| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pnfxr | GIF version | ||
| Description: Plus infinity belongs to the set of extended reals. (Contributed by NM, 13-Oct-2005.) (Proof shortened by Anthony Hart, 29-Aug-2011.) |
| Ref | Expression |
|---|---|
| pnfxr | ⊢ +∞ ∈ ℝ* |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssun2 3328 | . . 3 ⊢ {+∞, -∞} ⊆ (ℝ ∪ {+∞, -∞}) | |
| 2 | df-pnf 8082 | . . . . 5 ⊢ +∞ = 𝒫 ∪ ℂ | |
| 3 | cnex 8022 | . . . . . . 7 ⊢ ℂ ∈ V | |
| 4 | 3 | uniex 4473 | . . . . . 6 ⊢ ∪ ℂ ∈ V |
| 5 | 4 | pwex 4217 | . . . . 5 ⊢ 𝒫 ∪ ℂ ∈ V |
| 6 | 2, 5 | eqeltri 2269 | . . . 4 ⊢ +∞ ∈ V |
| 7 | 6 | prid1 3729 | . . 3 ⊢ +∞ ∈ {+∞, -∞} |
| 8 | 1, 7 | sselii 3181 | . 2 ⊢ +∞ ∈ (ℝ ∪ {+∞, -∞}) |
| 9 | df-xr 8084 | . 2 ⊢ ℝ* = (ℝ ∪ {+∞, -∞}) | |
| 10 | 8, 9 | eleqtrri 2272 | 1 ⊢ +∞ ∈ ℝ* |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2167 Vcvv 2763 ∪ cun 3155 𝒫 cpw 3606 {cpr 3624 ∪ cuni 3840 ℂcc 7896 ℝcr 7897 +∞cpnf 8077 -∞cmnf 8078 ℝ*cxr 8079 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-un 4469 ax-cnex 7989 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-uni 3841 df-pnf 8082 df-xr 8084 |
| This theorem is referenced by: pnfex 8099 pnfnemnf 8100 xnn0xr 9336 xrltnr 9873 ltpnf 9874 mnfltpnf 9879 pnfnlt 9881 pnfge 9883 xrlttri3 9891 xnn0dcle 9896 nltpnft 9908 xgepnf 9910 xrrebnd 9913 xrre 9914 xrre2 9915 xnegcl 9926 xaddf 9938 xaddval 9939 xaddpnf1 9940 xaddpnf2 9941 pnfaddmnf 9944 mnfaddpnf 9945 xrex 9950 xaddass2 9964 xltadd1 9970 xlt2add 9974 xsubge0 9975 xposdif 9976 xleaddadd 9981 elioc2 10030 elico2 10031 elicc2 10032 ioomax 10042 iccmax 10043 ioopos 10044 elioopnf 10061 elicopnf 10063 unirnioo 10067 elxrge0 10072 dfrp2 10372 elicore 10375 xqltnle 10376 hashinfom 10889 rexico 11405 xrmaxiflemcl 11429 xrmaxadd 11445 fprodge0 11821 fprodge1 11823 pcxcl 12507 pc2dvds 12526 pcadd 12536 xblpnfps 14742 xblpnf 14743 xblss2ps 14748 blssec 14782 blpnfctr 14783 reopnap 14890 blssioo 14897 |
| Copyright terms: Public domain | W3C validator |