| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fimacnv | GIF version | ||
| Description: The preimage of the codomain of a mapping is the mapping's domain. (Contributed by FL, 25-Jan-2007.) |
| Ref | Expression |
|---|---|
| fimacnv | ⊢ (𝐹:𝐴⟶𝐵 → (◡𝐹 “ 𝐵) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imassrn 5033 | . . 3 ⊢ (◡𝐹 “ 𝐵) ⊆ ran ◡𝐹 | |
| 2 | dfdm4 4870 | . . . 4 ⊢ dom 𝐹 = ran ◡𝐹 | |
| 3 | fdm 5431 | . . . . 5 ⊢ (𝐹:𝐴⟶𝐵 → dom 𝐹 = 𝐴) | |
| 4 | ssid 3213 | . . . . 5 ⊢ 𝐴 ⊆ 𝐴 | |
| 5 | 3, 4 | eqsstrdi 3245 | . . . 4 ⊢ (𝐹:𝐴⟶𝐵 → dom 𝐹 ⊆ 𝐴) |
| 6 | 2, 5 | eqsstrrid 3240 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 → ran ◡𝐹 ⊆ 𝐴) |
| 7 | 1, 6 | sstrid 3204 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → (◡𝐹 “ 𝐵) ⊆ 𝐴) |
| 8 | imassrn 5033 | . . . 4 ⊢ (𝐹 “ 𝐴) ⊆ ran 𝐹 | |
| 9 | frn 5434 | . . . 4 ⊢ (𝐹:𝐴⟶𝐵 → ran 𝐹 ⊆ 𝐵) | |
| 10 | 8, 9 | sstrid 3204 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 → (𝐹 “ 𝐴) ⊆ 𝐵) |
| 11 | ffun 5428 | . . . 4 ⊢ (𝐹:𝐴⟶𝐵 → Fun 𝐹) | |
| 12 | 4, 3 | sseqtrrid 3244 | . . . 4 ⊢ (𝐹:𝐴⟶𝐵 → 𝐴 ⊆ dom 𝐹) |
| 13 | funimass3 5696 | . . . 4 ⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) → ((𝐹 “ 𝐴) ⊆ 𝐵 ↔ 𝐴 ⊆ (◡𝐹 “ 𝐵))) | |
| 14 | 11, 12, 13 | syl2anc 411 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 → ((𝐹 “ 𝐴) ⊆ 𝐵 ↔ 𝐴 ⊆ (◡𝐹 “ 𝐵))) |
| 15 | 10, 14 | mpbid 147 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → 𝐴 ⊆ (◡𝐹 “ 𝐵)) |
| 16 | 7, 15 | eqssd 3210 | 1 ⊢ (𝐹:𝐴⟶𝐵 → (◡𝐹 “ 𝐵) = 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1373 ⊆ wss 3166 ◡ccnv 4674 dom cdm 4675 ran crn 4676 “ cima 4678 Fun wfun 5265 ⟶wf 5267 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-sbc 2999 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4045 df-opab 4106 df-id 4340 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-fv 5279 |
| This theorem is referenced by: fmpt 5730 nn0supp 9347 cnclima 14695 |
| Copyright terms: Public domain | W3C validator |