| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sseqtrid | GIF version | ||
| Description: Subclass transitivity deduction. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
| Ref | Expression |
|---|---|
| sseqtrid.1 | ⊢ 𝐵 ⊆ 𝐴 |
| sseqtrid.2 | ⊢ (𝜑 → 𝐴 = 𝐶) |
| Ref | Expression |
|---|---|
| sseqtrid | ⊢ (𝜑 → 𝐵 ⊆ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseqtrid.2 | . 2 ⊢ (𝜑 → 𝐴 = 𝐶) | |
| 2 | sseqtrid.1 | . 2 ⊢ 𝐵 ⊆ 𝐴 | |
| 3 | sseq2 3218 | . . 3 ⊢ (𝐴 = 𝐶 → (𝐵 ⊆ 𝐴 ↔ 𝐵 ⊆ 𝐶)) | |
| 4 | 3 | biimpa 296 | . 2 ⊢ ((𝐴 = 𝐶 ∧ 𝐵 ⊆ 𝐴) → 𝐵 ⊆ 𝐶) |
| 5 | 1, 2, 4 | sylancl 413 | 1 ⊢ (𝜑 → 𝐵 ⊆ 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ⊆ wss 3167 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-11 1530 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-in 3173 df-ss 3180 |
| This theorem is referenced by: fssdm 5446 fndmdif 5692 fneqeql2 5696 fconst4m 5811 f1opw2 6159 ecss 6670 pw2f1odclem 6938 fopwdom 6940 ssenen 6955 phplem2 6957 fiintim 7035 casefun 7194 caseinj 7198 djufun 7213 djuinj 7215 nn0supp 9354 monoord2 10638 binom1dif 11842 znleval 14459 cnpnei 14735 cnntri 14740 cnntr 14741 cncnp 14746 cndis 14757 txdis1cn 14794 hmeontr 14829 hmeoimaf1o 14830 dvcoapbr 15223 |
| Copyright terms: Public domain | W3C validator |