ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfrlem5 GIF version

Theorem tfrlem5 6413
Description: Lemma for transfinite recursion. The values of two acceptable functions are the same within their domains. (Contributed by NM, 9-Apr-1995.) (Revised by Mario Carneiro, 24-May-2019.)
Hypothesis
Ref Expression
tfrlem.1 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))}
Assertion
Ref Expression
tfrlem5 ((𝑔𝐴𝐴) → ((𝑥𝑔𝑢𝑥𝑣) → 𝑢 = 𝑣))
Distinct variable groups:   𝑓,𝑔,𝑥,𝑦,,𝑢,𝑣,𝐹   𝐴,𝑔,
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑣,𝑢,𝑓)

Proof of Theorem tfrlem5
Dummy variables 𝑧 𝑎 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tfrlem.1 . . 3 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))}
2 vex 2776 . . 3 𝑔 ∈ V
31, 2tfrlem3a 6409 . 2 (𝑔𝐴 ↔ ∃𝑧 ∈ On (𝑔 Fn 𝑧 ∧ ∀𝑎𝑧 (𝑔𝑎) = (𝐹‘(𝑔𝑎))))
4 vex 2776 . . 3 ∈ V
51, 4tfrlem3a 6409 . 2 (𝐴 ↔ ∃𝑤 ∈ On ( Fn 𝑤 ∧ ∀𝑎𝑤 (𝑎) = (𝐹‘(𝑎))))
6 reeanv 2677 . . 3 (∃𝑧 ∈ On ∃𝑤 ∈ On ((𝑔 Fn 𝑧 ∧ ∀𝑎𝑧 (𝑔𝑎) = (𝐹‘(𝑔𝑎))) ∧ ( Fn 𝑤 ∧ ∀𝑎𝑤 (𝑎) = (𝐹‘(𝑎)))) ↔ (∃𝑧 ∈ On (𝑔 Fn 𝑧 ∧ ∀𝑎𝑧 (𝑔𝑎) = (𝐹‘(𝑔𝑎))) ∧ ∃𝑤 ∈ On ( Fn 𝑤 ∧ ∀𝑎𝑤 (𝑎) = (𝐹‘(𝑎)))))
7 fveq2 5589 . . . . . . . . 9 (𝑎 = 𝑥 → (𝑔𝑎) = (𝑔𝑥))
8 fveq2 5589 . . . . . . . . 9 (𝑎 = 𝑥 → (𝑎) = (𝑥))
97, 8eqeq12d 2221 . . . . . . . 8 (𝑎 = 𝑥 → ((𝑔𝑎) = (𝑎) ↔ (𝑔𝑥) = (𝑥)))
10 onin 4441 . . . . . . . . . 10 ((𝑧 ∈ On ∧ 𝑤 ∈ On) → (𝑧𝑤) ∈ On)
11103ad2ant1 1021 . . . . . . . . 9 (((𝑧 ∈ On ∧ 𝑤 ∈ On) ∧ ((𝑔 Fn 𝑧 ∧ ∀𝑎𝑧 (𝑔𝑎) = (𝐹‘(𝑔𝑎))) ∧ ( Fn 𝑤 ∧ ∀𝑎𝑤 (𝑎) = (𝐹‘(𝑎)))) ∧ (𝑥𝑔𝑢𝑥𝑣)) → (𝑧𝑤) ∈ On)
12 simp2ll 1067 . . . . . . . . . . 11 (((𝑧 ∈ On ∧ 𝑤 ∈ On) ∧ ((𝑔 Fn 𝑧 ∧ ∀𝑎𝑧 (𝑔𝑎) = (𝐹‘(𝑔𝑎))) ∧ ( Fn 𝑤 ∧ ∀𝑎𝑤 (𝑎) = (𝐹‘(𝑎)))) ∧ (𝑥𝑔𝑢𝑥𝑣)) → 𝑔 Fn 𝑧)
13 fnfun 5380 . . . . . . . . . . 11 (𝑔 Fn 𝑧 → Fun 𝑔)
1412, 13syl 14 . . . . . . . . . 10 (((𝑧 ∈ On ∧ 𝑤 ∈ On) ∧ ((𝑔 Fn 𝑧 ∧ ∀𝑎𝑧 (𝑔𝑎) = (𝐹‘(𝑔𝑎))) ∧ ( Fn 𝑤 ∧ ∀𝑎𝑤 (𝑎) = (𝐹‘(𝑎)))) ∧ (𝑥𝑔𝑢𝑥𝑣)) → Fun 𝑔)
15 inss1 3397 . . . . . . . . . . 11 (𝑧𝑤) ⊆ 𝑧
16 fndm 5382 . . . . . . . . . . . 12 (𝑔 Fn 𝑧 → dom 𝑔 = 𝑧)
1712, 16syl 14 . . . . . . . . . . 11 (((𝑧 ∈ On ∧ 𝑤 ∈ On) ∧ ((𝑔 Fn 𝑧 ∧ ∀𝑎𝑧 (𝑔𝑎) = (𝐹‘(𝑔𝑎))) ∧ ( Fn 𝑤 ∧ ∀𝑎𝑤 (𝑎) = (𝐹‘(𝑎)))) ∧ (𝑥𝑔𝑢𝑥𝑣)) → dom 𝑔 = 𝑧)
1815, 17sseqtrrid 3248 . . . . . . . . . 10 (((𝑧 ∈ On ∧ 𝑤 ∈ On) ∧ ((𝑔 Fn 𝑧 ∧ ∀𝑎𝑧 (𝑔𝑎) = (𝐹‘(𝑔𝑎))) ∧ ( Fn 𝑤 ∧ ∀𝑎𝑤 (𝑎) = (𝐹‘(𝑎)))) ∧ (𝑥𝑔𝑢𝑥𝑣)) → (𝑧𝑤) ⊆ dom 𝑔)
1914, 18jca 306 . . . . . . . . 9 (((𝑧 ∈ On ∧ 𝑤 ∈ On) ∧ ((𝑔 Fn 𝑧 ∧ ∀𝑎𝑧 (𝑔𝑎) = (𝐹‘(𝑔𝑎))) ∧ ( Fn 𝑤 ∧ ∀𝑎𝑤 (𝑎) = (𝐹‘(𝑎)))) ∧ (𝑥𝑔𝑢𝑥𝑣)) → (Fun 𝑔 ∧ (𝑧𝑤) ⊆ dom 𝑔))
20 simp2rl 1069 . . . . . . . . . . 11 (((𝑧 ∈ On ∧ 𝑤 ∈ On) ∧ ((𝑔 Fn 𝑧 ∧ ∀𝑎𝑧 (𝑔𝑎) = (𝐹‘(𝑔𝑎))) ∧ ( Fn 𝑤 ∧ ∀𝑎𝑤 (𝑎) = (𝐹‘(𝑎)))) ∧ (𝑥𝑔𝑢𝑥𝑣)) → Fn 𝑤)
21 fnfun 5380 . . . . . . . . . . 11 ( Fn 𝑤 → Fun )
2220, 21syl 14 . . . . . . . . . 10 (((𝑧 ∈ On ∧ 𝑤 ∈ On) ∧ ((𝑔 Fn 𝑧 ∧ ∀𝑎𝑧 (𝑔𝑎) = (𝐹‘(𝑔𝑎))) ∧ ( Fn 𝑤 ∧ ∀𝑎𝑤 (𝑎) = (𝐹‘(𝑎)))) ∧ (𝑥𝑔𝑢𝑥𝑣)) → Fun )
23 inss2 3398 . . . . . . . . . . 11 (𝑧𝑤) ⊆ 𝑤
24 fndm 5382 . . . . . . . . . . . 12 ( Fn 𝑤 → dom = 𝑤)
2520, 24syl 14 . . . . . . . . . . 11 (((𝑧 ∈ On ∧ 𝑤 ∈ On) ∧ ((𝑔 Fn 𝑧 ∧ ∀𝑎𝑧 (𝑔𝑎) = (𝐹‘(𝑔𝑎))) ∧ ( Fn 𝑤 ∧ ∀𝑎𝑤 (𝑎) = (𝐹‘(𝑎)))) ∧ (𝑥𝑔𝑢𝑥𝑣)) → dom = 𝑤)
2623, 25sseqtrrid 3248 . . . . . . . . . 10 (((𝑧 ∈ On ∧ 𝑤 ∈ On) ∧ ((𝑔 Fn 𝑧 ∧ ∀𝑎𝑧 (𝑔𝑎) = (𝐹‘(𝑔𝑎))) ∧ ( Fn 𝑤 ∧ ∀𝑎𝑤 (𝑎) = (𝐹‘(𝑎)))) ∧ (𝑥𝑔𝑢𝑥𝑣)) → (𝑧𝑤) ⊆ dom )
2722, 26jca 306 . . . . . . . . 9 (((𝑧 ∈ On ∧ 𝑤 ∈ On) ∧ ((𝑔 Fn 𝑧 ∧ ∀𝑎𝑧 (𝑔𝑎) = (𝐹‘(𝑔𝑎))) ∧ ( Fn 𝑤 ∧ ∀𝑎𝑤 (𝑎) = (𝐹‘(𝑎)))) ∧ (𝑥𝑔𝑢𝑥𝑣)) → (Fun ∧ (𝑧𝑤) ⊆ dom ))
28 simp2lr 1068 . . . . . . . . . 10 (((𝑧 ∈ On ∧ 𝑤 ∈ On) ∧ ((𝑔 Fn 𝑧 ∧ ∀𝑎𝑧 (𝑔𝑎) = (𝐹‘(𝑔𝑎))) ∧ ( Fn 𝑤 ∧ ∀𝑎𝑤 (𝑎) = (𝐹‘(𝑎)))) ∧ (𝑥𝑔𝑢𝑥𝑣)) → ∀𝑎𝑧 (𝑔𝑎) = (𝐹‘(𝑔𝑎)))
29 ssralv 3261 . . . . . . . . . 10 ((𝑧𝑤) ⊆ 𝑧 → (∀𝑎𝑧 (𝑔𝑎) = (𝐹‘(𝑔𝑎)) → ∀𝑎 ∈ (𝑧𝑤)(𝑔𝑎) = (𝐹‘(𝑔𝑎))))
3015, 28, 29mpsyl 65 . . . . . . . . 9 (((𝑧 ∈ On ∧ 𝑤 ∈ On) ∧ ((𝑔 Fn 𝑧 ∧ ∀𝑎𝑧 (𝑔𝑎) = (𝐹‘(𝑔𝑎))) ∧ ( Fn 𝑤 ∧ ∀𝑎𝑤 (𝑎) = (𝐹‘(𝑎)))) ∧ (𝑥𝑔𝑢𝑥𝑣)) → ∀𝑎 ∈ (𝑧𝑤)(𝑔𝑎) = (𝐹‘(𝑔𝑎)))
31 simp2rr 1070 . . . . . . . . . 10 (((𝑧 ∈ On ∧ 𝑤 ∈ On) ∧ ((𝑔 Fn 𝑧 ∧ ∀𝑎𝑧 (𝑔𝑎) = (𝐹‘(𝑔𝑎))) ∧ ( Fn 𝑤 ∧ ∀𝑎𝑤 (𝑎) = (𝐹‘(𝑎)))) ∧ (𝑥𝑔𝑢𝑥𝑣)) → ∀𝑎𝑤 (𝑎) = (𝐹‘(𝑎)))
32 ssralv 3261 . . . . . . . . . 10 ((𝑧𝑤) ⊆ 𝑤 → (∀𝑎𝑤 (𝑎) = (𝐹‘(𝑎)) → ∀𝑎 ∈ (𝑧𝑤)(𝑎) = (𝐹‘(𝑎))))
3323, 31, 32mpsyl 65 . . . . . . . . 9 (((𝑧 ∈ On ∧ 𝑤 ∈ On) ∧ ((𝑔 Fn 𝑧 ∧ ∀𝑎𝑧 (𝑔𝑎) = (𝐹‘(𝑔𝑎))) ∧ ( Fn 𝑤 ∧ ∀𝑎𝑤 (𝑎) = (𝐹‘(𝑎)))) ∧ (𝑥𝑔𝑢𝑥𝑣)) → ∀𝑎 ∈ (𝑧𝑤)(𝑎) = (𝐹‘(𝑎)))
3411, 19, 27, 30, 33tfrlem1 6407 . . . . . . . 8 (((𝑧 ∈ On ∧ 𝑤 ∈ On) ∧ ((𝑔 Fn 𝑧 ∧ ∀𝑎𝑧 (𝑔𝑎) = (𝐹‘(𝑔𝑎))) ∧ ( Fn 𝑤 ∧ ∀𝑎𝑤 (𝑎) = (𝐹‘(𝑎)))) ∧ (𝑥𝑔𝑢𝑥𝑣)) → ∀𝑎 ∈ (𝑧𝑤)(𝑔𝑎) = (𝑎))
35 simp3l 1028 . . . . . . . . . 10 (((𝑧 ∈ On ∧ 𝑤 ∈ On) ∧ ((𝑔 Fn 𝑧 ∧ ∀𝑎𝑧 (𝑔𝑎) = (𝐹‘(𝑔𝑎))) ∧ ( Fn 𝑤 ∧ ∀𝑎𝑤 (𝑎) = (𝐹‘(𝑎)))) ∧ (𝑥𝑔𝑢𝑥𝑣)) → 𝑥𝑔𝑢)
36 fnbr 5387 . . . . . . . . . 10 ((𝑔 Fn 𝑧𝑥𝑔𝑢) → 𝑥𝑧)
3712, 35, 36syl2anc 411 . . . . . . . . 9 (((𝑧 ∈ On ∧ 𝑤 ∈ On) ∧ ((𝑔 Fn 𝑧 ∧ ∀𝑎𝑧 (𝑔𝑎) = (𝐹‘(𝑔𝑎))) ∧ ( Fn 𝑤 ∧ ∀𝑎𝑤 (𝑎) = (𝐹‘(𝑎)))) ∧ (𝑥𝑔𝑢𝑥𝑣)) → 𝑥𝑧)
38 simp3r 1029 . . . . . . . . . 10 (((𝑧 ∈ On ∧ 𝑤 ∈ On) ∧ ((𝑔 Fn 𝑧 ∧ ∀𝑎𝑧 (𝑔𝑎) = (𝐹‘(𝑔𝑎))) ∧ ( Fn 𝑤 ∧ ∀𝑎𝑤 (𝑎) = (𝐹‘(𝑎)))) ∧ (𝑥𝑔𝑢𝑥𝑣)) → 𝑥𝑣)
39 fnbr 5387 . . . . . . . . . 10 (( Fn 𝑤𝑥𝑣) → 𝑥𝑤)
4020, 38, 39syl2anc 411 . . . . . . . . 9 (((𝑧 ∈ On ∧ 𝑤 ∈ On) ∧ ((𝑔 Fn 𝑧 ∧ ∀𝑎𝑧 (𝑔𝑎) = (𝐹‘(𝑔𝑎))) ∧ ( Fn 𝑤 ∧ ∀𝑎𝑤 (𝑎) = (𝐹‘(𝑎)))) ∧ (𝑥𝑔𝑢𝑥𝑣)) → 𝑥𝑤)
41 elin 3360 . . . . . . . . 9 (𝑥 ∈ (𝑧𝑤) ↔ (𝑥𝑧𝑥𝑤))
4237, 40, 41sylanbrc 417 . . . . . . . 8 (((𝑧 ∈ On ∧ 𝑤 ∈ On) ∧ ((𝑔 Fn 𝑧 ∧ ∀𝑎𝑧 (𝑔𝑎) = (𝐹‘(𝑔𝑎))) ∧ ( Fn 𝑤 ∧ ∀𝑎𝑤 (𝑎) = (𝐹‘(𝑎)))) ∧ (𝑥𝑔𝑢𝑥𝑣)) → 𝑥 ∈ (𝑧𝑤))
439, 34, 42rspcdva 2886 . . . . . . 7 (((𝑧 ∈ On ∧ 𝑤 ∈ On) ∧ ((𝑔 Fn 𝑧 ∧ ∀𝑎𝑧 (𝑔𝑎) = (𝐹‘(𝑔𝑎))) ∧ ( Fn 𝑤 ∧ ∀𝑎𝑤 (𝑎) = (𝐹‘(𝑎)))) ∧ (𝑥𝑔𝑢𝑥𝑣)) → (𝑔𝑥) = (𝑥))
44 funbrfv 5630 . . . . . . . 8 (Fun 𝑔 → (𝑥𝑔𝑢 → (𝑔𝑥) = 𝑢))
4514, 35, 44sylc 62 . . . . . . 7 (((𝑧 ∈ On ∧ 𝑤 ∈ On) ∧ ((𝑔 Fn 𝑧 ∧ ∀𝑎𝑧 (𝑔𝑎) = (𝐹‘(𝑔𝑎))) ∧ ( Fn 𝑤 ∧ ∀𝑎𝑤 (𝑎) = (𝐹‘(𝑎)))) ∧ (𝑥𝑔𝑢𝑥𝑣)) → (𝑔𝑥) = 𝑢)
46 funbrfv 5630 . . . . . . . 8 (Fun → (𝑥𝑣 → (𝑥) = 𝑣))
4722, 38, 46sylc 62 . . . . . . 7 (((𝑧 ∈ On ∧ 𝑤 ∈ On) ∧ ((𝑔 Fn 𝑧 ∧ ∀𝑎𝑧 (𝑔𝑎) = (𝐹‘(𝑔𝑎))) ∧ ( Fn 𝑤 ∧ ∀𝑎𝑤 (𝑎) = (𝐹‘(𝑎)))) ∧ (𝑥𝑔𝑢𝑥𝑣)) → (𝑥) = 𝑣)
4843, 45, 473eqtr3d 2247 . . . . . 6 (((𝑧 ∈ On ∧ 𝑤 ∈ On) ∧ ((𝑔 Fn 𝑧 ∧ ∀𝑎𝑧 (𝑔𝑎) = (𝐹‘(𝑔𝑎))) ∧ ( Fn 𝑤 ∧ ∀𝑎𝑤 (𝑎) = (𝐹‘(𝑎)))) ∧ (𝑥𝑔𝑢𝑥𝑣)) → 𝑢 = 𝑣)
49483exp 1205 . . . . 5 ((𝑧 ∈ On ∧ 𝑤 ∈ On) → (((𝑔 Fn 𝑧 ∧ ∀𝑎𝑧 (𝑔𝑎) = (𝐹‘(𝑔𝑎))) ∧ ( Fn 𝑤 ∧ ∀𝑎𝑤 (𝑎) = (𝐹‘(𝑎)))) → ((𝑥𝑔𝑢𝑥𝑣) → 𝑢 = 𝑣)))
5049rexlimdva 2624 . . . 4 (𝑧 ∈ On → (∃𝑤 ∈ On ((𝑔 Fn 𝑧 ∧ ∀𝑎𝑧 (𝑔𝑎) = (𝐹‘(𝑔𝑎))) ∧ ( Fn 𝑤 ∧ ∀𝑎𝑤 (𝑎) = (𝐹‘(𝑎)))) → ((𝑥𝑔𝑢𝑥𝑣) → 𝑢 = 𝑣)))
5150rexlimiv 2618 . . 3 (∃𝑧 ∈ On ∃𝑤 ∈ On ((𝑔 Fn 𝑧 ∧ ∀𝑎𝑧 (𝑔𝑎) = (𝐹‘(𝑔𝑎))) ∧ ( Fn 𝑤 ∧ ∀𝑎𝑤 (𝑎) = (𝐹‘(𝑎)))) → ((𝑥𝑔𝑢𝑥𝑣) → 𝑢 = 𝑣))
526, 51sylbir 135 . 2 ((∃𝑧 ∈ On (𝑔 Fn 𝑧 ∧ ∀𝑎𝑧 (𝑔𝑎) = (𝐹‘(𝑔𝑎))) ∧ ∃𝑤 ∈ On ( Fn 𝑤 ∧ ∀𝑎𝑤 (𝑎) = (𝐹‘(𝑎)))) → ((𝑥𝑔𝑢𝑥𝑣) → 𝑢 = 𝑣))
533, 5, 52syl2anb 291 1 ((𝑔𝐴𝐴) → ((𝑥𝑔𝑢𝑥𝑣) → 𝑢 = 𝑣))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 981   = wceq 1373  wcel 2177  {cab 2192  wral 2485  wrex 2486  cin 3169  wss 3170   class class class wbr 4051  Oncon0 4418  dom cdm 4683  cres 4685  Fun wfun 5274   Fn wfn 5275  cfv 5280
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-sep 4170  ax-pow 4226  ax-pr 4261  ax-setind 4593
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-br 4052  df-opab 4114  df-mpt 4115  df-tr 4151  df-id 4348  df-iord 4421  df-on 4423  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-res 4695  df-iota 5241  df-fun 5282  df-fn 5283  df-fv 5288
This theorem is referenced by:  tfrlem7  6416  tfrexlem  6433
  Copyright terms: Public domain W3C validator