ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnzi GIF version

Theorem nnzi 9366
Description: A positive integer is an integer. (Contributed by Mario Carneiro, 18-Feb-2014.)
Hypothesis
Ref Expression
nnzi.1 𝑁 ∈ ℕ
Assertion
Ref Expression
nnzi 𝑁 ∈ ℤ

Proof of Theorem nnzi
StepHypRef Expression
1 nnssz 9362 . 2 ℕ ⊆ ℤ
2 nnzi.1 . 2 𝑁 ∈ ℕ
31, 2sselii 3181 1 𝑁 ∈ ℤ
Colors of variables: wff set class
Syntax hints:  wcel 2167  cn 9009  cz 9345
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7989  ax-resscn 7990  ax-1cn 7991  ax-1re 7992  ax-icn 7993  ax-addcl 7994  ax-addrcl 7995  ax-mulcl 7996  ax-addcom 7998  ax-addass 8000  ax-distr 8002  ax-i2m1 8003  ax-0lt1 8004  ax-0id 8006  ax-rnegex 8007  ax-cnre 8009  ax-pre-ltirr 8010  ax-pre-ltwlin 8011  ax-pre-lttrn 8012  ax-pre-ltadd 8014
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-br 4035  df-opab 4096  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-iota 5220  df-fun 5261  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-pnf 8082  df-mnf 8083  df-xr 8084  df-ltxr 8085  df-le 8086  df-sub 8218  df-neg 8219  df-inn 9010  df-z 9346
This theorem is referenced by:  1z  9371  2z  9373  3z  9374  4z  9375  3dvds  12048  3dvdsdec  12049  ndvdsi  12117  6gcd4e2  12189  3lcm2e6woprm  12281  6lcm4e12  12282  3lcm2e6  12355  prm23ge5  12460  pockthi  12554  modxai  12612  gcdmodi  12617  strleun  12809  strle1g  12811  2logb9irr  15315  2logb9irrap  15321  lgsval  15353  lgsfvalg  15354  lgsfcl2  15355  lgsval2lem  15359  lgsdir2lem5  15381  lgsdir2  15382  lgsne0  15387  2lgs  15453  2lgsoddprmlem2  15455  2lgsoddprm  15462  ex-dvds  15484  ex-gcd  15485
  Copyright terms: Public domain W3C validator