| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fimacnv | GIF version | ||
| Description: The preimage of the codomain of a mapping is the mapping's domain. (Contributed by FL, 25-Jan-2007.) |
| Ref | Expression |
|---|---|
| fimacnv | ⊢ (𝐹:𝐴⟶𝐵 → (◡𝐹 “ 𝐵) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imassrn 5079 | . . 3 ⊢ (◡𝐹 “ 𝐵) ⊆ ran ◡𝐹 | |
| 2 | dfdm4 4915 | . . . 4 ⊢ dom 𝐹 = ran ◡𝐹 | |
| 3 | fdm 5479 | . . . . 5 ⊢ (𝐹:𝐴⟶𝐵 → dom 𝐹 = 𝐴) | |
| 4 | ssid 3244 | . . . . 5 ⊢ 𝐴 ⊆ 𝐴 | |
| 5 | 3, 4 | eqsstrdi 3276 | . . . 4 ⊢ (𝐹:𝐴⟶𝐵 → dom 𝐹 ⊆ 𝐴) |
| 6 | 2, 5 | eqsstrrid 3271 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 → ran ◡𝐹 ⊆ 𝐴) |
| 7 | 1, 6 | sstrid 3235 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → (◡𝐹 “ 𝐵) ⊆ 𝐴) |
| 8 | imassrn 5079 | . . . 4 ⊢ (𝐹 “ 𝐴) ⊆ ran 𝐹 | |
| 9 | frn 5482 | . . . 4 ⊢ (𝐹:𝐴⟶𝐵 → ran 𝐹 ⊆ 𝐵) | |
| 10 | 8, 9 | sstrid 3235 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 → (𝐹 “ 𝐴) ⊆ 𝐵) |
| 11 | ffun 5476 | . . . 4 ⊢ (𝐹:𝐴⟶𝐵 → Fun 𝐹) | |
| 12 | 4, 3 | sseqtrrid 3275 | . . . 4 ⊢ (𝐹:𝐴⟶𝐵 → 𝐴 ⊆ dom 𝐹) |
| 13 | funimass3 5751 | . . . 4 ⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) → ((𝐹 “ 𝐴) ⊆ 𝐵 ↔ 𝐴 ⊆ (◡𝐹 “ 𝐵))) | |
| 14 | 11, 12, 13 | syl2anc 411 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 → ((𝐹 “ 𝐴) ⊆ 𝐵 ↔ 𝐴 ⊆ (◡𝐹 “ 𝐵))) |
| 15 | 10, 14 | mpbid 147 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → 𝐴 ⊆ (◡𝐹 “ 𝐵)) |
| 16 | 7, 15 | eqssd 3241 | 1 ⊢ (𝐹:𝐴⟶𝐵 → (◡𝐹 “ 𝐵) = 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1395 ⊆ wss 3197 ◡ccnv 4718 dom cdm 4719 ran crn 4720 “ cima 4722 Fun wfun 5312 ⟶wf 5314 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-sbc 3029 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-fv 5326 |
| This theorem is referenced by: fmpt 5785 nn0supp 9421 cnclima 14897 |
| Copyright terms: Public domain | W3C validator |