| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sseqtrrd | GIF version | ||
| Description: Substitution of equality into a subclass relationship. (Contributed by NM, 25-Apr-2004.) |
| Ref | Expression |
|---|---|
| sseqtrrd.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
| sseqtrrd.2 | ⊢ (𝜑 → 𝐶 = 𝐵) |
| Ref | Expression |
|---|---|
| sseqtrrd | ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseqtrrd.1 | . 2 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
| 2 | sseqtrrd.2 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐵) | |
| 3 | 2 | eqcomd 2235 | . 2 ⊢ (𝜑 → 𝐵 = 𝐶) |
| 4 | 1, 3 | sseqtrd 3262 | 1 ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1395 ⊆ wss 3197 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-11 1552 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-in 3203 df-ss 3210 |
| This theorem is referenced by: sseqtrrid 3275 fnfvima 5867 tfrlemiubacc 6466 tfr1onlemubacc 6482 tfrcllemubacc 6495 rdgivallem 6517 nnnninf 7281 nninfwlpoimlemg 7330 ccatass 11129 swrdval2 11169 dfphi2 12728 ctinf 12987 imasaddfnlemg 13333 imasaddvallemg 13334 subsubm 13502 subsubg 13720 subsubrng 14163 subsubrg 14194 lidlss 14425 toponss 14685 ssntr 14781 iscnp3 14862 cnprcl2k 14865 tgcn 14867 tgcnp 14868 ssidcn 14869 cncnp 14889 txcnp 14930 imasnopn 14958 hmeontr 14972 blssec 15097 blssopn 15144 xmettx 15169 metcnp 15171 plyaddlem1 15406 plymullem1 15407 plycoeid3 15416 nnsf 16302 nninfsellemsuc 16309 |
| Copyright terms: Public domain | W3C validator |