![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sseqtrrd | GIF version |
Description: Substitution of equality into a subclass relationship. (Contributed by NM, 25-Apr-2004.) |
Ref | Expression |
---|---|
sseqtrrd.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
sseqtrrd.2 | ⊢ (𝜑 → 𝐶 = 𝐵) |
Ref | Expression |
---|---|
sseqtrrd | ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sseqtrrd.1 | . 2 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
2 | sseqtrrd.2 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐵) | |
3 | 2 | eqcomd 2195 | . 2 ⊢ (𝜑 → 𝐵 = 𝐶) |
4 | 1, 3 | sseqtrd 3208 | 1 ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 ⊆ wss 3144 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-11 1517 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2171 |
This theorem depends on definitions: df-bi 117 df-nf 1472 df-sb 1774 df-clab 2176 df-cleq 2182 df-clel 2185 df-in 3150 df-ss 3157 |
This theorem is referenced by: sseqtrrid 3221 fnfvima 5771 tfrlemiubacc 6354 tfr1onlemubacc 6370 tfrcllemubacc 6383 rdgivallem 6405 nnnninf 7153 nninfwlpoimlemg 7202 dfphi2 12251 ctinf 12480 imasaddfnlemg 12788 imasaddvallemg 12789 subsubm 12932 subsubg 13133 subsubrng 13558 subsubrg 13589 lidlss 13789 toponss 13978 ssntr 14074 iscnp3 14155 cnprcl2k 14158 tgcn 14160 tgcnp 14161 ssidcn 14162 cncnp 14182 txcnp 14223 imasnopn 14251 hmeontr 14265 blssec 14390 blssopn 14437 xmettx 14462 metcnp 14464 nnsf 15208 nninfsellemsuc 15215 |
Copyright terms: Public domain | W3C validator |