| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fimacnv | GIF version | ||
| Description: The preimage of the codomain of a mapping is the mapping's domain. (Contributed by FL, 25-Jan-2007.) |
| Ref | Expression |
|---|---|
| fimacnv | ⊢ (𝐹:𝐴⟶𝐵 → (◡𝐹 “ 𝐵) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imassrn 5052 | . . 3 ⊢ (◡𝐹 “ 𝐵) ⊆ ran ◡𝐹 | |
| 2 | dfdm4 4889 | . . . 4 ⊢ dom 𝐹 = ran ◡𝐹 | |
| 3 | fdm 5451 | . . . . 5 ⊢ (𝐹:𝐴⟶𝐵 → dom 𝐹 = 𝐴) | |
| 4 | ssid 3221 | . . . . 5 ⊢ 𝐴 ⊆ 𝐴 | |
| 5 | 3, 4 | eqsstrdi 3253 | . . . 4 ⊢ (𝐹:𝐴⟶𝐵 → dom 𝐹 ⊆ 𝐴) |
| 6 | 2, 5 | eqsstrrid 3248 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 → ran ◡𝐹 ⊆ 𝐴) |
| 7 | 1, 6 | sstrid 3212 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → (◡𝐹 “ 𝐵) ⊆ 𝐴) |
| 8 | imassrn 5052 | . . . 4 ⊢ (𝐹 “ 𝐴) ⊆ ran 𝐹 | |
| 9 | frn 5454 | . . . 4 ⊢ (𝐹:𝐴⟶𝐵 → ran 𝐹 ⊆ 𝐵) | |
| 10 | 8, 9 | sstrid 3212 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 → (𝐹 “ 𝐴) ⊆ 𝐵) |
| 11 | ffun 5448 | . . . 4 ⊢ (𝐹:𝐴⟶𝐵 → Fun 𝐹) | |
| 12 | 4, 3 | sseqtrrid 3252 | . . . 4 ⊢ (𝐹:𝐴⟶𝐵 → 𝐴 ⊆ dom 𝐹) |
| 13 | funimass3 5719 | . . . 4 ⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) → ((𝐹 “ 𝐴) ⊆ 𝐵 ↔ 𝐴 ⊆ (◡𝐹 “ 𝐵))) | |
| 14 | 11, 12, 13 | syl2anc 411 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 → ((𝐹 “ 𝐴) ⊆ 𝐵 ↔ 𝐴 ⊆ (◡𝐹 “ 𝐵))) |
| 15 | 10, 14 | mpbid 147 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → 𝐴 ⊆ (◡𝐹 “ 𝐵)) |
| 16 | 7, 15 | eqssd 3218 | 1 ⊢ (𝐹:𝐴⟶𝐵 → (◡𝐹 “ 𝐵) = 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1373 ⊆ wss 3174 ◡ccnv 4692 dom cdm 4693 ran crn 4694 “ cima 4696 Fun wfun 5284 ⟶wf 5286 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-v 2778 df-sbc 3006 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-opab 4122 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-fv 5298 |
| This theorem is referenced by: fmpt 5753 nn0supp 9382 cnclima 14810 |
| Copyright terms: Public domain | W3C validator |