![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 0xr | GIF version |
Description: Zero is an extended real. (Contributed by Mario Carneiro, 15-Jun-2014.) |
Ref | Expression |
---|---|
0xr | ⊢ 0 ∈ ℝ* |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ressxr 8003 | . 2 ⊢ ℝ ⊆ ℝ* | |
2 | 0re 7959 | . 2 ⊢ 0 ∈ ℝ | |
3 | 1, 2 | sselii 3154 | 1 ⊢ 0 ∈ ℝ* |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2148 ℝcr 7812 0cc0 7813 ℝ*cxr 7993 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 ax-1re 7907 ax-addrcl 7910 ax-rnegex 7922 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-v 2741 df-un 3135 df-in 3137 df-ss 3144 df-xr 7998 |
This theorem is referenced by: 0lepnf 9792 ge0gtmnf 9825 xlt0neg1 9840 xlt0neg2 9841 xle0neg1 9842 xle0neg2 9843 xaddf 9846 xaddval 9847 xaddid1 9864 xaddid2 9865 xnn0xadd0 9869 xaddge0 9880 xsubge0 9883 xposdif 9884 ioopos 9952 elxrge0 9980 0e0iccpnf 9982 dfrp2 10266 xrmaxadd 11271 xrminrpcl 11284 xrbdtri 11286 fprodge0 11647 ef01bndlem 11766 sin01bnd 11767 cos01bnd 11768 cos1bnd 11769 sin01gt0 11771 cos01gt0 11772 sin02gt0 11773 sincos1sgn 11774 sincos2sgn 11775 cos12dec 11777 halfleoddlt 11901 psmetge0 13916 isxmet2d 13933 xmetge0 13950 blgt0 13987 xblss2ps 13989 xblss2 13990 xblm 14002 bdxmet 14086 bdmet 14087 bdmopn 14089 xmetxp 14092 cnblcld 14120 blssioo 14130 reeff1oleme 14278 reeff1o 14279 sin0pilem1 14287 sin0pilem2 14288 pilem3 14289 sinhalfpilem 14297 sincosq1lem 14331 sincosq1sgn 14332 sincosq2sgn 14333 sinq12gt0 14336 cosq14gt0 14338 tangtx 14344 sincos4thpi 14346 pigt3 14350 cosordlem 14355 cosq34lt1 14356 cos02pilt1 14357 cos0pilt1 14358 iooref1o 14867 taupi 14906 |
Copyright terms: Public domain | W3C validator |