ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sseqtrrd GIF version

Theorem sseqtrrd 3263
Description: Substitution of equality into a subclass relationship. (Contributed by NM, 25-Apr-2004.)
Hypotheses
Ref Expression
sseqtrrd.1 (𝜑𝐴𝐵)
sseqtrrd.2 (𝜑𝐶 = 𝐵)
Assertion
Ref Expression
sseqtrrd (𝜑𝐴𝐶)

Proof of Theorem sseqtrrd
StepHypRef Expression
1 sseqtrrd.1 . 2 (𝜑𝐴𝐵)
2 sseqtrrd.2 . . 3 (𝜑𝐶 = 𝐵)
32eqcomd 2235 . 2 (𝜑𝐵 = 𝐶)
41, 3sseqtrd 3262 1 (𝜑𝐴𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1395  wss 3197
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-11 1552  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-in 3203  df-ss 3210
This theorem is referenced by:  sseqtrrid  3275  fnfvima  5867  tfrlemiubacc  6466  tfr1onlemubacc  6482  tfrcllemubacc  6495  rdgivallem  6517  nnnninf  7281  nninfwlpoimlemg  7330  ccatass  11129  swrdval2  11169  dfphi2  12728  ctinf  12987  imasaddfnlemg  13333  imasaddvallemg  13334  subsubm  13502  subsubg  13720  subsubrng  14163  subsubrg  14194  lidlss  14425  toponss  14685  ssntr  14781  iscnp3  14862  cnprcl2k  14865  tgcn  14867  tgcnp  14868  ssidcn  14869  cncnp  14889  txcnp  14930  imasnopn  14958  hmeontr  14972  blssec  15097  blssopn  15144  xmettx  15169  metcnp  15171  plyaddlem1  15406  plymullem1  15407  plycoeid3  15416  nnsf  16302  nninfsellemsuc  16309
  Copyright terms: Public domain W3C validator