ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sseqtrrd GIF version

Theorem sseqtrrd 3263
Description: Substitution of equality into a subclass relationship. (Contributed by NM, 25-Apr-2004.)
Hypotheses
Ref Expression
sseqtrrd.1 (𝜑𝐴𝐵)
sseqtrrd.2 (𝜑𝐶 = 𝐵)
Assertion
Ref Expression
sseqtrrd (𝜑𝐴𝐶)

Proof of Theorem sseqtrrd
StepHypRef Expression
1 sseqtrrd.1 . 2 (𝜑𝐴𝐵)
2 sseqtrrd.2 . . 3 (𝜑𝐶 = 𝐵)
32eqcomd 2235 . 2 (𝜑𝐵 = 𝐶)
41, 3sseqtrd 3262 1 (𝜑𝐴𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1395  wss 3197
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-11 1552  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-in 3203  df-ss 3210
This theorem is referenced by:  sseqtrrid  3275  fnfvima  5878  tfrlemiubacc  6482  tfr1onlemubacc  6498  tfrcllemubacc  6511  rdgivallem  6533  nnnninf  7301  nninfwlpoimlemg  7350  ccatass  11151  swrdval2  11191  dfphi2  12750  ctinf  13009  imasaddfnlemg  13355  imasaddvallemg  13356  subsubm  13524  subsubg  13742  subsubrng  14186  subsubrg  14217  lidlss  14448  toponss  14708  ssntr  14804  iscnp3  14885  cnprcl2k  14888  tgcn  14890  tgcnp  14891  ssidcn  14892  cncnp  14912  txcnp  14953  imasnopn  14981  hmeontr  14995  blssec  15120  blssopn  15167  xmettx  15192  metcnp  15194  plyaddlem1  15429  plymullem1  15430  plycoeid3  15439  nnsf  16401  nninfsellemsuc  16408
  Copyright terms: Public domain W3C validator