| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sseqtrrd | GIF version | ||
| Description: Substitution of equality into a subclass relationship. (Contributed by NM, 25-Apr-2004.) |
| Ref | Expression |
|---|---|
| sseqtrrd.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
| sseqtrrd.2 | ⊢ (𝜑 → 𝐶 = 𝐵) |
| Ref | Expression |
|---|---|
| sseqtrrd | ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseqtrrd.1 | . 2 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
| 2 | sseqtrrd.2 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐵) | |
| 3 | 2 | eqcomd 2202 | . 2 ⊢ (𝜑 → 𝐵 = 𝐶) |
| 4 | 1, 3 | sseqtrd 3221 | 1 ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 ⊆ wss 3157 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-in 3163 df-ss 3170 |
| This theorem is referenced by: sseqtrrid 3234 fnfvima 5797 tfrlemiubacc 6388 tfr1onlemubacc 6404 tfrcllemubacc 6417 rdgivallem 6439 nnnninf 7192 nninfwlpoimlemg 7241 dfphi2 12388 ctinf 12647 imasaddfnlemg 12957 imasaddvallemg 12958 subsubm 13115 subsubg 13327 subsubrng 13770 subsubrg 13801 lidlss 14032 toponss 14262 ssntr 14358 iscnp3 14439 cnprcl2k 14442 tgcn 14444 tgcnp 14445 ssidcn 14446 cncnp 14466 txcnp 14507 imasnopn 14535 hmeontr 14549 blssec 14674 blssopn 14721 xmettx 14746 metcnp 14748 plyaddlem1 14983 plymullem1 14984 plycoeid3 14993 nnsf 15649 nninfsellemsuc 15656 |
| Copyright terms: Public domain | W3C validator |