| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sseqtrid | GIF version | ||
| Description: Subclass transitivity deduction. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
| Ref | Expression |
|---|---|
| sseqtrid.1 | ⊢ 𝐵 ⊆ 𝐴 |
| sseqtrid.2 | ⊢ (𝜑 → 𝐴 = 𝐶) |
| Ref | Expression |
|---|---|
| sseqtrid | ⊢ (𝜑 → 𝐵 ⊆ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseqtrid.2 | . 2 ⊢ (𝜑 → 𝐴 = 𝐶) | |
| 2 | sseqtrid.1 | . 2 ⊢ 𝐵 ⊆ 𝐴 | |
| 3 | sseq2 3208 | . . 3 ⊢ (𝐴 = 𝐶 → (𝐵 ⊆ 𝐴 ↔ 𝐵 ⊆ 𝐶)) | |
| 4 | 3 | biimpa 296 | . 2 ⊢ ((𝐴 = 𝐶 ∧ 𝐵 ⊆ 𝐴) → 𝐵 ⊆ 𝐶) |
| 5 | 1, 2, 4 | sylancl 413 | 1 ⊢ (𝜑 → 𝐵 ⊆ 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 ⊆ wss 3157 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-in 3163 df-ss 3170 |
| This theorem is referenced by: fssdm 5423 fndmdif 5668 fneqeql2 5672 fconst4m 5783 f1opw2 6130 ecss 6636 pw2f1odclem 6896 fopwdom 6898 ssenen 6913 phplem2 6915 fiintim 6993 casefun 7152 caseinj 7156 djufun 7171 djuinj 7173 nn0supp 9303 monoord2 10580 binom1dif 11654 znleval 14219 cnpnei 14465 cnntri 14470 cnntr 14471 cncnp 14476 cndis 14487 txdis1cn 14524 hmeontr 14559 hmeoimaf1o 14560 dvcoapbr 14953 |
| Copyright terms: Public domain | W3C validator |