Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sseqtrrd | GIF version |
Description: Substitution of equality into a subclass relationship. (Contributed by NM, 25-Apr-2004.) |
Ref | Expression |
---|---|
sseqtrrd.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
sseqtrrd.2 | ⊢ (𝜑 → 𝐶 = 𝐵) |
Ref | Expression |
---|---|
sseqtrrd | ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sseqtrrd.1 | . 2 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
2 | sseqtrrd.2 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐵) | |
3 | 2 | eqcomd 2176 | . 2 ⊢ (𝜑 → 𝐵 = 𝐶) |
4 | 1, 3 | sseqtrd 3185 | 1 ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1348 ⊆ wss 3121 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-11 1499 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-in 3127 df-ss 3134 |
This theorem is referenced by: sseqtrrid 3198 fnfvima 5730 tfrlemiubacc 6309 tfr1onlemubacc 6325 tfrcllemubacc 6338 rdgivallem 6360 nnnninf 7102 nninfwlpoimlemg 7151 dfphi2 12174 ctinf 12385 toponss 12818 ssntr 12916 iscnp3 12997 cnprcl2k 13000 tgcn 13002 tgcnp 13003 ssidcn 13004 cncnp 13024 txcnp 13065 imasnopn 13093 hmeontr 13107 blssec 13232 blssopn 13279 xmettx 13304 metcnp 13306 nnsf 14038 nninfsellemsuc 14045 |
Copyright terms: Public domain | W3C validator |