ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fimacnv GIF version

Theorem fimacnv 5764
Description: The preimage of the codomain of a mapping is the mapping's domain. (Contributed by FL, 25-Jan-2007.)
Assertion
Ref Expression
fimacnv (𝐹:𝐴𝐵 → (𝐹𝐵) = 𝐴)

Proof of Theorem fimacnv
StepHypRef Expression
1 imassrn 5079 . . 3 (𝐹𝐵) ⊆ ran 𝐹
2 dfdm4 4915 . . . 4 dom 𝐹 = ran 𝐹
3 fdm 5479 . . . . 5 (𝐹:𝐴𝐵 → dom 𝐹 = 𝐴)
4 ssid 3244 . . . . 5 𝐴𝐴
53, 4eqsstrdi 3276 . . . 4 (𝐹:𝐴𝐵 → dom 𝐹𝐴)
62, 5eqsstrrid 3271 . . 3 (𝐹:𝐴𝐵 → ran 𝐹𝐴)
71, 6sstrid 3235 . 2 (𝐹:𝐴𝐵 → (𝐹𝐵) ⊆ 𝐴)
8 imassrn 5079 . . . 4 (𝐹𝐴) ⊆ ran 𝐹
9 frn 5482 . . . 4 (𝐹:𝐴𝐵 → ran 𝐹𝐵)
108, 9sstrid 3235 . . 3 (𝐹:𝐴𝐵 → (𝐹𝐴) ⊆ 𝐵)
11 ffun 5476 . . . 4 (𝐹:𝐴𝐵 → Fun 𝐹)
124, 3sseqtrrid 3275 . . . 4 (𝐹:𝐴𝐵𝐴 ⊆ dom 𝐹)
13 funimass3 5751 . . . 4 ((Fun 𝐹𝐴 ⊆ dom 𝐹) → ((𝐹𝐴) ⊆ 𝐵𝐴 ⊆ (𝐹𝐵)))
1411, 12, 13syl2anc 411 . . 3 (𝐹:𝐴𝐵 → ((𝐹𝐴) ⊆ 𝐵𝐴 ⊆ (𝐹𝐵)))
1510, 14mpbid 147 . 2 (𝐹:𝐴𝐵𝐴 ⊆ (𝐹𝐵))
167, 15eqssd 3241 1 (𝐹:𝐴𝐵 → (𝐹𝐵) = 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105   = wceq 1395  wss 3197  ccnv 4718  dom cdm 4719  ran crn 4720  cima 4722  Fun wfun 5312  wf 5314
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-sbc 3029  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-fv 5326
This theorem is referenced by:  fmpt  5785  nn0supp  9421  cnclima  14897
  Copyright terms: Public domain W3C validator