![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > pnfxr | GIF version |
Description: Plus infinity belongs to the set of extended reals. (Contributed by NM, 13-Oct-2005.) (Proof shortened by Anthony Hart, 29-Aug-2011.) |
Ref | Expression |
---|---|
pnfxr | ⊢ +∞ ∈ ℝ* |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssun2 3187 | . . 3 ⊢ {+∞, -∞} ⊆ (ℝ ∪ {+∞, -∞}) | |
2 | df-pnf 7674 | . . . . 5 ⊢ +∞ = 𝒫 ∪ ℂ | |
3 | cnex 7616 | . . . . . . 7 ⊢ ℂ ∈ V | |
4 | 3 | uniex 4297 | . . . . . 6 ⊢ ∪ ℂ ∈ V |
5 | 4 | pwex 4047 | . . . . 5 ⊢ 𝒫 ∪ ℂ ∈ V |
6 | 2, 5 | eqeltri 2172 | . . . 4 ⊢ +∞ ∈ V |
7 | 6 | prid1 3576 | . . 3 ⊢ +∞ ∈ {+∞, -∞} |
8 | 1, 7 | sselii 3044 | . 2 ⊢ +∞ ∈ (ℝ ∪ {+∞, -∞}) |
9 | df-xr 7676 | . 2 ⊢ ℝ* = (ℝ ∪ {+∞, -∞}) | |
10 | 8, 9 | eleqtrri 2175 | 1 ⊢ +∞ ∈ ℝ* |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 1448 Vcvv 2641 ∪ cun 3019 𝒫 cpw 3457 {cpr 3475 ∪ cuni 3683 ℂcc 7498 ℝcr 7499 +∞cpnf 7669 -∞cmnf 7670 ℝ*cxr 7671 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 671 ax-5 1391 ax-7 1392 ax-gen 1393 ax-ie1 1437 ax-ie2 1438 ax-8 1450 ax-10 1451 ax-11 1452 ax-i12 1453 ax-bndl 1454 ax-4 1455 ax-13 1459 ax-14 1460 ax-17 1474 ax-i9 1478 ax-ial 1482 ax-i5r 1483 ax-ext 2082 ax-sep 3986 ax-pow 4038 ax-un 4293 ax-cnex 7586 |
This theorem depends on definitions: df-bi 116 df-tru 1302 df-nf 1405 df-sb 1704 df-clab 2087 df-cleq 2093 df-clel 2096 df-nfc 2229 df-rex 2381 df-v 2643 df-un 3025 df-in 3027 df-ss 3034 df-pw 3459 df-sn 3480 df-pr 3481 df-uni 3684 df-pnf 7674 df-xr 7676 |
This theorem is referenced by: pnfex 7691 pnfnemnf 7692 xnn0xr 8897 xrltnr 9407 ltpnf 9408 mnfltpnf 9412 pnfnlt 9414 pnfge 9416 xrlttri3 9424 nltpnft 9438 xgepnf 9440 xrrebnd 9443 xrre 9444 xrre2 9445 xnegcl 9456 xaddf 9468 xaddval 9469 xaddpnf1 9470 xaddpnf2 9471 pnfaddmnf 9474 mnfaddpnf 9475 xrex 9480 xaddass2 9494 xltadd1 9500 xlt2add 9504 xsubge0 9505 xposdif 9506 xleaddadd 9511 elioc2 9560 elico2 9561 elicc2 9562 ioomax 9572 iccmax 9573 ioopos 9574 elioopnf 9591 elicopnf 9593 unirnioo 9597 elxrge0 9602 hashinfom 10365 rexico 10833 xrmaxiflemcl 10853 xrmaxadd 10869 xblpnfps 12326 xblpnf 12327 xblss2ps 12332 blssec 12366 blpnfctr 12367 blssioo 12464 |
Copyright terms: Public domain | W3C validator |