ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sseqtrid GIF version

Theorem sseqtrid 3274
Description: Subclass transitivity deduction. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.)
Hypotheses
Ref Expression
sseqtrid.1 𝐵𝐴
sseqtrid.2 (𝜑𝐴 = 𝐶)
Assertion
Ref Expression
sseqtrid (𝜑𝐵𝐶)

Proof of Theorem sseqtrid
StepHypRef Expression
1 sseqtrid.2 . 2 (𝜑𝐴 = 𝐶)
2 sseqtrid.1 . 2 𝐵𝐴
3 sseq2 3248 . . 3 (𝐴 = 𝐶 → (𝐵𝐴𝐵𝐶))
43biimpa 296 . 2 ((𝐴 = 𝐶𝐵𝐴) → 𝐵𝐶)
51, 2, 4sylancl 413 1 (𝜑𝐵𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1395  wss 3197
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-11 1552  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-in 3203  df-ss 3210
This theorem is referenced by:  fssdm  5488  fndmdif  5742  fneqeql2  5746  fconst4m  5863  f1opw2  6218  ecss  6731  pw2f1odclem  7003  fopwdom  7005  ssenen  7020  phplem2  7022  fiintim  7101  casefun  7260  caseinj  7264  djufun  7279  djuinj  7281  nn0supp  9429  monoord2  10716  binom1dif  12006  znleval  14625  cnpnei  14901  cnntri  14906  cnntr  14907  cncnp  14912  cndis  14923  txdis1cn  14960  hmeontr  14995  hmeoimaf1o  14996  dvcoapbr  15389
  Copyright terms: Public domain W3C validator