Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 0xr | GIF version |
Description: Zero is an extended real. (Contributed by Mario Carneiro, 15-Jun-2014.) |
Ref | Expression |
---|---|
0xr | ⊢ 0 ∈ ℝ* |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ressxr 7963 | . 2 ⊢ ℝ ⊆ ℝ* | |
2 | 0re 7920 | . 2 ⊢ 0 ∈ ℝ | |
3 | 1, 2 | sselii 3144 | 1 ⊢ 0 ∈ ℝ* |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2141 ℝcr 7773 0cc0 7774 ℝ*cxr 7953 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 ax-1re 7868 ax-addrcl 7871 ax-rnegex 7883 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-xr 7958 |
This theorem is referenced by: 0lepnf 9747 ge0gtmnf 9780 xlt0neg1 9795 xlt0neg2 9796 xle0neg1 9797 xle0neg2 9798 xaddf 9801 xaddval 9802 xaddid1 9819 xaddid2 9820 xnn0xadd0 9824 xaddge0 9835 xsubge0 9838 xposdif 9839 ioopos 9907 elxrge0 9935 0e0iccpnf 9937 dfrp2 10220 xrmaxadd 11224 xrminrpcl 11237 xrbdtri 11239 fprodge0 11600 ef01bndlem 11719 sin01bnd 11720 cos01bnd 11721 cos1bnd 11722 sin01gt0 11724 cos01gt0 11725 sin02gt0 11726 sincos1sgn 11727 sincos2sgn 11728 cos12dec 11730 halfleoddlt 11853 psmetge0 13125 isxmet2d 13142 xmetge0 13159 blgt0 13196 xblss2ps 13198 xblss2 13199 xblm 13211 bdxmet 13295 bdmet 13296 bdmopn 13298 xmetxp 13301 cnblcld 13329 blssioo 13339 reeff1oleme 13487 reeff1o 13488 sin0pilem1 13496 sin0pilem2 13497 pilem3 13498 sinhalfpilem 13506 sincosq1lem 13540 sincosq1sgn 13541 sincosq2sgn 13542 sinq12gt0 13545 cosq14gt0 13547 tangtx 13553 sincos4thpi 13555 pigt3 13559 cosordlem 13564 cosq34lt1 13565 cos02pilt1 13566 cos0pilt1 13567 iooref1o 14066 taupi 14102 |
Copyright terms: Public domain | W3C validator |