| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sseqtrrd | GIF version | ||
| Description: Substitution of equality into a subclass relationship. (Contributed by NM, 25-Apr-2004.) |
| Ref | Expression |
|---|---|
| sseqtrrd.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
| sseqtrrd.2 | ⊢ (𝜑 → 𝐶 = 𝐵) |
| Ref | Expression |
|---|---|
| sseqtrrd | ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseqtrrd.1 | . 2 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
| 2 | sseqtrrd.2 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐵) | |
| 3 | 2 | eqcomd 2235 | . 2 ⊢ (𝜑 → 𝐵 = 𝐶) |
| 4 | 1, 3 | sseqtrd 3262 | 1 ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1395 ⊆ wss 3197 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-11 1552 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-in 3203 df-ss 3210 |
| This theorem is referenced by: sseqtrrid 3275 fnfvima 5878 tfrlemiubacc 6482 tfr1onlemubacc 6498 tfrcllemubacc 6511 rdgivallem 6533 nnnninf 7301 nninfwlpoimlemg 7350 ccatass 11151 swrdval2 11191 dfphi2 12750 ctinf 13009 imasaddfnlemg 13355 imasaddvallemg 13356 subsubm 13524 subsubg 13742 subsubrng 14186 subsubrg 14217 lidlss 14448 toponss 14708 ssntr 14804 iscnp3 14885 cnprcl2k 14888 tgcn 14890 tgcnp 14891 ssidcn 14892 cncnp 14912 txcnp 14953 imasnopn 14981 hmeontr 14995 blssec 15120 blssopn 15167 xmettx 15192 metcnp 15194 plyaddlem1 15429 plymullem1 15430 plycoeid3 15439 nnsf 16401 nninfsellemsuc 16408 |
| Copyright terms: Public domain | W3C validator |