![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fimacnv | GIF version |
Description: The preimage of the codomain of a mapping is the mapping's domain. (Contributed by FL, 25-Jan-2007.) |
Ref | Expression |
---|---|
fimacnv | ⊢ (𝐹:𝐴⟶𝐵 → (◡𝐹 “ 𝐵) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imassrn 4848 | . . 3 ⊢ (◡𝐹 “ 𝐵) ⊆ ran ◡𝐹 | |
2 | dfdm4 4689 | . . . 4 ⊢ dom 𝐹 = ran ◡𝐹 | |
3 | fdm 5234 | . . . . 5 ⊢ (𝐹:𝐴⟶𝐵 → dom 𝐹 = 𝐴) | |
4 | ssid 3081 | . . . . 5 ⊢ 𝐴 ⊆ 𝐴 | |
5 | 3, 4 | syl6eqss 3113 | . . . 4 ⊢ (𝐹:𝐴⟶𝐵 → dom 𝐹 ⊆ 𝐴) |
6 | 2, 5 | eqsstrrid 3108 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 → ran ◡𝐹 ⊆ 𝐴) |
7 | 1, 6 | syl5ss 3072 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → (◡𝐹 “ 𝐵) ⊆ 𝐴) |
8 | imassrn 4848 | . . . 4 ⊢ (𝐹 “ 𝐴) ⊆ ran 𝐹 | |
9 | frn 5237 | . . . 4 ⊢ (𝐹:𝐴⟶𝐵 → ran 𝐹 ⊆ 𝐵) | |
10 | 8, 9 | syl5ss 3072 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 → (𝐹 “ 𝐴) ⊆ 𝐵) |
11 | ffun 5231 | . . . 4 ⊢ (𝐹:𝐴⟶𝐵 → Fun 𝐹) | |
12 | 4, 3 | sseqtrrid 3112 | . . . 4 ⊢ (𝐹:𝐴⟶𝐵 → 𝐴 ⊆ dom 𝐹) |
13 | funimass3 5488 | . . . 4 ⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) → ((𝐹 “ 𝐴) ⊆ 𝐵 ↔ 𝐴 ⊆ (◡𝐹 “ 𝐵))) | |
14 | 11, 12, 13 | syl2anc 406 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 → ((𝐹 “ 𝐴) ⊆ 𝐵 ↔ 𝐴 ⊆ (◡𝐹 “ 𝐵))) |
15 | 10, 14 | mpbid 146 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → 𝐴 ⊆ (◡𝐹 “ 𝐵)) |
16 | 7, 15 | eqssd 3078 | 1 ⊢ (𝐹:𝐴⟶𝐵 → (◡𝐹 “ 𝐵) = 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 = wceq 1312 ⊆ wss 3035 ◡ccnv 4496 dom cdm 4497 ran crn 4498 “ cima 4500 Fun wfun 5073 ⟶wf 5075 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 681 ax-5 1404 ax-7 1405 ax-gen 1406 ax-ie1 1450 ax-ie2 1451 ax-8 1463 ax-10 1464 ax-11 1465 ax-i12 1466 ax-bndl 1467 ax-4 1468 ax-14 1473 ax-17 1487 ax-i9 1491 ax-ial 1495 ax-i5r 1496 ax-ext 2095 ax-sep 4004 ax-pow 4056 ax-pr 4089 |
This theorem depends on definitions: df-bi 116 df-3an 945 df-tru 1315 df-nf 1418 df-sb 1717 df-eu 1976 df-mo 1977 df-clab 2100 df-cleq 2106 df-clel 2109 df-nfc 2242 df-ral 2393 df-rex 2394 df-v 2657 df-sbc 2877 df-un 3039 df-in 3041 df-ss 3048 df-pw 3476 df-sn 3497 df-pr 3498 df-op 3500 df-uni 3701 df-br 3894 df-opab 3948 df-id 4173 df-xp 4503 df-rel 4504 df-cnv 4505 df-co 4506 df-dm 4507 df-rn 4508 df-res 4509 df-ima 4510 df-iota 5044 df-fun 5081 df-fn 5082 df-f 5083 df-fv 5087 |
This theorem is referenced by: fmpt 5522 nn0supp 8927 cnclima 12228 |
Copyright terms: Public domain | W3C validator |