ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfrlem5 GIF version

Theorem tfrlem5 6165
Description: Lemma for transfinite recursion. The values of two acceptable functions are the same within their domains. (Contributed by NM, 9-Apr-1995.) (Revised by Mario Carneiro, 24-May-2019.)
Hypothesis
Ref Expression
tfrlem.1 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))}
Assertion
Ref Expression
tfrlem5 ((𝑔𝐴𝐴) → ((𝑥𝑔𝑢𝑥𝑣) → 𝑢 = 𝑣))
Distinct variable groups:   𝑓,𝑔,𝑥,𝑦,,𝑢,𝑣,𝐹   𝐴,𝑔,
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑣,𝑢,𝑓)

Proof of Theorem tfrlem5
Dummy variables 𝑧 𝑎 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tfrlem.1 . . 3 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))}
2 vex 2660 . . 3 𝑔 ∈ V
31, 2tfrlem3a 6161 . 2 (𝑔𝐴 ↔ ∃𝑧 ∈ On (𝑔 Fn 𝑧 ∧ ∀𝑎𝑧 (𝑔𝑎) = (𝐹‘(𝑔𝑎))))
4 vex 2660 . . 3 ∈ V
51, 4tfrlem3a 6161 . 2 (𝐴 ↔ ∃𝑤 ∈ On ( Fn 𝑤 ∧ ∀𝑎𝑤 (𝑎) = (𝐹‘(𝑎))))
6 reeanv 2574 . . 3 (∃𝑧 ∈ On ∃𝑤 ∈ On ((𝑔 Fn 𝑧 ∧ ∀𝑎𝑧 (𝑔𝑎) = (𝐹‘(𝑔𝑎))) ∧ ( Fn 𝑤 ∧ ∀𝑎𝑤 (𝑎) = (𝐹‘(𝑎)))) ↔ (∃𝑧 ∈ On (𝑔 Fn 𝑧 ∧ ∀𝑎𝑧 (𝑔𝑎) = (𝐹‘(𝑔𝑎))) ∧ ∃𝑤 ∈ On ( Fn 𝑤 ∧ ∀𝑎𝑤 (𝑎) = (𝐹‘(𝑎)))))
7 fveq2 5375 . . . . . . . . 9 (𝑎 = 𝑥 → (𝑔𝑎) = (𝑔𝑥))
8 fveq2 5375 . . . . . . . . 9 (𝑎 = 𝑥 → (𝑎) = (𝑥))
97, 8eqeq12d 2129 . . . . . . . 8 (𝑎 = 𝑥 → ((𝑔𝑎) = (𝑎) ↔ (𝑔𝑥) = (𝑥)))
10 onin 4268 . . . . . . . . . 10 ((𝑧 ∈ On ∧ 𝑤 ∈ On) → (𝑧𝑤) ∈ On)
11103ad2ant1 985 . . . . . . . . 9 (((𝑧 ∈ On ∧ 𝑤 ∈ On) ∧ ((𝑔 Fn 𝑧 ∧ ∀𝑎𝑧 (𝑔𝑎) = (𝐹‘(𝑔𝑎))) ∧ ( Fn 𝑤 ∧ ∀𝑎𝑤 (𝑎) = (𝐹‘(𝑎)))) ∧ (𝑥𝑔𝑢𝑥𝑣)) → (𝑧𝑤) ∈ On)
12 simp2ll 1031 . . . . . . . . . . 11 (((𝑧 ∈ On ∧ 𝑤 ∈ On) ∧ ((𝑔 Fn 𝑧 ∧ ∀𝑎𝑧 (𝑔𝑎) = (𝐹‘(𝑔𝑎))) ∧ ( Fn 𝑤 ∧ ∀𝑎𝑤 (𝑎) = (𝐹‘(𝑎)))) ∧ (𝑥𝑔𝑢𝑥𝑣)) → 𝑔 Fn 𝑧)
13 fnfun 5178 . . . . . . . . . . 11 (𝑔 Fn 𝑧 → Fun 𝑔)
1412, 13syl 14 . . . . . . . . . 10 (((𝑧 ∈ On ∧ 𝑤 ∈ On) ∧ ((𝑔 Fn 𝑧 ∧ ∀𝑎𝑧 (𝑔𝑎) = (𝐹‘(𝑔𝑎))) ∧ ( Fn 𝑤 ∧ ∀𝑎𝑤 (𝑎) = (𝐹‘(𝑎)))) ∧ (𝑥𝑔𝑢𝑥𝑣)) → Fun 𝑔)
15 inss1 3262 . . . . . . . . . . 11 (𝑧𝑤) ⊆ 𝑧
16 fndm 5180 . . . . . . . . . . . 12 (𝑔 Fn 𝑧 → dom 𝑔 = 𝑧)
1712, 16syl 14 . . . . . . . . . . 11 (((𝑧 ∈ On ∧ 𝑤 ∈ On) ∧ ((𝑔 Fn 𝑧 ∧ ∀𝑎𝑧 (𝑔𝑎) = (𝐹‘(𝑔𝑎))) ∧ ( Fn 𝑤 ∧ ∀𝑎𝑤 (𝑎) = (𝐹‘(𝑎)))) ∧ (𝑥𝑔𝑢𝑥𝑣)) → dom 𝑔 = 𝑧)
1815, 17sseqtrrid 3114 . . . . . . . . . 10 (((𝑧 ∈ On ∧ 𝑤 ∈ On) ∧ ((𝑔 Fn 𝑧 ∧ ∀𝑎𝑧 (𝑔𝑎) = (𝐹‘(𝑔𝑎))) ∧ ( Fn 𝑤 ∧ ∀𝑎𝑤 (𝑎) = (𝐹‘(𝑎)))) ∧ (𝑥𝑔𝑢𝑥𝑣)) → (𝑧𝑤) ⊆ dom 𝑔)
1914, 18jca 302 . . . . . . . . 9 (((𝑧 ∈ On ∧ 𝑤 ∈ On) ∧ ((𝑔 Fn 𝑧 ∧ ∀𝑎𝑧 (𝑔𝑎) = (𝐹‘(𝑔𝑎))) ∧ ( Fn 𝑤 ∧ ∀𝑎𝑤 (𝑎) = (𝐹‘(𝑎)))) ∧ (𝑥𝑔𝑢𝑥𝑣)) → (Fun 𝑔 ∧ (𝑧𝑤) ⊆ dom 𝑔))
20 simp2rl 1033 . . . . . . . . . . 11 (((𝑧 ∈ On ∧ 𝑤 ∈ On) ∧ ((𝑔 Fn 𝑧 ∧ ∀𝑎𝑧 (𝑔𝑎) = (𝐹‘(𝑔𝑎))) ∧ ( Fn 𝑤 ∧ ∀𝑎𝑤 (𝑎) = (𝐹‘(𝑎)))) ∧ (𝑥𝑔𝑢𝑥𝑣)) → Fn 𝑤)
21 fnfun 5178 . . . . . . . . . . 11 ( Fn 𝑤 → Fun )
2220, 21syl 14 . . . . . . . . . 10 (((𝑧 ∈ On ∧ 𝑤 ∈ On) ∧ ((𝑔 Fn 𝑧 ∧ ∀𝑎𝑧 (𝑔𝑎) = (𝐹‘(𝑔𝑎))) ∧ ( Fn 𝑤 ∧ ∀𝑎𝑤 (𝑎) = (𝐹‘(𝑎)))) ∧ (𝑥𝑔𝑢𝑥𝑣)) → Fun )
23 inss2 3263 . . . . . . . . . . 11 (𝑧𝑤) ⊆ 𝑤
24 fndm 5180 . . . . . . . . . . . 12 ( Fn 𝑤 → dom = 𝑤)
2520, 24syl 14 . . . . . . . . . . 11 (((𝑧 ∈ On ∧ 𝑤 ∈ On) ∧ ((𝑔 Fn 𝑧 ∧ ∀𝑎𝑧 (𝑔𝑎) = (𝐹‘(𝑔𝑎))) ∧ ( Fn 𝑤 ∧ ∀𝑎𝑤 (𝑎) = (𝐹‘(𝑎)))) ∧ (𝑥𝑔𝑢𝑥𝑣)) → dom = 𝑤)
2623, 25sseqtrrid 3114 . . . . . . . . . 10 (((𝑧 ∈ On ∧ 𝑤 ∈ On) ∧ ((𝑔 Fn 𝑧 ∧ ∀𝑎𝑧 (𝑔𝑎) = (𝐹‘(𝑔𝑎))) ∧ ( Fn 𝑤 ∧ ∀𝑎𝑤 (𝑎) = (𝐹‘(𝑎)))) ∧ (𝑥𝑔𝑢𝑥𝑣)) → (𝑧𝑤) ⊆ dom )
2722, 26jca 302 . . . . . . . . 9 (((𝑧 ∈ On ∧ 𝑤 ∈ On) ∧ ((𝑔 Fn 𝑧 ∧ ∀𝑎𝑧 (𝑔𝑎) = (𝐹‘(𝑔𝑎))) ∧ ( Fn 𝑤 ∧ ∀𝑎𝑤 (𝑎) = (𝐹‘(𝑎)))) ∧ (𝑥𝑔𝑢𝑥𝑣)) → (Fun ∧ (𝑧𝑤) ⊆ dom ))
28 simp2lr 1032 . . . . . . . . . 10 (((𝑧 ∈ On ∧ 𝑤 ∈ On) ∧ ((𝑔 Fn 𝑧 ∧ ∀𝑎𝑧 (𝑔𝑎) = (𝐹‘(𝑔𝑎))) ∧ ( Fn 𝑤 ∧ ∀𝑎𝑤 (𝑎) = (𝐹‘(𝑎)))) ∧ (𝑥𝑔𝑢𝑥𝑣)) → ∀𝑎𝑧 (𝑔𝑎) = (𝐹‘(𝑔𝑎)))
29 ssralv 3127 . . . . . . . . . 10 ((𝑧𝑤) ⊆ 𝑧 → (∀𝑎𝑧 (𝑔𝑎) = (𝐹‘(𝑔𝑎)) → ∀𝑎 ∈ (𝑧𝑤)(𝑔𝑎) = (𝐹‘(𝑔𝑎))))
3015, 28, 29mpsyl 65 . . . . . . . . 9 (((𝑧 ∈ On ∧ 𝑤 ∈ On) ∧ ((𝑔 Fn 𝑧 ∧ ∀𝑎𝑧 (𝑔𝑎) = (𝐹‘(𝑔𝑎))) ∧ ( Fn 𝑤 ∧ ∀𝑎𝑤 (𝑎) = (𝐹‘(𝑎)))) ∧ (𝑥𝑔𝑢𝑥𝑣)) → ∀𝑎 ∈ (𝑧𝑤)(𝑔𝑎) = (𝐹‘(𝑔𝑎)))
31 simp2rr 1034 . . . . . . . . . 10 (((𝑧 ∈ On ∧ 𝑤 ∈ On) ∧ ((𝑔 Fn 𝑧 ∧ ∀𝑎𝑧 (𝑔𝑎) = (𝐹‘(𝑔𝑎))) ∧ ( Fn 𝑤 ∧ ∀𝑎𝑤 (𝑎) = (𝐹‘(𝑎)))) ∧ (𝑥𝑔𝑢𝑥𝑣)) → ∀𝑎𝑤 (𝑎) = (𝐹‘(𝑎)))
32 ssralv 3127 . . . . . . . . . 10 ((𝑧𝑤) ⊆ 𝑤 → (∀𝑎𝑤 (𝑎) = (𝐹‘(𝑎)) → ∀𝑎 ∈ (𝑧𝑤)(𝑎) = (𝐹‘(𝑎))))
3323, 31, 32mpsyl 65 . . . . . . . . 9 (((𝑧 ∈ On ∧ 𝑤 ∈ On) ∧ ((𝑔 Fn 𝑧 ∧ ∀𝑎𝑧 (𝑔𝑎) = (𝐹‘(𝑔𝑎))) ∧ ( Fn 𝑤 ∧ ∀𝑎𝑤 (𝑎) = (𝐹‘(𝑎)))) ∧ (𝑥𝑔𝑢𝑥𝑣)) → ∀𝑎 ∈ (𝑧𝑤)(𝑎) = (𝐹‘(𝑎)))
3411, 19, 27, 30, 33tfrlem1 6159 . . . . . . . 8 (((𝑧 ∈ On ∧ 𝑤 ∈ On) ∧ ((𝑔 Fn 𝑧 ∧ ∀𝑎𝑧 (𝑔𝑎) = (𝐹‘(𝑔𝑎))) ∧ ( Fn 𝑤 ∧ ∀𝑎𝑤 (𝑎) = (𝐹‘(𝑎)))) ∧ (𝑥𝑔𝑢𝑥𝑣)) → ∀𝑎 ∈ (𝑧𝑤)(𝑔𝑎) = (𝑎))
35 simp3l 992 . . . . . . . . . 10 (((𝑧 ∈ On ∧ 𝑤 ∈ On) ∧ ((𝑔 Fn 𝑧 ∧ ∀𝑎𝑧 (𝑔𝑎) = (𝐹‘(𝑔𝑎))) ∧ ( Fn 𝑤 ∧ ∀𝑎𝑤 (𝑎) = (𝐹‘(𝑎)))) ∧ (𝑥𝑔𝑢𝑥𝑣)) → 𝑥𝑔𝑢)
36 fnbr 5183 . . . . . . . . . 10 ((𝑔 Fn 𝑧𝑥𝑔𝑢) → 𝑥𝑧)
3712, 35, 36syl2anc 406 . . . . . . . . 9 (((𝑧 ∈ On ∧ 𝑤 ∈ On) ∧ ((𝑔 Fn 𝑧 ∧ ∀𝑎𝑧 (𝑔𝑎) = (𝐹‘(𝑔𝑎))) ∧ ( Fn 𝑤 ∧ ∀𝑎𝑤 (𝑎) = (𝐹‘(𝑎)))) ∧ (𝑥𝑔𝑢𝑥𝑣)) → 𝑥𝑧)
38 simp3r 993 . . . . . . . . . 10 (((𝑧 ∈ On ∧ 𝑤 ∈ On) ∧ ((𝑔 Fn 𝑧 ∧ ∀𝑎𝑧 (𝑔𝑎) = (𝐹‘(𝑔𝑎))) ∧ ( Fn 𝑤 ∧ ∀𝑎𝑤 (𝑎) = (𝐹‘(𝑎)))) ∧ (𝑥𝑔𝑢𝑥𝑣)) → 𝑥𝑣)
39 fnbr 5183 . . . . . . . . . 10 (( Fn 𝑤𝑥𝑣) → 𝑥𝑤)
4020, 38, 39syl2anc 406 . . . . . . . . 9 (((𝑧 ∈ On ∧ 𝑤 ∈ On) ∧ ((𝑔 Fn 𝑧 ∧ ∀𝑎𝑧 (𝑔𝑎) = (𝐹‘(𝑔𝑎))) ∧ ( Fn 𝑤 ∧ ∀𝑎𝑤 (𝑎) = (𝐹‘(𝑎)))) ∧ (𝑥𝑔𝑢𝑥𝑣)) → 𝑥𝑤)
41 elin 3225 . . . . . . . . 9 (𝑥 ∈ (𝑧𝑤) ↔ (𝑥𝑧𝑥𝑤))
4237, 40, 41sylanbrc 411 . . . . . . . 8 (((𝑧 ∈ On ∧ 𝑤 ∈ On) ∧ ((𝑔 Fn 𝑧 ∧ ∀𝑎𝑧 (𝑔𝑎) = (𝐹‘(𝑔𝑎))) ∧ ( Fn 𝑤 ∧ ∀𝑎𝑤 (𝑎) = (𝐹‘(𝑎)))) ∧ (𝑥𝑔𝑢𝑥𝑣)) → 𝑥 ∈ (𝑧𝑤))
439, 34, 42rspcdva 2765 . . . . . . 7 (((𝑧 ∈ On ∧ 𝑤 ∈ On) ∧ ((𝑔 Fn 𝑧 ∧ ∀𝑎𝑧 (𝑔𝑎) = (𝐹‘(𝑔𝑎))) ∧ ( Fn 𝑤 ∧ ∀𝑎𝑤 (𝑎) = (𝐹‘(𝑎)))) ∧ (𝑥𝑔𝑢𝑥𝑣)) → (𝑔𝑥) = (𝑥))
44 funbrfv 5414 . . . . . . . 8 (Fun 𝑔 → (𝑥𝑔𝑢 → (𝑔𝑥) = 𝑢))
4514, 35, 44sylc 62 . . . . . . 7 (((𝑧 ∈ On ∧ 𝑤 ∈ On) ∧ ((𝑔 Fn 𝑧 ∧ ∀𝑎𝑧 (𝑔𝑎) = (𝐹‘(𝑔𝑎))) ∧ ( Fn 𝑤 ∧ ∀𝑎𝑤 (𝑎) = (𝐹‘(𝑎)))) ∧ (𝑥𝑔𝑢𝑥𝑣)) → (𝑔𝑥) = 𝑢)
46 funbrfv 5414 . . . . . . . 8 (Fun → (𝑥𝑣 → (𝑥) = 𝑣))
4722, 38, 46sylc 62 . . . . . . 7 (((𝑧 ∈ On ∧ 𝑤 ∈ On) ∧ ((𝑔 Fn 𝑧 ∧ ∀𝑎𝑧 (𝑔𝑎) = (𝐹‘(𝑔𝑎))) ∧ ( Fn 𝑤 ∧ ∀𝑎𝑤 (𝑎) = (𝐹‘(𝑎)))) ∧ (𝑥𝑔𝑢𝑥𝑣)) → (𝑥) = 𝑣)
4843, 45, 473eqtr3d 2155 . . . . . 6 (((𝑧 ∈ On ∧ 𝑤 ∈ On) ∧ ((𝑔 Fn 𝑧 ∧ ∀𝑎𝑧 (𝑔𝑎) = (𝐹‘(𝑔𝑎))) ∧ ( Fn 𝑤 ∧ ∀𝑎𝑤 (𝑎) = (𝐹‘(𝑎)))) ∧ (𝑥𝑔𝑢𝑥𝑣)) → 𝑢 = 𝑣)
49483exp 1163 . . . . 5 ((𝑧 ∈ On ∧ 𝑤 ∈ On) → (((𝑔 Fn 𝑧 ∧ ∀𝑎𝑧 (𝑔𝑎) = (𝐹‘(𝑔𝑎))) ∧ ( Fn 𝑤 ∧ ∀𝑎𝑤 (𝑎) = (𝐹‘(𝑎)))) → ((𝑥𝑔𝑢𝑥𝑣) → 𝑢 = 𝑣)))
5049rexlimdva 2523 . . . 4 (𝑧 ∈ On → (∃𝑤 ∈ On ((𝑔 Fn 𝑧 ∧ ∀𝑎𝑧 (𝑔𝑎) = (𝐹‘(𝑔𝑎))) ∧ ( Fn 𝑤 ∧ ∀𝑎𝑤 (𝑎) = (𝐹‘(𝑎)))) → ((𝑥𝑔𝑢𝑥𝑣) → 𝑢 = 𝑣)))
5150rexlimiv 2517 . . 3 (∃𝑧 ∈ On ∃𝑤 ∈ On ((𝑔 Fn 𝑧 ∧ ∀𝑎𝑧 (𝑔𝑎) = (𝐹‘(𝑔𝑎))) ∧ ( Fn 𝑤 ∧ ∀𝑎𝑤 (𝑎) = (𝐹‘(𝑎)))) → ((𝑥𝑔𝑢𝑥𝑣) → 𝑢 = 𝑣))
526, 51sylbir 134 . 2 ((∃𝑧 ∈ On (𝑔 Fn 𝑧 ∧ ∀𝑎𝑧 (𝑔𝑎) = (𝐹‘(𝑔𝑎))) ∧ ∃𝑤 ∈ On ( Fn 𝑤 ∧ ∀𝑎𝑤 (𝑎) = (𝐹‘(𝑎)))) → ((𝑥𝑔𝑢𝑥𝑣) → 𝑢 = 𝑣))
533, 5, 52syl2anb 287 1 ((𝑔𝐴𝐴) → ((𝑥𝑔𝑢𝑥𝑣) → 𝑢 = 𝑣))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  w3a 945   = wceq 1314  wcel 1463  {cab 2101  wral 2390  wrex 2391  cin 3036  wss 3037   class class class wbr 3895  Oncon0 4245  dom cdm 4499  cres 4501  Fun wfun 5075   Fn wfn 5076  cfv 5081
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-sep 4006  ax-pow 4058  ax-pr 4091  ax-setind 4412
This theorem depends on definitions:  df-bi 116  df-3an 947  df-tru 1317  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2244  df-ral 2395  df-rex 2396  df-rab 2399  df-v 2659  df-sbc 2879  df-csb 2972  df-un 3041  df-in 3043  df-ss 3050  df-pw 3478  df-sn 3499  df-pr 3500  df-op 3502  df-uni 3703  df-br 3896  df-opab 3950  df-mpt 3951  df-tr 3987  df-id 4175  df-iord 4248  df-on 4250  df-xp 4505  df-rel 4506  df-cnv 4507  df-co 4508  df-dm 4509  df-res 4511  df-iota 5046  df-fun 5083  df-fn 5084  df-fv 5089
This theorem is referenced by:  tfrlem7  6168  tfrexlem  6185
  Copyright terms: Public domain W3C validator