ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fimacnv GIF version

Theorem fimacnv 5732
Description: The preimage of the codomain of a mapping is the mapping's domain. (Contributed by FL, 25-Jan-2007.)
Assertion
Ref Expression
fimacnv (𝐹:𝐴𝐵 → (𝐹𝐵) = 𝐴)

Proof of Theorem fimacnv
StepHypRef Expression
1 imassrn 5052 . . 3 (𝐹𝐵) ⊆ ran 𝐹
2 dfdm4 4889 . . . 4 dom 𝐹 = ran 𝐹
3 fdm 5451 . . . . 5 (𝐹:𝐴𝐵 → dom 𝐹 = 𝐴)
4 ssid 3221 . . . . 5 𝐴𝐴
53, 4eqsstrdi 3253 . . . 4 (𝐹:𝐴𝐵 → dom 𝐹𝐴)
62, 5eqsstrrid 3248 . . 3 (𝐹:𝐴𝐵 → ran 𝐹𝐴)
71, 6sstrid 3212 . 2 (𝐹:𝐴𝐵 → (𝐹𝐵) ⊆ 𝐴)
8 imassrn 5052 . . . 4 (𝐹𝐴) ⊆ ran 𝐹
9 frn 5454 . . . 4 (𝐹:𝐴𝐵 → ran 𝐹𝐵)
108, 9sstrid 3212 . . 3 (𝐹:𝐴𝐵 → (𝐹𝐴) ⊆ 𝐵)
11 ffun 5448 . . . 4 (𝐹:𝐴𝐵 → Fun 𝐹)
124, 3sseqtrrid 3252 . . . 4 (𝐹:𝐴𝐵𝐴 ⊆ dom 𝐹)
13 funimass3 5719 . . . 4 ((Fun 𝐹𝐴 ⊆ dom 𝐹) → ((𝐹𝐴) ⊆ 𝐵𝐴 ⊆ (𝐹𝐵)))
1411, 12, 13syl2anc 411 . . 3 (𝐹:𝐴𝐵 → ((𝐹𝐴) ⊆ 𝐵𝐴 ⊆ (𝐹𝐵)))
1510, 14mpbid 147 . 2 (𝐹:𝐴𝐵𝐴 ⊆ (𝐹𝐵))
167, 15eqssd 3218 1 (𝐹:𝐴𝐵 → (𝐹𝐵) = 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105   = wceq 1373  wss 3174  ccnv 4692  dom cdm 4693  ran crn 4694  cima 4696  Fun wfun 5284  wf 5286
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-v 2778  df-sbc 3006  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-br 4060  df-opab 4122  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-fv 5298
This theorem is referenced by:  fmpt  5753  nn0supp  9382  cnclima  14810
  Copyright terms: Public domain W3C validator