| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 0xr | GIF version | ||
| Description: Zero is an extended real. (Contributed by Mario Carneiro, 15-Jun-2014.) |
| Ref | Expression |
|---|---|
| 0xr | ⊢ 0 ∈ ℝ* |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ressxr 8123 | . 2 ⊢ ℝ ⊆ ℝ* | |
| 2 | 0re 8079 | . 2 ⊢ 0 ∈ ℝ | |
| 3 | 1, 2 | sselii 3191 | 1 ⊢ 0 ∈ ℝ* |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2177 ℝcr 7931 0cc0 7932 ℝ*cxr 8113 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 ax-1re 8026 ax-addrcl 8029 ax-rnegex 8041 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-un 3171 df-in 3173 df-ss 3180 df-xr 8118 |
| This theorem is referenced by: 0lepnf 9919 ge0gtmnf 9952 xlt0neg1 9967 xlt0neg2 9968 xle0neg1 9969 xle0neg2 9970 xaddf 9973 xaddval 9974 xaddid1 9991 xaddid2 9992 xnn0xadd0 9996 xaddge0 10007 xsubge0 10010 xposdif 10011 ioopos 10079 elxrge0 10107 0e0iccpnf 10109 dfrp2 10413 xrmaxadd 11616 xrminrpcl 11629 xrbdtri 11631 fprodge0 11992 ef01bndlem 12111 sin01bnd 12112 cos01bnd 12113 cos1bnd 12114 sinltxirr 12116 sin01gt0 12117 cos01gt0 12118 sin02gt0 12119 sincos1sgn 12120 sincos2sgn 12121 cos12dec 12123 halfleoddlt 12249 psmetge0 14847 isxmet2d 14864 xmetge0 14881 blgt0 14918 xblss2ps 14920 xblss2 14921 xblm 14933 bdxmet 15017 bdmet 15018 bdmopn 15020 xmetxp 15023 cnblcld 15051 blssioo 15069 reeff1oleme 15288 reeff1o 15289 sin0pilem1 15297 sin0pilem2 15298 pilem3 15299 sinhalfpilem 15307 sincosq1lem 15341 sincosq1sgn 15342 sincosq2sgn 15343 sinq12gt0 15346 cosq14gt0 15348 tangtx 15354 sincos4thpi 15356 pigt3 15360 cosordlem 15365 cosq34lt1 15366 cos02pilt1 15367 cos0pilt1 15368 iooref1o 16047 taupi 16086 |
| Copyright terms: Public domain | W3C validator |