| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 0xr | GIF version | ||
| Description: Zero is an extended real. (Contributed by Mario Carneiro, 15-Jun-2014.) |
| Ref | Expression |
|---|---|
| 0xr | ⊢ 0 ∈ ℝ* |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ressxr 8198 | . 2 ⊢ ℝ ⊆ ℝ* | |
| 2 | 0re 8154 | . 2 ⊢ 0 ∈ ℝ | |
| 3 | 1, 2 | sselii 3221 | 1 ⊢ 0 ∈ ℝ* |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2200 ℝcr 8006 0cc0 8007 ℝ*cxr 8188 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 ax-1re 8101 ax-addrcl 8104 ax-rnegex 8116 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-xr 8193 |
| This theorem is referenced by: 0lepnf 9994 ge0gtmnf 10027 xlt0neg1 10042 xlt0neg2 10043 xle0neg1 10044 xle0neg2 10045 xaddf 10048 xaddval 10049 xaddid1 10066 xaddid2 10067 xnn0xadd0 10071 xaddge0 10082 xsubge0 10085 xposdif 10086 ioopos 10154 elxrge0 10182 0e0iccpnf 10184 dfrp2 10491 xrmaxadd 11780 xrminrpcl 11793 xrbdtri 11795 fprodge0 12156 ef01bndlem 12275 sin01bnd 12276 cos01bnd 12277 cos1bnd 12278 sinltxirr 12280 sin01gt0 12281 cos01gt0 12282 sin02gt0 12283 sincos1sgn 12284 sincos2sgn 12285 cos12dec 12287 halfleoddlt 12413 psmetge0 15013 isxmet2d 15030 xmetge0 15047 blgt0 15084 xblss2ps 15086 xblss2 15087 xblm 15099 bdxmet 15183 bdmet 15184 bdmopn 15186 xmetxp 15189 cnblcld 15217 blssioo 15235 reeff1oleme 15454 reeff1o 15455 sin0pilem1 15463 sin0pilem2 15464 pilem3 15465 sinhalfpilem 15473 sincosq1lem 15507 sincosq1sgn 15508 sincosq2sgn 15509 sinq12gt0 15512 cosq14gt0 15514 tangtx 15520 sincos4thpi 15522 pigt3 15526 cosordlem 15531 cosq34lt1 15532 cos02pilt1 15533 cos0pilt1 15534 iooref1o 16432 taupi 16471 |
| Copyright terms: Public domain | W3C validator |