| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sseqtrid | GIF version | ||
| Description: Subclass transitivity deduction. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
| Ref | Expression |
|---|---|
| sseqtrid.1 | ⊢ 𝐵 ⊆ 𝐴 |
| sseqtrid.2 | ⊢ (𝜑 → 𝐴 = 𝐶) |
| Ref | Expression |
|---|---|
| sseqtrid | ⊢ (𝜑 → 𝐵 ⊆ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseqtrid.2 | . 2 ⊢ (𝜑 → 𝐴 = 𝐶) | |
| 2 | sseqtrid.1 | . 2 ⊢ 𝐵 ⊆ 𝐴 | |
| 3 | sseq2 3228 | . . 3 ⊢ (𝐴 = 𝐶 → (𝐵 ⊆ 𝐴 ↔ 𝐵 ⊆ 𝐶)) | |
| 4 | 3 | biimpa 296 | . 2 ⊢ ((𝐴 = 𝐶 ∧ 𝐵 ⊆ 𝐴) → 𝐵 ⊆ 𝐶) |
| 5 | 1, 2, 4 | sylancl 413 | 1 ⊢ (𝜑 → 𝐵 ⊆ 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1375 ⊆ wss 3177 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-11 1532 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-ext 2191 |
| This theorem depends on definitions: df-bi 117 df-nf 1487 df-sb 1789 df-clab 2196 df-cleq 2202 df-clel 2205 df-in 3183 df-ss 3190 |
| This theorem is referenced by: fssdm 5464 fndmdif 5713 fneqeql2 5717 fconst4m 5832 f1opw2 6182 ecss 6693 pw2f1odclem 6963 fopwdom 6965 ssenen 6980 phplem2 6982 fiintim 7061 casefun 7220 caseinj 7224 djufun 7239 djuinj 7241 nn0supp 9389 monoord2 10675 binom1dif 11964 znleval 14582 cnpnei 14858 cnntri 14863 cnntr 14864 cncnp 14869 cndis 14880 txdis1cn 14917 hmeontr 14952 hmeoimaf1o 14953 dvcoapbr 15346 |
| Copyright terms: Public domain | W3C validator |