ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sseqtrid GIF version

Theorem sseqtrid 3254
Description: Subclass transitivity deduction. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.)
Hypotheses
Ref Expression
sseqtrid.1 𝐵𝐴
sseqtrid.2 (𝜑𝐴 = 𝐶)
Assertion
Ref Expression
sseqtrid (𝜑𝐵𝐶)

Proof of Theorem sseqtrid
StepHypRef Expression
1 sseqtrid.2 . 2 (𝜑𝐴 = 𝐶)
2 sseqtrid.1 . 2 𝐵𝐴
3 sseq2 3228 . . 3 (𝐴 = 𝐶 → (𝐵𝐴𝐵𝐶))
43biimpa 296 . 2 ((𝐴 = 𝐶𝐵𝐴) → 𝐵𝐶)
51, 2, 4sylancl 413 1 (𝜑𝐵𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1375  wss 3177
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-11 1532  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-ext 2191
This theorem depends on definitions:  df-bi 117  df-nf 1487  df-sb 1789  df-clab 2196  df-cleq 2202  df-clel 2205  df-in 3183  df-ss 3190
This theorem is referenced by:  fssdm  5464  fndmdif  5713  fneqeql2  5717  fconst4m  5832  f1opw2  6182  ecss  6693  pw2f1odclem  6963  fopwdom  6965  ssenen  6980  phplem2  6982  fiintim  7061  casefun  7220  caseinj  7224  djufun  7239  djuinj  7241  nn0supp  9389  monoord2  10675  binom1dif  11964  znleval  14582  cnpnei  14858  cnntri  14863  cnntr  14864  cncnp  14869  cndis  14880  txdis1cn  14917  hmeontr  14952  hmeoimaf1o  14953  dvcoapbr  15346
  Copyright terms: Public domain W3C validator