Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > brtpos0 | GIF version |
Description: The behavior of tpos when the left argument is the empty set (which is not an ordered pair but is the "default" value of an ordered pair when the arguments are proper classes). (Contributed by Mario Carneiro, 10-Sep-2015.) |
Ref | Expression |
---|---|
brtpos0 | ⊢ (𝐴 ∈ 𝑉 → (∅tpos 𝐹𝐴 ↔ ∅𝐹𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brtpos2 6229 | . 2 ⊢ (𝐴 ∈ 𝑉 → (∅tpos 𝐹𝐴 ↔ (∅ ∈ (◡dom 𝐹 ∪ {∅}) ∧ ∪ ◡{∅}𝐹𝐴))) | |
2 | ssun2 3291 | . . . . 5 ⊢ {∅} ⊆ (◡dom 𝐹 ∪ {∅}) | |
3 | 0ex 4115 | . . . . . 6 ⊢ ∅ ∈ V | |
4 | 3 | snid 3613 | . . . . 5 ⊢ ∅ ∈ {∅} |
5 | 2, 4 | sselii 3144 | . . . 4 ⊢ ∅ ∈ (◡dom 𝐹 ∪ {∅}) |
6 | 5 | biantrur 301 | . . 3 ⊢ (∪ ◡{∅}𝐹𝐴 ↔ (∅ ∈ (◡dom 𝐹 ∪ {∅}) ∧ ∪ ◡{∅}𝐹𝐴)) |
7 | cnvsn0 5078 | . . . . . 6 ⊢ ◡{∅} = ∅ | |
8 | 7 | unieqi 3805 | . . . . 5 ⊢ ∪ ◡{∅} = ∪ ∅ |
9 | uni0 3822 | . . . . 5 ⊢ ∪ ∅ = ∅ | |
10 | 8, 9 | eqtri 2191 | . . . 4 ⊢ ∪ ◡{∅} = ∅ |
11 | 10 | breq1i 3995 | . . 3 ⊢ (∪ ◡{∅}𝐹𝐴 ↔ ∅𝐹𝐴) |
12 | 6, 11 | bitr3i 185 | . 2 ⊢ ((∅ ∈ (◡dom 𝐹 ∪ {∅}) ∧ ∪ ◡{∅}𝐹𝐴) ↔ ∅𝐹𝐴) |
13 | 1, 12 | bitrdi 195 | 1 ⊢ (𝐴 ∈ 𝑉 → (∅tpos 𝐹𝐴 ↔ ∅𝐹𝐴)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 ∈ wcel 2141 ∪ cun 3119 ∅c0 3414 {csn 3582 ∪ cuni 3795 class class class wbr 3988 ◡ccnv 4609 dom cdm 4610 tpos ctpos 6222 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4106 ax-nul 4114 ax-pow 4159 ax-pr 4193 ax-un 4417 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-sbc 2956 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3567 df-sn 3588 df-pr 3589 df-op 3591 df-uni 3796 df-br 3989 df-opab 4050 df-mpt 4051 df-id 4277 df-xp 4616 df-rel 4617 df-cnv 4618 df-co 4619 df-dm 4620 df-rn 4621 df-res 4622 df-ima 4623 df-iota 5159 df-fun 5199 df-fn 5200 df-fv 5205 df-tpos 6223 |
This theorem is referenced by: reldmtpos 6231 tpostpos 6242 |
Copyright terms: Public domain | W3C validator |