| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sseqtrrd | GIF version | ||
| Description: Substitution of equality into a subclass relationship. (Contributed by NM, 25-Apr-2004.) |
| Ref | Expression |
|---|---|
| sseqtrrd.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
| sseqtrrd.2 | ⊢ (𝜑 → 𝐶 = 𝐵) |
| Ref | Expression |
|---|---|
| sseqtrrd | ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseqtrrd.1 | . 2 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
| 2 | sseqtrrd.2 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐵) | |
| 3 | 2 | eqcomd 2212 | . 2 ⊢ (𝜑 → 𝐵 = 𝐶) |
| 4 | 1, 3 | sseqtrd 3233 | 1 ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ⊆ wss 3168 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-11 1530 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-in 3174 df-ss 3181 |
| This theorem is referenced by: sseqtrrid 3246 fnfvima 5829 tfrlemiubacc 6426 tfr1onlemubacc 6442 tfrcllemubacc 6455 rdgivallem 6477 nnnninf 7240 nninfwlpoimlemg 7289 ccatass 11078 swrdval2 11118 dfphi2 12592 ctinf 12851 imasaddfnlemg 13196 imasaddvallemg 13197 subsubm 13365 subsubg 13583 subsubrng 14026 subsubrg 14057 lidlss 14288 toponss 14548 ssntr 14644 iscnp3 14725 cnprcl2k 14728 tgcn 14730 tgcnp 14731 ssidcn 14732 cncnp 14752 txcnp 14793 imasnopn 14821 hmeontr 14835 blssec 14960 blssopn 15007 xmettx 15032 metcnp 15034 plyaddlem1 15269 plymullem1 15270 plycoeid3 15279 nnsf 16057 nninfsellemsuc 16064 |
| Copyright terms: Public domain | W3C validator |