ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  brtpos0 GIF version

Theorem brtpos0 6361
Description: The behavior of tpos when the left argument is the empty set (which is not an ordered pair but is the "default" value of an ordered pair when the arguments are proper classes). (Contributed by Mario Carneiro, 10-Sep-2015.)
Assertion
Ref Expression
brtpos0 (𝐴𝑉 → (∅tpos 𝐹𝐴 ↔ ∅𝐹𝐴))

Proof of Theorem brtpos0
StepHypRef Expression
1 brtpos2 6360 . 2 (𝐴𝑉 → (∅tpos 𝐹𝐴 ↔ (∅ ∈ (dom 𝐹 ∪ {∅}) ∧ {∅}𝐹𝐴)))
2 ssun2 3345 . . . . 5 {∅} ⊆ (dom 𝐹 ∪ {∅})
3 0ex 4187 . . . . . 6 ∅ ∈ V
43snid 3674 . . . . 5 ∅ ∈ {∅}
52, 4sselii 3198 . . . 4 ∅ ∈ (dom 𝐹 ∪ {∅})
65biantrur 303 . . 3 ( {∅}𝐹𝐴 ↔ (∅ ∈ (dom 𝐹 ∪ {∅}) ∧ {∅}𝐹𝐴))
7 cnvsn0 5170 . . . . . 6 {∅} = ∅
87unieqi 3874 . . . . 5 {∅} =
9 uni0 3891 . . . . 5 ∅ = ∅
108, 9eqtri 2228 . . . 4 {∅} = ∅
1110breq1i 4066 . . 3 ( {∅}𝐹𝐴 ↔ ∅𝐹𝐴)
126, 11bitr3i 186 . 2 ((∅ ∈ (dom 𝐹 ∪ {∅}) ∧ {∅}𝐹𝐴) ↔ ∅𝐹𝐴)
131, 12bitrdi 196 1 (𝐴𝑉 → (∅tpos 𝐹𝐴 ↔ ∅𝐹𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wcel 2178  cun 3172  c0 3468  {csn 3643   cuni 3864   class class class wbr 4059  ccnv 4692  dom cdm 4693  tpos ctpos 6353
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-ral 2491  df-rex 2492  df-rab 2495  df-v 2778  df-sbc 3006  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-fv 5298  df-tpos 6354
This theorem is referenced by:  reldmtpos  6362  tpostpos  6373
  Copyright terms: Public domain W3C validator