| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sseqtrid | GIF version | ||
| Description: Subclass transitivity deduction. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
| Ref | Expression |
|---|---|
| sseqtrid.1 | ⊢ 𝐵 ⊆ 𝐴 |
| sseqtrid.2 | ⊢ (𝜑 → 𝐴 = 𝐶) |
| Ref | Expression |
|---|---|
| sseqtrid | ⊢ (𝜑 → 𝐵 ⊆ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseqtrid.2 | . 2 ⊢ (𝜑 → 𝐴 = 𝐶) | |
| 2 | sseqtrid.1 | . 2 ⊢ 𝐵 ⊆ 𝐴 | |
| 3 | sseq2 3207 | . . 3 ⊢ (𝐴 = 𝐶 → (𝐵 ⊆ 𝐴 ↔ 𝐵 ⊆ 𝐶)) | |
| 4 | 3 | biimpa 296 | . 2 ⊢ ((𝐴 = 𝐶 ∧ 𝐵 ⊆ 𝐴) → 𝐵 ⊆ 𝐶) |
| 5 | 1, 2, 4 | sylancl 413 | 1 ⊢ (𝜑 → 𝐵 ⊆ 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 ⊆ wss 3157 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-in 3163 df-ss 3170 |
| This theorem is referenced by: fssdm 5422 fndmdif 5667 fneqeql2 5671 fconst4m 5782 f1opw2 6129 ecss 6635 pw2f1odclem 6895 fopwdom 6897 ssenen 6912 phplem2 6914 fiintim 6992 casefun 7151 caseinj 7155 djufun 7170 djuinj 7172 nn0supp 9301 monoord2 10578 binom1dif 11652 znleval 14209 cnpnei 14455 cnntri 14460 cnntr 14461 cncnp 14466 cndis 14477 txdis1cn 14514 hmeontr 14549 hmeoimaf1o 14550 dvcoapbr 14943 |
| Copyright terms: Public domain | W3C validator |