ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sseqtrid GIF version

Theorem sseqtrid 3244
Description: Subclass transitivity deduction. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.)
Hypotheses
Ref Expression
sseqtrid.1 𝐵𝐴
sseqtrid.2 (𝜑𝐴 = 𝐶)
Assertion
Ref Expression
sseqtrid (𝜑𝐵𝐶)

Proof of Theorem sseqtrid
StepHypRef Expression
1 sseqtrid.2 . 2 (𝜑𝐴 = 𝐶)
2 sseqtrid.1 . 2 𝐵𝐴
3 sseq2 3218 . . 3 (𝐴 = 𝐶 → (𝐵𝐴𝐵𝐶))
43biimpa 296 . 2 ((𝐴 = 𝐶𝐵𝐴) → 𝐵𝐶)
51, 2, 4sylancl 413 1 (𝜑𝐵𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1373  wss 3167
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-11 1530  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-in 3173  df-ss 3180
This theorem is referenced by:  fssdm  5446  fndmdif  5692  fneqeql2  5696  fconst4m  5811  f1opw2  6159  ecss  6670  pw2f1odclem  6938  fopwdom  6940  ssenen  6955  phplem2  6957  fiintim  7035  casefun  7194  caseinj  7198  djufun  7213  djuinj  7215  nn0supp  9354  monoord2  10638  binom1dif  11842  znleval  14459  cnpnei  14735  cnntri  14740  cnntr  14741  cncnp  14746  cndis  14757  txdis1cn  14794  hmeontr  14829  hmeoimaf1o  14830  dvcoapbr  15223
  Copyright terms: Public domain W3C validator