| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sseqtrrd | GIF version | ||
| Description: Substitution of equality into a subclass relationship. (Contributed by NM, 25-Apr-2004.) |
| Ref | Expression |
|---|---|
| sseqtrrd.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
| sseqtrrd.2 | ⊢ (𝜑 → 𝐶 = 𝐵) |
| Ref | Expression |
|---|---|
| sseqtrrd | ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseqtrrd.1 | . 2 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
| 2 | sseqtrrd.2 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐵) | |
| 3 | 2 | eqcomd 2202 | . 2 ⊢ (𝜑 → 𝐵 = 𝐶) |
| 4 | 1, 3 | sseqtrd 3222 | 1 ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 ⊆ wss 3157 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-in 3163 df-ss 3170 |
| This theorem is referenced by: sseqtrrid 3235 fnfvima 5800 tfrlemiubacc 6397 tfr1onlemubacc 6413 tfrcllemubacc 6426 rdgivallem 6448 nnnninf 7201 nninfwlpoimlemg 7250 dfphi2 12415 ctinf 12674 imasaddfnlemg 13018 imasaddvallemg 13019 subsubm 13187 subsubg 13405 subsubrng 13848 subsubrg 13879 lidlss 14110 toponss 14370 ssntr 14466 iscnp3 14547 cnprcl2k 14550 tgcn 14552 tgcnp 14553 ssidcn 14554 cncnp 14574 txcnp 14615 imasnopn 14643 hmeontr 14657 blssec 14782 blssopn 14829 xmettx 14854 metcnp 14856 plyaddlem1 15091 plymullem1 15092 plycoeid3 15101 nnsf 15760 nninfsellemsuc 15767 |
| Copyright terms: Public domain | W3C validator |