Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > pnfxr | GIF version |
Description: Plus infinity belongs to the set of extended reals. (Contributed by NM, 13-Oct-2005.) (Proof shortened by Anthony Hart, 29-Aug-2011.) |
Ref | Expression |
---|---|
pnfxr | ⊢ +∞ ∈ ℝ* |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssun2 3297 | . . 3 ⊢ {+∞, -∞} ⊆ (ℝ ∪ {+∞, -∞}) | |
2 | df-pnf 7968 | . . . . 5 ⊢ +∞ = 𝒫 ∪ ℂ | |
3 | cnex 7910 | . . . . . . 7 ⊢ ℂ ∈ V | |
4 | 3 | uniex 4431 | . . . . . 6 ⊢ ∪ ℂ ∈ V |
5 | 4 | pwex 4178 | . . . . 5 ⊢ 𝒫 ∪ ℂ ∈ V |
6 | 2, 5 | eqeltri 2248 | . . . 4 ⊢ +∞ ∈ V |
7 | 6 | prid1 3695 | . . 3 ⊢ +∞ ∈ {+∞, -∞} |
8 | 1, 7 | sselii 3150 | . 2 ⊢ +∞ ∈ (ℝ ∪ {+∞, -∞}) |
9 | df-xr 7970 | . 2 ⊢ ℝ* = (ℝ ∪ {+∞, -∞}) | |
10 | 8, 9 | eleqtrri 2251 | 1 ⊢ +∞ ∈ ℝ* |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2146 Vcvv 2735 ∪ cun 3125 𝒫 cpw 3572 {cpr 3590 ∪ cuni 3805 ℂcc 7784 ℝcr 7785 +∞cpnf 7963 -∞cmnf 7964 ℝ*cxr 7965 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-pow 4169 ax-un 4427 ax-cnex 7877 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-rex 2459 df-v 2737 df-un 3131 df-in 3133 df-ss 3140 df-pw 3574 df-sn 3595 df-pr 3596 df-uni 3806 df-pnf 7968 df-xr 7970 |
This theorem is referenced by: pnfex 7985 pnfnemnf 7986 xnn0xr 9217 xrltnr 9750 ltpnf 9751 mnfltpnf 9756 pnfnlt 9758 pnfge 9760 xrlttri3 9768 xnn0dcle 9773 nltpnft 9785 xgepnf 9787 xrrebnd 9790 xrre 9791 xrre2 9792 xnegcl 9803 xaddf 9815 xaddval 9816 xaddpnf1 9817 xaddpnf2 9818 pnfaddmnf 9821 mnfaddpnf 9822 xrex 9827 xaddass2 9841 xltadd1 9847 xlt2add 9851 xsubge0 9852 xposdif 9853 xleaddadd 9858 elioc2 9907 elico2 9908 elicc2 9909 ioomax 9919 iccmax 9920 ioopos 9921 elioopnf 9938 elicopnf 9940 unirnioo 9944 elxrge0 9949 dfrp2 10234 elicore 10237 hashinfom 10726 rexico 11198 xrmaxiflemcl 11221 xrmaxadd 11237 fprodge0 11613 fprodge1 11615 pcxcl 12278 pc2dvds 12296 pcadd 12306 xblpnfps 13478 xblpnf 13479 xblss2ps 13484 blssec 13518 blpnfctr 13519 reopnap 13618 blssioo 13625 |
Copyright terms: Public domain | W3C validator |