![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sseqtrid | GIF version |
Description: Subclass transitivity deduction. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
Ref | Expression |
---|---|
sseqtrid.1 | ⊢ 𝐵 ⊆ 𝐴 |
sseqtrid.2 | ⊢ (𝜑 → 𝐴 = 𝐶) |
Ref | Expression |
---|---|
sseqtrid | ⊢ (𝜑 → 𝐵 ⊆ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sseqtrid.2 | . 2 ⊢ (𝜑 → 𝐴 = 𝐶) | |
2 | sseqtrid.1 | . 2 ⊢ 𝐵 ⊆ 𝐴 | |
3 | sseq2 3204 | . . 3 ⊢ (𝐴 = 𝐶 → (𝐵 ⊆ 𝐴 ↔ 𝐵 ⊆ 𝐶)) | |
4 | 3 | biimpa 296 | . 2 ⊢ ((𝐴 = 𝐶 ∧ 𝐵 ⊆ 𝐴) → 𝐵 ⊆ 𝐶) |
5 | 1, 2, 4 | sylancl 413 | 1 ⊢ (𝜑 → 𝐵 ⊆ 𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 ⊆ wss 3154 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-11 1517 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-in 3160 df-ss 3167 |
This theorem is referenced by: fssdm 5419 fndmdif 5664 fneqeql2 5668 fconst4m 5779 f1opw2 6126 ecss 6632 pw2f1odclem 6892 fopwdom 6894 ssenen 6909 phplem2 6911 fiintim 6987 casefun 7146 caseinj 7150 djufun 7165 djuinj 7167 nn0supp 9295 monoord2 10560 binom1dif 11633 znleval 14152 cnpnei 14398 cnntri 14403 cnntr 14404 cncnp 14409 cndis 14420 txdis1cn 14457 hmeontr 14492 hmeoimaf1o 14493 dvcoapbr 14886 |
Copyright terms: Public domain | W3C validator |