ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sseqtrid GIF version

Theorem sseqtrid 3234
Description: Subclass transitivity deduction. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.)
Hypotheses
Ref Expression
sseqtrid.1 𝐵𝐴
sseqtrid.2 (𝜑𝐴 = 𝐶)
Assertion
Ref Expression
sseqtrid (𝜑𝐵𝐶)

Proof of Theorem sseqtrid
StepHypRef Expression
1 sseqtrid.2 . 2 (𝜑𝐴 = 𝐶)
2 sseqtrid.1 . 2 𝐵𝐴
3 sseq2 3208 . . 3 (𝐴 = 𝐶 → (𝐵𝐴𝐵𝐶))
43biimpa 296 . 2 ((𝐴 = 𝐶𝐵𝐴) → 𝐵𝐶)
51, 2, 4sylancl 413 1 (𝜑𝐵𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  wss 3157
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-11 1520  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-in 3163  df-ss 3170
This theorem is referenced by:  fssdm  5423  fndmdif  5668  fneqeql2  5672  fconst4m  5783  f1opw2  6130  ecss  6636  pw2f1odclem  6896  fopwdom  6898  ssenen  6913  phplem2  6915  fiintim  6993  casefun  7152  caseinj  7156  djufun  7171  djuinj  7173  nn0supp  9303  monoord2  10580  binom1dif  11654  znleval  14219  cnpnei  14465  cnntri  14470  cnntr  14471  cncnp  14476  cndis  14487  txdis1cn  14524  hmeontr  14559  hmeoimaf1o  14560  dvcoapbr  14953
  Copyright terms: Public domain W3C validator