![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sseqtrid | GIF version |
Description: Subclass transitivity deduction. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
Ref | Expression |
---|---|
sseqtrid.1 | ⊢ 𝐵 ⊆ 𝐴 |
sseqtrid.2 | ⊢ (𝜑 → 𝐴 = 𝐶) |
Ref | Expression |
---|---|
sseqtrid | ⊢ (𝜑 → 𝐵 ⊆ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sseqtrid.2 | . 2 ⊢ (𝜑 → 𝐴 = 𝐶) | |
2 | sseqtrid.1 | . 2 ⊢ 𝐵 ⊆ 𝐴 | |
3 | sseq2 3194 | . . 3 ⊢ (𝐴 = 𝐶 → (𝐵 ⊆ 𝐴 ↔ 𝐵 ⊆ 𝐶)) | |
4 | 3 | biimpa 296 | . 2 ⊢ ((𝐴 = 𝐶 ∧ 𝐵 ⊆ 𝐴) → 𝐵 ⊆ 𝐶) |
5 | 1, 2, 4 | sylancl 413 | 1 ⊢ (𝜑 → 𝐵 ⊆ 𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 ⊆ wss 3144 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-11 1517 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2171 |
This theorem depends on definitions: df-bi 117 df-nf 1472 df-sb 1774 df-clab 2176 df-cleq 2182 df-clel 2185 df-in 3150 df-ss 3157 |
This theorem is referenced by: fssdm 5395 fndmdif 5637 fneqeql2 5641 fconst4m 5752 f1opw2 6095 ecss 6594 fopwdom 6854 ssenen 6869 phplem2 6871 fiintim 6946 casefun 7102 caseinj 7106 djufun 7121 djuinj 7123 nn0supp 9246 monoord2 10495 binom1dif 11513 cnpnei 14116 cnntri 14121 cnntr 14122 cncnp 14127 cndis 14138 txdis1cn 14175 hmeontr 14210 hmeoimaf1o 14211 dvcoapbr 14568 |
Copyright terms: Public domain | W3C validator |