ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sseqtrrd GIF version

Theorem sseqtrrd 3209
Description: Substitution of equality into a subclass relationship. (Contributed by NM, 25-Apr-2004.)
Hypotheses
Ref Expression
sseqtrrd.1 (𝜑𝐴𝐵)
sseqtrrd.2 (𝜑𝐶 = 𝐵)
Assertion
Ref Expression
sseqtrrd (𝜑𝐴𝐶)

Proof of Theorem sseqtrrd
StepHypRef Expression
1 sseqtrrd.1 . 2 (𝜑𝐴𝐵)
2 sseqtrrd.2 . . 3 (𝜑𝐶 = 𝐵)
32eqcomd 2195 . 2 (𝜑𝐵 = 𝐶)
41, 3sseqtrd 3208 1 (𝜑𝐴𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  wss 3144
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-11 1517  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2171
This theorem depends on definitions:  df-bi 117  df-nf 1472  df-sb 1774  df-clab 2176  df-cleq 2182  df-clel 2185  df-in 3150  df-ss 3157
This theorem is referenced by:  sseqtrrid  3221  fnfvima  5771  tfrlemiubacc  6354  tfr1onlemubacc  6370  tfrcllemubacc  6383  rdgivallem  6405  nnnninf  7153  nninfwlpoimlemg  7202  dfphi2  12251  ctinf  12480  imasaddfnlemg  12788  imasaddvallemg  12789  subsubm  12932  subsubg  13133  subsubrng  13558  subsubrg  13589  lidlss  13789  toponss  13978  ssntr  14074  iscnp3  14155  cnprcl2k  14158  tgcn  14160  tgcnp  14161  ssidcn  14162  cncnp  14182  txcnp  14223  imasnopn  14251  hmeontr  14265  blssec  14390  blssopn  14437  xmettx  14462  metcnp  14464  nnsf  15208  nninfsellemsuc  15215
  Copyright terms: Public domain W3C validator