Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 0xr | GIF version |
Description: Zero is an extended real. (Contributed by Mario Carneiro, 15-Jun-2014.) |
Ref | Expression |
---|---|
0xr | ⊢ 0 ∈ ℝ* |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ressxr 7904 | . 2 ⊢ ℝ ⊆ ℝ* | |
2 | 0re 7861 | . 2 ⊢ 0 ∈ ℝ | |
3 | 1, 2 | sselii 3125 | 1 ⊢ 0 ∈ ℝ* |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2128 ℝcr 7714 0cc0 7715 ℝ*cxr 7894 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-ext 2139 ax-1re 7809 ax-addrcl 7812 ax-rnegex 7824 |
This theorem depends on definitions: df-bi 116 df-tru 1338 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ral 2440 df-rex 2441 df-v 2714 df-un 3106 df-in 3108 df-ss 3115 df-xr 7899 |
This theorem is referenced by: 0lepnf 9679 ge0gtmnf 9709 xlt0neg1 9724 xlt0neg2 9725 xle0neg1 9726 xle0neg2 9727 xaddf 9730 xaddval 9731 xaddid1 9748 xaddid2 9749 xnn0xadd0 9753 xaddge0 9764 xsubge0 9767 xposdif 9768 ioopos 9836 elxrge0 9864 0e0iccpnf 9866 dfrp2 10145 xrmaxadd 11140 xrminrpcl 11153 xrbdtri 11155 fprodge0 11516 ef01bndlem 11635 sin01bnd 11636 cos01bnd 11637 cos1bnd 11638 sin01gt0 11640 cos01gt0 11641 sin02gt0 11642 sincos1sgn 11643 sincos2sgn 11644 cos12dec 11646 halfleoddlt 11766 psmetge0 12691 isxmet2d 12708 xmetge0 12725 blgt0 12762 xblss2ps 12764 xblss2 12765 xblm 12777 bdxmet 12861 bdmet 12862 bdmopn 12864 xmetxp 12867 cnblcld 12895 blssioo 12905 reeff1oleme 13053 reeff1o 13054 sin0pilem1 13062 sin0pilem2 13063 pilem3 13064 sinhalfpilem 13072 sincosq1lem 13106 sincosq1sgn 13107 sincosq2sgn 13108 sinq12gt0 13111 cosq14gt0 13113 tangtx 13119 sincos4thpi 13121 pigt3 13125 cosordlem 13130 cosq34lt1 13131 cos02pilt1 13132 cos0pilt1 13133 iooref1o 13567 taupi 13603 |
Copyright terms: Public domain | W3C validator |