| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 0xr | GIF version | ||
| Description: Zero is an extended real. (Contributed by Mario Carneiro, 15-Jun-2014.) |
| Ref | Expression |
|---|---|
| 0xr | ⊢ 0 ∈ ℝ* |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ressxr 8158 | . 2 ⊢ ℝ ⊆ ℝ* | |
| 2 | 0re 8114 | . 2 ⊢ 0 ∈ ℝ | |
| 3 | 1, 2 | sselii 3201 | 1 ⊢ 0 ∈ ℝ* |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2180 ℝcr 7966 0cc0 7967 ℝ*cxr 8148 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-ext 2191 ax-1re 8061 ax-addrcl 8064 ax-rnegex 8076 |
| This theorem depends on definitions: df-bi 117 df-tru 1378 df-nf 1487 df-sb 1789 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ral 2493 df-rex 2494 df-v 2781 df-un 3181 df-in 3183 df-ss 3190 df-xr 8153 |
| This theorem is referenced by: 0lepnf 9954 ge0gtmnf 9987 xlt0neg1 10002 xlt0neg2 10003 xle0neg1 10004 xle0neg2 10005 xaddf 10008 xaddval 10009 xaddid1 10026 xaddid2 10027 xnn0xadd0 10031 xaddge0 10042 xsubge0 10045 xposdif 10046 ioopos 10114 elxrge0 10142 0e0iccpnf 10144 dfrp2 10450 xrmaxadd 11738 xrminrpcl 11751 xrbdtri 11753 fprodge0 12114 ef01bndlem 12233 sin01bnd 12234 cos01bnd 12235 cos1bnd 12236 sinltxirr 12238 sin01gt0 12239 cos01gt0 12240 sin02gt0 12241 sincos1sgn 12242 sincos2sgn 12243 cos12dec 12245 halfleoddlt 12371 psmetge0 14970 isxmet2d 14987 xmetge0 15004 blgt0 15041 xblss2ps 15043 xblss2 15044 xblm 15056 bdxmet 15140 bdmet 15141 bdmopn 15143 xmetxp 15146 cnblcld 15174 blssioo 15192 reeff1oleme 15411 reeff1o 15412 sin0pilem1 15420 sin0pilem2 15421 pilem3 15422 sinhalfpilem 15430 sincosq1lem 15464 sincosq1sgn 15465 sincosq2sgn 15466 sinq12gt0 15469 cosq14gt0 15471 tangtx 15477 sincos4thpi 15479 pigt3 15483 cosordlem 15488 cosq34lt1 15489 cos02pilt1 15490 cos0pilt1 15491 iooref1o 16313 taupi 16352 |
| Copyright terms: Public domain | W3C validator |