ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  brtpos0 GIF version

Theorem brtpos0 6307
Description: The behavior of tpos when the left argument is the empty set (which is not an ordered pair but is the "default" value of an ordered pair when the arguments are proper classes). (Contributed by Mario Carneiro, 10-Sep-2015.)
Assertion
Ref Expression
brtpos0 (𝐴𝑉 → (∅tpos 𝐹𝐴 ↔ ∅𝐹𝐴))

Proof of Theorem brtpos0
StepHypRef Expression
1 brtpos2 6306 . 2 (𝐴𝑉 → (∅tpos 𝐹𝐴 ↔ (∅ ∈ (dom 𝐹 ∪ {∅}) ∧ {∅}𝐹𝐴)))
2 ssun2 3324 . . . . 5 {∅} ⊆ (dom 𝐹 ∪ {∅})
3 0ex 4157 . . . . . 6 ∅ ∈ V
43snid 3650 . . . . 5 ∅ ∈ {∅}
52, 4sselii 3177 . . . 4 ∅ ∈ (dom 𝐹 ∪ {∅})
65biantrur 303 . . 3 ( {∅}𝐹𝐴 ↔ (∅ ∈ (dom 𝐹 ∪ {∅}) ∧ {∅}𝐹𝐴))
7 cnvsn0 5135 . . . . . 6 {∅} = ∅
87unieqi 3846 . . . . 5 {∅} =
9 uni0 3863 . . . . 5 ∅ = ∅
108, 9eqtri 2214 . . . 4 {∅} = ∅
1110breq1i 4037 . . 3 ( {∅}𝐹𝐴 ↔ ∅𝐹𝐴)
126, 11bitr3i 186 . 2 ((∅ ∈ (dom 𝐹 ∪ {∅}) ∧ {∅}𝐹𝐴) ↔ ∅𝐹𝐴)
131, 12bitrdi 196 1 (𝐴𝑉 → (∅tpos 𝐹𝐴 ↔ ∅𝐹𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wcel 2164  cun 3152  c0 3447  {csn 3619   cuni 3836   class class class wbr 4030  ccnv 4659  dom cdm 4660  tpos ctpos 6299
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2987  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-fv 5263  df-tpos 6300
This theorem is referenced by:  reldmtpos  6308  tpostpos  6319
  Copyright terms: Public domain W3C validator