre2 9956 xnegcl 9967 xaddf 9979 xaddval 9980 xaddpnf1 9981 xaddpnf2 9982 pnfaddmnf 9985 mnfaddpnf 9986 xrex 9991 xaddass2 10005 xltadd1 10011 xlt2add 10015 xsubge0 10016 xposdif 10017 xleaddadd 10022 elioc2 10071 elico2 10072 elicc2 10073 ioomax 10083 iccmax 10084 ioopos 10085 elioopnf 10102 elicopnf 10104 unirnioo 10108 elxrge0 10113 dfrp2 10419 elicore 10422 xqltnle 10423 hashinfom 10936 rexico 11582 xrmaxiflemcl 11606 xrmaxadd 11622 fprodge0 11998 fprodge1 12000 pcxcl 12684 pc2dvds 12703 pcadd 12713 xblpnfps 14920 xblpnf 14921 xblss2ps 14926 blssec 14960 blpnfctr 14961 reopnap 15068 blssioo 15075 |
| Copyright terms: Public domain | W3C validator |