ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fimacnv GIF version

Theorem fimacnv 5688
Description: The preimage of the codomain of a mapping is the mapping's domain. (Contributed by FL, 25-Jan-2007.)
Assertion
Ref Expression
fimacnv (𝐹:𝐴𝐵 → (𝐹𝐵) = 𝐴)

Proof of Theorem fimacnv
StepHypRef Expression
1 imassrn 5017 . . 3 (𝐹𝐵) ⊆ ran 𝐹
2 dfdm4 4855 . . . 4 dom 𝐹 = ran 𝐹
3 fdm 5410 . . . . 5 (𝐹:𝐴𝐵 → dom 𝐹 = 𝐴)
4 ssid 3200 . . . . 5 𝐴𝐴
53, 4eqsstrdi 3232 . . . 4 (𝐹:𝐴𝐵 → dom 𝐹𝐴)
62, 5eqsstrrid 3227 . . 3 (𝐹:𝐴𝐵 → ran 𝐹𝐴)
71, 6sstrid 3191 . 2 (𝐹:𝐴𝐵 → (𝐹𝐵) ⊆ 𝐴)
8 imassrn 5017 . . . 4 (𝐹𝐴) ⊆ ran 𝐹
9 frn 5413 . . . 4 (𝐹:𝐴𝐵 → ran 𝐹𝐵)
108, 9sstrid 3191 . . 3 (𝐹:𝐴𝐵 → (𝐹𝐴) ⊆ 𝐵)
11 ffun 5407 . . . 4 (𝐹:𝐴𝐵 → Fun 𝐹)
124, 3sseqtrrid 3231 . . . 4 (𝐹:𝐴𝐵𝐴 ⊆ dom 𝐹)
13 funimass3 5675 . . . 4 ((Fun 𝐹𝐴 ⊆ dom 𝐹) → ((𝐹𝐴) ⊆ 𝐵𝐴 ⊆ (𝐹𝐵)))
1411, 12, 13syl2anc 411 . . 3 (𝐹:𝐴𝐵 → ((𝐹𝐴) ⊆ 𝐵𝐴 ⊆ (𝐹𝐵)))
1510, 14mpbid 147 . 2 (𝐹:𝐴𝐵𝐴 ⊆ (𝐹𝐵))
167, 15eqssd 3197 1 (𝐹:𝐴𝐵 → (𝐹𝐵) = 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105   = wceq 1364  wss 3154  ccnv 4659  dom cdm 4660  ran crn 4661  cima 4663  Fun wfun 5249  wf 5251
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-sbc 2987  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-br 4031  df-opab 4092  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-fv 5263
This theorem is referenced by:  fmpt  5709  nn0supp  9295  cnclima  14402
  Copyright terms: Public domain W3C validator