| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pnfxr | GIF version | ||
| Description: Plus infinity belongs to the set of extended reals. (Contributed by NM, 13-Oct-2005.) (Proof shortened by Anthony Hart, 29-Aug-2011.) |
| Ref | Expression |
|---|---|
| pnfxr | ⊢ +∞ ∈ ℝ* |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssun2 3368 | . . 3 ⊢ {+∞, -∞} ⊆ (ℝ ∪ {+∞, -∞}) | |
| 2 | df-pnf 8191 | . . . . 5 ⊢ +∞ = 𝒫 ∪ ℂ | |
| 3 | cnex 8131 | . . . . . . 7 ⊢ ℂ ∈ V | |
| 4 | 3 | uniex 4528 | . . . . . 6 ⊢ ∪ ℂ ∈ V |
| 5 | 4 | pwex 4267 | . . . . 5 ⊢ 𝒫 ∪ ℂ ∈ V |
| 6 | 2, 5 | eqeltri 2302 | . . . 4 ⊢ +∞ ∈ V |
| 7 | 6 | prid1 3772 | . . 3 ⊢ +∞ ∈ {+∞, -∞} |
| 8 | 1, 7 | sselii 3221 | . 2 ⊢ +∞ ∈ (ℝ ∪ {+∞, -∞}) |
| 9 | df-xr 8193 | . 2 ⊢ ℝ* = (ℝ ∪ {+∞, -∞}) | |
| 10 | 8, 9 | eleqtrri 2305 | 1 ⊢ +∞ ∈ ℝ* |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2200 Vcvv 2799 ∪ cun 3195 𝒫 cpw 3649 {cpr 3667 ∪ cuni 3888 ℂcc 8005 ℝcr 8006 +∞cpnf 8186 -∞cmnf 8187 ℝ*cxr 8188 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-un 4524 ax-cnex 8098 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-uni 3889 df-pnf 8191 df-xr 8193 |
| This theorem is referenced by: pnfex 8208 pnfnemnf 8209 xnn0xr 9445 xrltnr 9983 ltpnf 9984 mnfltpnf 9989 pnfnlt 9991 pnfge 9993 xrlttri3 10001 xnn0dcle 10006 nltpnft 10018 xgepnf 10020 xrrebnd 10023 xrre 10024 xrre2 10025 xnegcl 10036 xaddf 10048 xaddval 10049 xaddpnf1 10050 xaddpnf2 10051 pnfaddmnf 10054 mnfaddpnf 10055 xrex 10060 xaddass2 10074 xltadd1 10080 xlt2add 10084 xsubge0 10085 xposdif 10086 xleaddadd 10091 elioc2 10140 elico2 10141 elicc2 10142 ioomax 10152 iccmax 10153 ioopos 10154 elioopnf 10171 elicopnf 10173 unirnioo 10177 elxrge0 10182 dfrp2 10491 elicore 10494 xqltnle 10495 hashinfom 11008 rexico 11740 xrmaxiflemcl 11764 xrmaxadd 11780 fprodge0 12156 fprodge1 12158 pcxcl 12842 pc2dvds 12861 pcadd 12871 xblpnfps 15080 xblpnf 15081 xblss2ps 15086 blssec 15120 blpnfctr 15121 reopnap 15228 blssioo 15235 |
| Copyright terms: Public domain | W3C validator |