![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 0xr | GIF version |
Description: Zero is an extended real. (Contributed by Mario Carneiro, 15-Jun-2014.) |
Ref | Expression |
---|---|
0xr | ⊢ 0 ∈ ℝ* |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ressxr 8063 | . 2 ⊢ ℝ ⊆ ℝ* | |
2 | 0re 8019 | . 2 ⊢ 0 ∈ ℝ | |
3 | 1, 2 | sselii 3176 | 1 ⊢ 0 ∈ ℝ* |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2164 ℝcr 7871 0cc0 7872 ℝ*cxr 8053 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 ax-1re 7966 ax-addrcl 7969 ax-rnegex 7981 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-un 3157 df-in 3159 df-ss 3166 df-xr 8058 |
This theorem is referenced by: 0lepnf 9856 ge0gtmnf 9889 xlt0neg1 9904 xlt0neg2 9905 xle0neg1 9906 xle0neg2 9907 xaddf 9910 xaddval 9911 xaddid1 9928 xaddid2 9929 xnn0xadd0 9933 xaddge0 9944 xsubge0 9947 xposdif 9948 ioopos 10016 elxrge0 10044 0e0iccpnf 10046 dfrp2 10332 xrmaxadd 11404 xrminrpcl 11417 xrbdtri 11419 fprodge0 11780 ef01bndlem 11899 sin01bnd 11900 cos01bnd 11901 cos1bnd 11902 sinltxirr 11904 sin01gt0 11905 cos01gt0 11906 sin02gt0 11907 sincos1sgn 11908 sincos2sgn 11909 cos12dec 11911 halfleoddlt 12035 psmetge0 14499 isxmet2d 14516 xmetge0 14533 blgt0 14570 xblss2ps 14572 xblss2 14573 xblm 14585 bdxmet 14669 bdmet 14670 bdmopn 14672 xmetxp 14675 cnblcld 14703 blssioo 14713 reeff1oleme 14907 reeff1o 14908 sin0pilem1 14916 sin0pilem2 14917 pilem3 14918 sinhalfpilem 14926 sincosq1lem 14960 sincosq1sgn 14961 sincosq2sgn 14962 sinq12gt0 14965 cosq14gt0 14967 tangtx 14973 sincos4thpi 14975 pigt3 14979 cosordlem 14984 cosq34lt1 14985 cos02pilt1 14986 cos0pilt1 14987 iooref1o 15524 taupi 15563 |
Copyright terms: Public domain | W3C validator |