| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sseqtrid | GIF version | ||
| Description: Subclass transitivity deduction. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
| Ref | Expression |
|---|---|
| sseqtrid.1 | ⊢ 𝐵 ⊆ 𝐴 |
| sseqtrid.2 | ⊢ (𝜑 → 𝐴 = 𝐶) |
| Ref | Expression |
|---|---|
| sseqtrid | ⊢ (𝜑 → 𝐵 ⊆ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseqtrid.2 | . 2 ⊢ (𝜑 → 𝐴 = 𝐶) | |
| 2 | sseqtrid.1 | . 2 ⊢ 𝐵 ⊆ 𝐴 | |
| 3 | sseq2 3248 | . . 3 ⊢ (𝐴 = 𝐶 → (𝐵 ⊆ 𝐴 ↔ 𝐵 ⊆ 𝐶)) | |
| 4 | 3 | biimpa 296 | . 2 ⊢ ((𝐴 = 𝐶 ∧ 𝐵 ⊆ 𝐴) → 𝐵 ⊆ 𝐶) |
| 5 | 1, 2, 4 | sylancl 413 | 1 ⊢ (𝜑 → 𝐵 ⊆ 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1395 ⊆ wss 3197 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-11 1552 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-in 3203 df-ss 3210 |
| This theorem is referenced by: fssdm 5488 fndmdif 5742 fneqeql2 5746 fconst4m 5863 f1opw2 6218 ecss 6731 pw2f1odclem 7003 fopwdom 7005 ssenen 7020 phplem2 7022 fiintim 7101 casefun 7260 caseinj 7264 djufun 7279 djuinj 7281 nn0supp 9429 monoord2 10716 binom1dif 12006 znleval 14625 cnpnei 14901 cnntri 14906 cnntr 14907 cncnp 14912 cndis 14923 txdis1cn 14960 hmeontr 14995 hmeoimaf1o 14996 dvcoapbr 15389 |
| Copyright terms: Public domain | W3C validator |