Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sseqtrrd | GIF version |
Description: Substitution of equality into a subclass relationship. (Contributed by NM, 25-Apr-2004.) |
Ref | Expression |
---|---|
sseqtrrd.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
sseqtrrd.2 | ⊢ (𝜑 → 𝐶 = 𝐵) |
Ref | Expression |
---|---|
sseqtrrd | ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sseqtrrd.1 | . 2 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
2 | sseqtrrd.2 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐵) | |
3 | 2 | eqcomd 2171 | . 2 ⊢ (𝜑 → 𝐵 = 𝐶) |
4 | 1, 3 | sseqtrd 3180 | 1 ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1343 ⊆ wss 3116 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-11 1494 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-in 3122 df-ss 3129 |
This theorem is referenced by: sseqtrrid 3193 fnfvima 5719 tfrlemiubacc 6298 tfr1onlemubacc 6314 tfrcllemubacc 6327 rdgivallem 6349 nnnninf 7090 dfphi2 12152 ctinf 12363 toponss 12664 ssntr 12762 iscnp3 12843 cnprcl2k 12846 tgcn 12848 tgcnp 12849 ssidcn 12850 cncnp 12870 txcnp 12911 imasnopn 12939 hmeontr 12953 blssec 13078 blssopn 13125 xmettx 13150 metcnp 13152 nnsf 13885 nninfsellemsuc 13892 |
Copyright terms: Public domain | W3C validator |