| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > pnfxr | GIF version | ||
| Description: Plus infinity belongs to the set of extended reals. (Contributed by NM, 13-Oct-2005.) (Proof shortened by Anthony Hart, 29-Aug-2011.) | 
| Ref | Expression | 
|---|---|
| pnfxr | ⊢ +∞ ∈ ℝ* | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ssun2 3327 | . . 3 ⊢ {+∞, -∞} ⊆ (ℝ ∪ {+∞, -∞}) | |
| 2 | df-pnf 8063 | . . . . 5 ⊢ +∞ = 𝒫 ∪ ℂ | |
| 3 | cnex 8003 | . . . . . . 7 ⊢ ℂ ∈ V | |
| 4 | 3 | uniex 4472 | . . . . . 6 ⊢ ∪ ℂ ∈ V | 
| 5 | 4 | pwex 4216 | . . . . 5 ⊢ 𝒫 ∪ ℂ ∈ V | 
| 6 | 2, 5 | eqeltri 2269 | . . . 4 ⊢ +∞ ∈ V | 
| 7 | 6 | prid1 3728 | . . 3 ⊢ +∞ ∈ {+∞, -∞} | 
| 8 | 1, 7 | sselii 3180 | . 2 ⊢ +∞ ∈ (ℝ ∪ {+∞, -∞}) | 
| 9 | df-xr 8065 | . 2 ⊢ ℝ* = (ℝ ∪ {+∞, -∞}) | |
| 10 | 8, 9 | eleqtrri 2272 | 1 ⊢ +∞ ∈ ℝ* | 
| Colors of variables: wff set class | 
| Syntax hints: ∈ wcel 2167 Vcvv 2763 ∪ cun 3155 𝒫 cpw 3605 {cpr 3623 ∪ cuni 3839 ℂcc 7877 ℝcr 7878 +∞cpnf 8058 -∞cmnf 8059 ℝ*cxr 8060 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-un 4468 ax-cnex 7970 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-uni 3840 df-pnf 8063 df-xr 8065 | 
| This theorem is referenced by: pnfex 8080 pnfnemnf 8081 xnn0xr 9317 xrltnr 9854 ltpnf 9855 mnfltpnf 9860 pnfnlt 9862 pnfge 9864 xrlttri3 9872 xnn0dcle 9877 nltpnft 9889 xgepnf 9891 xrrebnd 9894 xrre 9895 xrre2 9896 xnegcl 9907 xaddf 9919 xaddval 9920 xaddpnf1 9921 xaddpnf2 9922 pnfaddmnf 9925 mnfaddpnf 9926 xrex 9931 xaddass2 9945 xltadd1 9951 xlt2add 9955 xsubge0 9956 xposdif 9957 xleaddadd 9962 elioc2 10011 elico2 10012 elicc2 10013 ioomax 10023 iccmax 10024 ioopos 10025 elioopnf 10042 elicopnf 10044 unirnioo 10048 elxrge0 10053 dfrp2 10353 elicore 10356 xqltnle 10357 hashinfom 10870 rexico 11386 xrmaxiflemcl 11410 xrmaxadd 11426 fprodge0 11802 fprodge1 11804 pcxcl 12480 pc2dvds 12499 pcadd 12509 xblpnfps 14634 xblpnf 14635 xblss2ps 14640 blssec 14674 blpnfctr 14675 reopnap 14782 blssioo 14789 | 
| Copyright terms: Public domain | W3C validator |