Step | Hyp | Ref
| Expression |
1 | | tfrlem.1 |
. . 3
⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} |
2 | | vex 2733 |
. . 3
⊢ 𝑔 ∈ V |
3 | 1, 2 | tfrlem3a 6289 |
. 2
⊢ (𝑔 ∈ 𝐴 ↔ ∃𝑧 ∈ On (𝑔 Fn 𝑧 ∧ ∀𝑎 ∈ 𝑧 (𝑔‘𝑎) = (𝐹‘(𝑔 ↾ 𝑎)))) |
4 | | vex 2733 |
. . 3
⊢ ℎ ∈ V |
5 | 1, 4 | tfrlem3a 6289 |
. 2
⊢ (ℎ ∈ 𝐴 ↔ ∃𝑤 ∈ On (ℎ Fn 𝑤 ∧ ∀𝑎 ∈ 𝑤 (ℎ‘𝑎) = (𝐹‘(ℎ ↾ 𝑎)))) |
6 | | reeanv 2639 |
. . 3
⊢
(∃𝑧 ∈ On
∃𝑤 ∈ On ((𝑔 Fn 𝑧 ∧ ∀𝑎 ∈ 𝑧 (𝑔‘𝑎) = (𝐹‘(𝑔 ↾ 𝑎))) ∧ (ℎ Fn 𝑤 ∧ ∀𝑎 ∈ 𝑤 (ℎ‘𝑎) = (𝐹‘(ℎ ↾ 𝑎)))) ↔ (∃𝑧 ∈ On (𝑔 Fn 𝑧 ∧ ∀𝑎 ∈ 𝑧 (𝑔‘𝑎) = (𝐹‘(𝑔 ↾ 𝑎))) ∧ ∃𝑤 ∈ On (ℎ Fn 𝑤 ∧ ∀𝑎 ∈ 𝑤 (ℎ‘𝑎) = (𝐹‘(ℎ ↾ 𝑎))))) |
7 | | fveq2 5496 |
. . . . . . . . 9
⊢ (𝑎 = 𝑥 → (𝑔‘𝑎) = (𝑔‘𝑥)) |
8 | | fveq2 5496 |
. . . . . . . . 9
⊢ (𝑎 = 𝑥 → (ℎ‘𝑎) = (ℎ‘𝑥)) |
9 | 7, 8 | eqeq12d 2185 |
. . . . . . . 8
⊢ (𝑎 = 𝑥 → ((𝑔‘𝑎) = (ℎ‘𝑎) ↔ (𝑔‘𝑥) = (ℎ‘𝑥))) |
10 | | onin 4371 |
. . . . . . . . . 10
⊢ ((𝑧 ∈ On ∧ 𝑤 ∈ On) → (𝑧 ∩ 𝑤) ∈ On) |
11 | 10 | 3ad2ant1 1013 |
. . . . . . . . 9
⊢ (((𝑧 ∈ On ∧ 𝑤 ∈ On) ∧ ((𝑔 Fn 𝑧 ∧ ∀𝑎 ∈ 𝑧 (𝑔‘𝑎) = (𝐹‘(𝑔 ↾ 𝑎))) ∧ (ℎ Fn 𝑤 ∧ ∀𝑎 ∈ 𝑤 (ℎ‘𝑎) = (𝐹‘(ℎ ↾ 𝑎)))) ∧ (𝑥𝑔𝑢 ∧ 𝑥ℎ𝑣)) → (𝑧 ∩ 𝑤) ∈ On) |
12 | | simp2ll 1059 |
. . . . . . . . . . 11
⊢ (((𝑧 ∈ On ∧ 𝑤 ∈ On) ∧ ((𝑔 Fn 𝑧 ∧ ∀𝑎 ∈ 𝑧 (𝑔‘𝑎) = (𝐹‘(𝑔 ↾ 𝑎))) ∧ (ℎ Fn 𝑤 ∧ ∀𝑎 ∈ 𝑤 (ℎ‘𝑎) = (𝐹‘(ℎ ↾ 𝑎)))) ∧ (𝑥𝑔𝑢 ∧ 𝑥ℎ𝑣)) → 𝑔 Fn 𝑧) |
13 | | fnfun 5295 |
. . . . . . . . . . 11
⊢ (𝑔 Fn 𝑧 → Fun 𝑔) |
14 | 12, 13 | syl 14 |
. . . . . . . . . 10
⊢ (((𝑧 ∈ On ∧ 𝑤 ∈ On) ∧ ((𝑔 Fn 𝑧 ∧ ∀𝑎 ∈ 𝑧 (𝑔‘𝑎) = (𝐹‘(𝑔 ↾ 𝑎))) ∧ (ℎ Fn 𝑤 ∧ ∀𝑎 ∈ 𝑤 (ℎ‘𝑎) = (𝐹‘(ℎ ↾ 𝑎)))) ∧ (𝑥𝑔𝑢 ∧ 𝑥ℎ𝑣)) → Fun 𝑔) |
15 | | inss1 3347 |
. . . . . . . . . . 11
⊢ (𝑧 ∩ 𝑤) ⊆ 𝑧 |
16 | | fndm 5297 |
. . . . . . . . . . . 12
⊢ (𝑔 Fn 𝑧 → dom 𝑔 = 𝑧) |
17 | 12, 16 | syl 14 |
. . . . . . . . . . 11
⊢ (((𝑧 ∈ On ∧ 𝑤 ∈ On) ∧ ((𝑔 Fn 𝑧 ∧ ∀𝑎 ∈ 𝑧 (𝑔‘𝑎) = (𝐹‘(𝑔 ↾ 𝑎))) ∧ (ℎ Fn 𝑤 ∧ ∀𝑎 ∈ 𝑤 (ℎ‘𝑎) = (𝐹‘(ℎ ↾ 𝑎)))) ∧ (𝑥𝑔𝑢 ∧ 𝑥ℎ𝑣)) → dom 𝑔 = 𝑧) |
18 | 15, 17 | sseqtrrid 3198 |
. . . . . . . . . 10
⊢ (((𝑧 ∈ On ∧ 𝑤 ∈ On) ∧ ((𝑔 Fn 𝑧 ∧ ∀𝑎 ∈ 𝑧 (𝑔‘𝑎) = (𝐹‘(𝑔 ↾ 𝑎))) ∧ (ℎ Fn 𝑤 ∧ ∀𝑎 ∈ 𝑤 (ℎ‘𝑎) = (𝐹‘(ℎ ↾ 𝑎)))) ∧ (𝑥𝑔𝑢 ∧ 𝑥ℎ𝑣)) → (𝑧 ∩ 𝑤) ⊆ dom 𝑔) |
19 | 14, 18 | jca 304 |
. . . . . . . . 9
⊢ (((𝑧 ∈ On ∧ 𝑤 ∈ On) ∧ ((𝑔 Fn 𝑧 ∧ ∀𝑎 ∈ 𝑧 (𝑔‘𝑎) = (𝐹‘(𝑔 ↾ 𝑎))) ∧ (ℎ Fn 𝑤 ∧ ∀𝑎 ∈ 𝑤 (ℎ‘𝑎) = (𝐹‘(ℎ ↾ 𝑎)))) ∧ (𝑥𝑔𝑢 ∧ 𝑥ℎ𝑣)) → (Fun 𝑔 ∧ (𝑧 ∩ 𝑤) ⊆ dom 𝑔)) |
20 | | simp2rl 1061 |
. . . . . . . . . . 11
⊢ (((𝑧 ∈ On ∧ 𝑤 ∈ On) ∧ ((𝑔 Fn 𝑧 ∧ ∀𝑎 ∈ 𝑧 (𝑔‘𝑎) = (𝐹‘(𝑔 ↾ 𝑎))) ∧ (ℎ Fn 𝑤 ∧ ∀𝑎 ∈ 𝑤 (ℎ‘𝑎) = (𝐹‘(ℎ ↾ 𝑎)))) ∧ (𝑥𝑔𝑢 ∧ 𝑥ℎ𝑣)) → ℎ Fn 𝑤) |
21 | | fnfun 5295 |
. . . . . . . . . . 11
⊢ (ℎ Fn 𝑤 → Fun ℎ) |
22 | 20, 21 | syl 14 |
. . . . . . . . . 10
⊢ (((𝑧 ∈ On ∧ 𝑤 ∈ On) ∧ ((𝑔 Fn 𝑧 ∧ ∀𝑎 ∈ 𝑧 (𝑔‘𝑎) = (𝐹‘(𝑔 ↾ 𝑎))) ∧ (ℎ Fn 𝑤 ∧ ∀𝑎 ∈ 𝑤 (ℎ‘𝑎) = (𝐹‘(ℎ ↾ 𝑎)))) ∧ (𝑥𝑔𝑢 ∧ 𝑥ℎ𝑣)) → Fun ℎ) |
23 | | inss2 3348 |
. . . . . . . . . . 11
⊢ (𝑧 ∩ 𝑤) ⊆ 𝑤 |
24 | | fndm 5297 |
. . . . . . . . . . . 12
⊢ (ℎ Fn 𝑤 → dom ℎ = 𝑤) |
25 | 20, 24 | syl 14 |
. . . . . . . . . . 11
⊢ (((𝑧 ∈ On ∧ 𝑤 ∈ On) ∧ ((𝑔 Fn 𝑧 ∧ ∀𝑎 ∈ 𝑧 (𝑔‘𝑎) = (𝐹‘(𝑔 ↾ 𝑎))) ∧ (ℎ Fn 𝑤 ∧ ∀𝑎 ∈ 𝑤 (ℎ‘𝑎) = (𝐹‘(ℎ ↾ 𝑎)))) ∧ (𝑥𝑔𝑢 ∧ 𝑥ℎ𝑣)) → dom ℎ = 𝑤) |
26 | 23, 25 | sseqtrrid 3198 |
. . . . . . . . . 10
⊢ (((𝑧 ∈ On ∧ 𝑤 ∈ On) ∧ ((𝑔 Fn 𝑧 ∧ ∀𝑎 ∈ 𝑧 (𝑔‘𝑎) = (𝐹‘(𝑔 ↾ 𝑎))) ∧ (ℎ Fn 𝑤 ∧ ∀𝑎 ∈ 𝑤 (ℎ‘𝑎) = (𝐹‘(ℎ ↾ 𝑎)))) ∧ (𝑥𝑔𝑢 ∧ 𝑥ℎ𝑣)) → (𝑧 ∩ 𝑤) ⊆ dom ℎ) |
27 | 22, 26 | jca 304 |
. . . . . . . . 9
⊢ (((𝑧 ∈ On ∧ 𝑤 ∈ On) ∧ ((𝑔 Fn 𝑧 ∧ ∀𝑎 ∈ 𝑧 (𝑔‘𝑎) = (𝐹‘(𝑔 ↾ 𝑎))) ∧ (ℎ Fn 𝑤 ∧ ∀𝑎 ∈ 𝑤 (ℎ‘𝑎) = (𝐹‘(ℎ ↾ 𝑎)))) ∧ (𝑥𝑔𝑢 ∧ 𝑥ℎ𝑣)) → (Fun ℎ ∧ (𝑧 ∩ 𝑤) ⊆ dom ℎ)) |
28 | | simp2lr 1060 |
. . . . . . . . . 10
⊢ (((𝑧 ∈ On ∧ 𝑤 ∈ On) ∧ ((𝑔 Fn 𝑧 ∧ ∀𝑎 ∈ 𝑧 (𝑔‘𝑎) = (𝐹‘(𝑔 ↾ 𝑎))) ∧ (ℎ Fn 𝑤 ∧ ∀𝑎 ∈ 𝑤 (ℎ‘𝑎) = (𝐹‘(ℎ ↾ 𝑎)))) ∧ (𝑥𝑔𝑢 ∧ 𝑥ℎ𝑣)) → ∀𝑎 ∈ 𝑧 (𝑔‘𝑎) = (𝐹‘(𝑔 ↾ 𝑎))) |
29 | | ssralv 3211 |
. . . . . . . . . 10
⊢ ((𝑧 ∩ 𝑤) ⊆ 𝑧 → (∀𝑎 ∈ 𝑧 (𝑔‘𝑎) = (𝐹‘(𝑔 ↾ 𝑎)) → ∀𝑎 ∈ (𝑧 ∩ 𝑤)(𝑔‘𝑎) = (𝐹‘(𝑔 ↾ 𝑎)))) |
30 | 15, 28, 29 | mpsyl 65 |
. . . . . . . . 9
⊢ (((𝑧 ∈ On ∧ 𝑤 ∈ On) ∧ ((𝑔 Fn 𝑧 ∧ ∀𝑎 ∈ 𝑧 (𝑔‘𝑎) = (𝐹‘(𝑔 ↾ 𝑎))) ∧ (ℎ Fn 𝑤 ∧ ∀𝑎 ∈ 𝑤 (ℎ‘𝑎) = (𝐹‘(ℎ ↾ 𝑎)))) ∧ (𝑥𝑔𝑢 ∧ 𝑥ℎ𝑣)) → ∀𝑎 ∈ (𝑧 ∩ 𝑤)(𝑔‘𝑎) = (𝐹‘(𝑔 ↾ 𝑎))) |
31 | | simp2rr 1062 |
. . . . . . . . . 10
⊢ (((𝑧 ∈ On ∧ 𝑤 ∈ On) ∧ ((𝑔 Fn 𝑧 ∧ ∀𝑎 ∈ 𝑧 (𝑔‘𝑎) = (𝐹‘(𝑔 ↾ 𝑎))) ∧ (ℎ Fn 𝑤 ∧ ∀𝑎 ∈ 𝑤 (ℎ‘𝑎) = (𝐹‘(ℎ ↾ 𝑎)))) ∧ (𝑥𝑔𝑢 ∧ 𝑥ℎ𝑣)) → ∀𝑎 ∈ 𝑤 (ℎ‘𝑎) = (𝐹‘(ℎ ↾ 𝑎))) |
32 | | ssralv 3211 |
. . . . . . . . . 10
⊢ ((𝑧 ∩ 𝑤) ⊆ 𝑤 → (∀𝑎 ∈ 𝑤 (ℎ‘𝑎) = (𝐹‘(ℎ ↾ 𝑎)) → ∀𝑎 ∈ (𝑧 ∩ 𝑤)(ℎ‘𝑎) = (𝐹‘(ℎ ↾ 𝑎)))) |
33 | 23, 31, 32 | mpsyl 65 |
. . . . . . . . 9
⊢ (((𝑧 ∈ On ∧ 𝑤 ∈ On) ∧ ((𝑔 Fn 𝑧 ∧ ∀𝑎 ∈ 𝑧 (𝑔‘𝑎) = (𝐹‘(𝑔 ↾ 𝑎))) ∧ (ℎ Fn 𝑤 ∧ ∀𝑎 ∈ 𝑤 (ℎ‘𝑎) = (𝐹‘(ℎ ↾ 𝑎)))) ∧ (𝑥𝑔𝑢 ∧ 𝑥ℎ𝑣)) → ∀𝑎 ∈ (𝑧 ∩ 𝑤)(ℎ‘𝑎) = (𝐹‘(ℎ ↾ 𝑎))) |
34 | 11, 19, 27, 30, 33 | tfrlem1 6287 |
. . . . . . . 8
⊢ (((𝑧 ∈ On ∧ 𝑤 ∈ On) ∧ ((𝑔 Fn 𝑧 ∧ ∀𝑎 ∈ 𝑧 (𝑔‘𝑎) = (𝐹‘(𝑔 ↾ 𝑎))) ∧ (ℎ Fn 𝑤 ∧ ∀𝑎 ∈ 𝑤 (ℎ‘𝑎) = (𝐹‘(ℎ ↾ 𝑎)))) ∧ (𝑥𝑔𝑢 ∧ 𝑥ℎ𝑣)) → ∀𝑎 ∈ (𝑧 ∩ 𝑤)(𝑔‘𝑎) = (ℎ‘𝑎)) |
35 | | simp3l 1020 |
. . . . . . . . . 10
⊢ (((𝑧 ∈ On ∧ 𝑤 ∈ On) ∧ ((𝑔 Fn 𝑧 ∧ ∀𝑎 ∈ 𝑧 (𝑔‘𝑎) = (𝐹‘(𝑔 ↾ 𝑎))) ∧ (ℎ Fn 𝑤 ∧ ∀𝑎 ∈ 𝑤 (ℎ‘𝑎) = (𝐹‘(ℎ ↾ 𝑎)))) ∧ (𝑥𝑔𝑢 ∧ 𝑥ℎ𝑣)) → 𝑥𝑔𝑢) |
36 | | fnbr 5300 |
. . . . . . . . . 10
⊢ ((𝑔 Fn 𝑧 ∧ 𝑥𝑔𝑢) → 𝑥 ∈ 𝑧) |
37 | 12, 35, 36 | syl2anc 409 |
. . . . . . . . 9
⊢ (((𝑧 ∈ On ∧ 𝑤 ∈ On) ∧ ((𝑔 Fn 𝑧 ∧ ∀𝑎 ∈ 𝑧 (𝑔‘𝑎) = (𝐹‘(𝑔 ↾ 𝑎))) ∧ (ℎ Fn 𝑤 ∧ ∀𝑎 ∈ 𝑤 (ℎ‘𝑎) = (𝐹‘(ℎ ↾ 𝑎)))) ∧ (𝑥𝑔𝑢 ∧ 𝑥ℎ𝑣)) → 𝑥 ∈ 𝑧) |
38 | | simp3r 1021 |
. . . . . . . . . 10
⊢ (((𝑧 ∈ On ∧ 𝑤 ∈ On) ∧ ((𝑔 Fn 𝑧 ∧ ∀𝑎 ∈ 𝑧 (𝑔‘𝑎) = (𝐹‘(𝑔 ↾ 𝑎))) ∧ (ℎ Fn 𝑤 ∧ ∀𝑎 ∈ 𝑤 (ℎ‘𝑎) = (𝐹‘(ℎ ↾ 𝑎)))) ∧ (𝑥𝑔𝑢 ∧ 𝑥ℎ𝑣)) → 𝑥ℎ𝑣) |
39 | | fnbr 5300 |
. . . . . . . . . 10
⊢ ((ℎ Fn 𝑤 ∧ 𝑥ℎ𝑣) → 𝑥 ∈ 𝑤) |
40 | 20, 38, 39 | syl2anc 409 |
. . . . . . . . 9
⊢ (((𝑧 ∈ On ∧ 𝑤 ∈ On) ∧ ((𝑔 Fn 𝑧 ∧ ∀𝑎 ∈ 𝑧 (𝑔‘𝑎) = (𝐹‘(𝑔 ↾ 𝑎))) ∧ (ℎ Fn 𝑤 ∧ ∀𝑎 ∈ 𝑤 (ℎ‘𝑎) = (𝐹‘(ℎ ↾ 𝑎)))) ∧ (𝑥𝑔𝑢 ∧ 𝑥ℎ𝑣)) → 𝑥 ∈ 𝑤) |
41 | | elin 3310 |
. . . . . . . . 9
⊢ (𝑥 ∈ (𝑧 ∩ 𝑤) ↔ (𝑥 ∈ 𝑧 ∧ 𝑥 ∈ 𝑤)) |
42 | 37, 40, 41 | sylanbrc 415 |
. . . . . . . 8
⊢ (((𝑧 ∈ On ∧ 𝑤 ∈ On) ∧ ((𝑔 Fn 𝑧 ∧ ∀𝑎 ∈ 𝑧 (𝑔‘𝑎) = (𝐹‘(𝑔 ↾ 𝑎))) ∧ (ℎ Fn 𝑤 ∧ ∀𝑎 ∈ 𝑤 (ℎ‘𝑎) = (𝐹‘(ℎ ↾ 𝑎)))) ∧ (𝑥𝑔𝑢 ∧ 𝑥ℎ𝑣)) → 𝑥 ∈ (𝑧 ∩ 𝑤)) |
43 | 9, 34, 42 | rspcdva 2839 |
. . . . . . 7
⊢ (((𝑧 ∈ On ∧ 𝑤 ∈ On) ∧ ((𝑔 Fn 𝑧 ∧ ∀𝑎 ∈ 𝑧 (𝑔‘𝑎) = (𝐹‘(𝑔 ↾ 𝑎))) ∧ (ℎ Fn 𝑤 ∧ ∀𝑎 ∈ 𝑤 (ℎ‘𝑎) = (𝐹‘(ℎ ↾ 𝑎)))) ∧ (𝑥𝑔𝑢 ∧ 𝑥ℎ𝑣)) → (𝑔‘𝑥) = (ℎ‘𝑥)) |
44 | | funbrfv 5535 |
. . . . . . . 8
⊢ (Fun
𝑔 → (𝑥𝑔𝑢 → (𝑔‘𝑥) = 𝑢)) |
45 | 14, 35, 44 | sylc 62 |
. . . . . . 7
⊢ (((𝑧 ∈ On ∧ 𝑤 ∈ On) ∧ ((𝑔 Fn 𝑧 ∧ ∀𝑎 ∈ 𝑧 (𝑔‘𝑎) = (𝐹‘(𝑔 ↾ 𝑎))) ∧ (ℎ Fn 𝑤 ∧ ∀𝑎 ∈ 𝑤 (ℎ‘𝑎) = (𝐹‘(ℎ ↾ 𝑎)))) ∧ (𝑥𝑔𝑢 ∧ 𝑥ℎ𝑣)) → (𝑔‘𝑥) = 𝑢) |
46 | | funbrfv 5535 |
. . . . . . . 8
⊢ (Fun
ℎ → (𝑥ℎ𝑣 → (ℎ‘𝑥) = 𝑣)) |
47 | 22, 38, 46 | sylc 62 |
. . . . . . 7
⊢ (((𝑧 ∈ On ∧ 𝑤 ∈ On) ∧ ((𝑔 Fn 𝑧 ∧ ∀𝑎 ∈ 𝑧 (𝑔‘𝑎) = (𝐹‘(𝑔 ↾ 𝑎))) ∧ (ℎ Fn 𝑤 ∧ ∀𝑎 ∈ 𝑤 (ℎ‘𝑎) = (𝐹‘(ℎ ↾ 𝑎)))) ∧ (𝑥𝑔𝑢 ∧ 𝑥ℎ𝑣)) → (ℎ‘𝑥) = 𝑣) |
48 | 43, 45, 47 | 3eqtr3d 2211 |
. . . . . 6
⊢ (((𝑧 ∈ On ∧ 𝑤 ∈ On) ∧ ((𝑔 Fn 𝑧 ∧ ∀𝑎 ∈ 𝑧 (𝑔‘𝑎) = (𝐹‘(𝑔 ↾ 𝑎))) ∧ (ℎ Fn 𝑤 ∧ ∀𝑎 ∈ 𝑤 (ℎ‘𝑎) = (𝐹‘(ℎ ↾ 𝑎)))) ∧ (𝑥𝑔𝑢 ∧ 𝑥ℎ𝑣)) → 𝑢 = 𝑣) |
49 | 48 | 3exp 1197 |
. . . . 5
⊢ ((𝑧 ∈ On ∧ 𝑤 ∈ On) → (((𝑔 Fn 𝑧 ∧ ∀𝑎 ∈ 𝑧 (𝑔‘𝑎) = (𝐹‘(𝑔 ↾ 𝑎))) ∧ (ℎ Fn 𝑤 ∧ ∀𝑎 ∈ 𝑤 (ℎ‘𝑎) = (𝐹‘(ℎ ↾ 𝑎)))) → ((𝑥𝑔𝑢 ∧ 𝑥ℎ𝑣) → 𝑢 = 𝑣))) |
50 | 49 | rexlimdva 2587 |
. . . 4
⊢ (𝑧 ∈ On → (∃𝑤 ∈ On ((𝑔 Fn 𝑧 ∧ ∀𝑎 ∈ 𝑧 (𝑔‘𝑎) = (𝐹‘(𝑔 ↾ 𝑎))) ∧ (ℎ Fn 𝑤 ∧ ∀𝑎 ∈ 𝑤 (ℎ‘𝑎) = (𝐹‘(ℎ ↾ 𝑎)))) → ((𝑥𝑔𝑢 ∧ 𝑥ℎ𝑣) → 𝑢 = 𝑣))) |
51 | 50 | rexlimiv 2581 |
. . 3
⊢
(∃𝑧 ∈ On
∃𝑤 ∈ On ((𝑔 Fn 𝑧 ∧ ∀𝑎 ∈ 𝑧 (𝑔‘𝑎) = (𝐹‘(𝑔 ↾ 𝑎))) ∧ (ℎ Fn 𝑤 ∧ ∀𝑎 ∈ 𝑤 (ℎ‘𝑎) = (𝐹‘(ℎ ↾ 𝑎)))) → ((𝑥𝑔𝑢 ∧ 𝑥ℎ𝑣) → 𝑢 = 𝑣)) |
52 | 6, 51 | sylbir 134 |
. 2
⊢
((∃𝑧 ∈ On
(𝑔 Fn 𝑧 ∧ ∀𝑎 ∈ 𝑧 (𝑔‘𝑎) = (𝐹‘(𝑔 ↾ 𝑎))) ∧ ∃𝑤 ∈ On (ℎ Fn 𝑤 ∧ ∀𝑎 ∈ 𝑤 (ℎ‘𝑎) = (𝐹‘(ℎ ↾ 𝑎)))) → ((𝑥𝑔𝑢 ∧ 𝑥ℎ𝑣) → 𝑢 = 𝑣)) |
53 | 3, 5, 52 | syl2anb 289 |
1
⊢ ((𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐴) → ((𝑥𝑔𝑢 ∧ 𝑥ℎ𝑣) → 𝑢 = 𝑣)) |