Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 0xr | GIF version |
Description: Zero is an extended real. (Contributed by Mario Carneiro, 15-Jun-2014.) |
Ref | Expression |
---|---|
0xr | ⊢ 0 ∈ ℝ* |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ressxr 7942 | . 2 ⊢ ℝ ⊆ ℝ* | |
2 | 0re 7899 | . 2 ⊢ 0 ∈ ℝ | |
3 | 1, 2 | sselii 3139 | 1 ⊢ 0 ∈ ℝ* |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2136 ℝcr 7752 0cc0 7753 ℝ*cxr 7932 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 ax-1re 7847 ax-addrcl 7850 ax-rnegex 7862 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-xr 7937 |
This theorem is referenced by: 0lepnf 9726 ge0gtmnf 9759 xlt0neg1 9774 xlt0neg2 9775 xle0neg1 9776 xle0neg2 9777 xaddf 9780 xaddval 9781 xaddid1 9798 xaddid2 9799 xnn0xadd0 9803 xaddge0 9814 xsubge0 9817 xposdif 9818 ioopos 9886 elxrge0 9914 0e0iccpnf 9916 dfrp2 10199 xrmaxadd 11202 xrminrpcl 11215 xrbdtri 11217 fprodge0 11578 ef01bndlem 11697 sin01bnd 11698 cos01bnd 11699 cos1bnd 11700 sin01gt0 11702 cos01gt0 11703 sin02gt0 11704 sincos1sgn 11705 sincos2sgn 11706 cos12dec 11708 halfleoddlt 11831 psmetge0 12971 isxmet2d 12988 xmetge0 13005 blgt0 13042 xblss2ps 13044 xblss2 13045 xblm 13057 bdxmet 13141 bdmet 13142 bdmopn 13144 xmetxp 13147 cnblcld 13175 blssioo 13185 reeff1oleme 13333 reeff1o 13334 sin0pilem1 13342 sin0pilem2 13343 pilem3 13344 sinhalfpilem 13352 sincosq1lem 13386 sincosq1sgn 13387 sincosq2sgn 13388 sinq12gt0 13391 cosq14gt0 13393 tangtx 13399 sincos4thpi 13401 pigt3 13405 cosordlem 13410 cosq34lt1 13411 cos02pilt1 13412 cos0pilt1 13413 iooref1o 13913 taupi 13949 |
Copyright terms: Public domain | W3C validator |