| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 0xr | GIF version | ||
| Description: Zero is an extended real. (Contributed by Mario Carneiro, 15-Jun-2014.) |
| Ref | Expression |
|---|---|
| 0xr | ⊢ 0 ∈ ℝ* |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ressxr 8089 | . 2 ⊢ ℝ ⊆ ℝ* | |
| 2 | 0re 8045 | . 2 ⊢ 0 ∈ ℝ | |
| 3 | 1, 2 | sselii 3181 | 1 ⊢ 0 ∈ ℝ* |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2167 ℝcr 7897 0cc0 7898 ℝ*cxr 8079 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-1re 7992 ax-addrcl 7995 ax-rnegex 8007 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-xr 8084 |
| This theorem is referenced by: 0lepnf 9884 ge0gtmnf 9917 xlt0neg1 9932 xlt0neg2 9933 xle0neg1 9934 xle0neg2 9935 xaddf 9938 xaddval 9939 xaddid1 9956 xaddid2 9957 xnn0xadd0 9961 xaddge0 9972 xsubge0 9975 xposdif 9976 ioopos 10044 elxrge0 10072 0e0iccpnf 10074 dfrp2 10372 xrmaxadd 11445 xrminrpcl 11458 xrbdtri 11460 fprodge0 11821 ef01bndlem 11940 sin01bnd 11941 cos01bnd 11942 cos1bnd 11943 sinltxirr 11945 sin01gt0 11946 cos01gt0 11947 sin02gt0 11948 sincos1sgn 11949 sincos2sgn 11950 cos12dec 11952 halfleoddlt 12078 psmetge0 14653 isxmet2d 14670 xmetge0 14687 blgt0 14724 xblss2ps 14726 xblss2 14727 xblm 14739 bdxmet 14823 bdmet 14824 bdmopn 14826 xmetxp 14829 cnblcld 14857 blssioo 14875 reeff1oleme 15094 reeff1o 15095 sin0pilem1 15103 sin0pilem2 15104 pilem3 15105 sinhalfpilem 15113 sincosq1lem 15147 sincosq1sgn 15148 sincosq2sgn 15149 sinq12gt0 15152 cosq14gt0 15154 tangtx 15160 sincos4thpi 15162 pigt3 15166 cosordlem 15171 cosq34lt1 15172 cos02pilt1 15173 cos0pilt1 15174 iooref1o 15769 taupi 15808 |
| Copyright terms: Public domain | W3C validator |