ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fimacnv GIF version

Theorem fimacnv 5694
Description: The preimage of the codomain of a mapping is the mapping's domain. (Contributed by FL, 25-Jan-2007.)
Assertion
Ref Expression
fimacnv (𝐹:𝐴𝐵 → (𝐹𝐵) = 𝐴)

Proof of Theorem fimacnv
StepHypRef Expression
1 imassrn 5021 . . 3 (𝐹𝐵) ⊆ ran 𝐹
2 dfdm4 4859 . . . 4 dom 𝐹 = ran 𝐹
3 fdm 5416 . . . . 5 (𝐹:𝐴𝐵 → dom 𝐹 = 𝐴)
4 ssid 3204 . . . . 5 𝐴𝐴
53, 4eqsstrdi 3236 . . . 4 (𝐹:𝐴𝐵 → dom 𝐹𝐴)
62, 5eqsstrrid 3231 . . 3 (𝐹:𝐴𝐵 → ran 𝐹𝐴)
71, 6sstrid 3195 . 2 (𝐹:𝐴𝐵 → (𝐹𝐵) ⊆ 𝐴)
8 imassrn 5021 . . . 4 (𝐹𝐴) ⊆ ran 𝐹
9 frn 5419 . . . 4 (𝐹:𝐴𝐵 → ran 𝐹𝐵)
108, 9sstrid 3195 . . 3 (𝐹:𝐴𝐵 → (𝐹𝐴) ⊆ 𝐵)
11 ffun 5413 . . . 4 (𝐹:𝐴𝐵 → Fun 𝐹)
124, 3sseqtrrid 3235 . . . 4 (𝐹:𝐴𝐵𝐴 ⊆ dom 𝐹)
13 funimass3 5681 . . . 4 ((Fun 𝐹𝐴 ⊆ dom 𝐹) → ((𝐹𝐴) ⊆ 𝐵𝐴 ⊆ (𝐹𝐵)))
1411, 12, 13syl2anc 411 . . 3 (𝐹:𝐴𝐵 → ((𝐹𝐴) ⊆ 𝐵𝐴 ⊆ (𝐹𝐵)))
1510, 14mpbid 147 . 2 (𝐹:𝐴𝐵𝐴 ⊆ (𝐹𝐵))
167, 15eqssd 3201 1 (𝐹:𝐴𝐵 → (𝐹𝐵) = 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105   = wceq 1364  wss 3157  ccnv 4663  dom cdm 4664  ran crn 4665  cima 4667  Fun wfun 5253  wf 5255
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-sbc 2990  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-br 4035  df-opab 4096  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-fv 5267
This theorem is referenced by:  fmpt  5715  nn0supp  9318  cnclima  14543
  Copyright terms: Public domain W3C validator