ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fprodsplitdc GIF version

Theorem fprodsplitdc 11559
Description: Split a finite product into two parts. New proofs should use fprodsplit 11560 which is the same but with one fewer hypothesis. (Contributed by Scott Fenton, 16-Dec-2017.) (New usage is discouraged.)
Hypotheses
Ref Expression
fprodsplitdc.1 (𝜑 → (𝐴𝐵) = ∅)
fprodsplitdc.2 (𝜑𝑈 = (𝐴𝐵))
fprodsplitdc.3 (𝜑𝑈 ∈ Fin)
fprodsplitdc.a (𝜑 → ∀𝑗𝑈 DECID 𝑗𝐴)
fprodsplitdc.4 ((𝜑𝑘𝑈) → 𝐶 ∈ ℂ)
Assertion
Ref Expression
fprodsplitdc (𝜑 → ∏𝑘𝑈 𝐶 = (∏𝑘𝐴 𝐶 · ∏𝑘𝐵 𝐶))
Distinct variable groups:   𝐴,𝑗,𝑘   𝐵,𝑗,𝑘   𝜑,𝑗,𝑘   𝑈,𝑗,𝑘
Allowed substitution hints:   𝐶(𝑗,𝑘)

Proof of Theorem fprodsplitdc
StepHypRef Expression
1 iftrue 3531 . . . . 5 (𝑘𝐴 → if(𝑘𝐴, 𝐶, 1) = 𝐶)
21prodeq2i 11525 . . . 4 𝑘𝐴 if(𝑘𝐴, 𝐶, 1) = ∏𝑘𝐴 𝐶
3 ssun1 3290 . . . . . 6 𝐴 ⊆ (𝐴𝐵)
4 fprodsplitdc.2 . . . . . 6 (𝜑𝑈 = (𝐴𝐵))
53, 4sseqtrrid 3198 . . . . 5 (𝜑𝐴𝑈)
61adantl 275 . . . . . 6 ((𝜑𝑘𝐴) → if(𝑘𝐴, 𝐶, 1) = 𝐶)
75sselda 3147 . . . . . . 7 ((𝜑𝑘𝐴) → 𝑘𝑈)
8 fprodsplitdc.4 . . . . . . 7 ((𝜑𝑘𝑈) → 𝐶 ∈ ℂ)
97, 8syldan 280 . . . . . 6 ((𝜑𝑘𝐴) → 𝐶 ∈ ℂ)
106, 9eqeltrd 2247 . . . . 5 ((𝜑𝑘𝐴) → if(𝑘𝐴, 𝐶, 1) ∈ ℂ)
11 fprodsplitdc.a . . . . 5 (𝜑 → ∀𝑗𝑈 DECID 𝑗𝐴)
12 eldifn 3250 . . . . . . 7 (𝑘 ∈ (𝑈𝐴) → ¬ 𝑘𝐴)
1312iffalsed 3536 . . . . . 6 (𝑘 ∈ (𝑈𝐴) → if(𝑘𝐴, 𝐶, 1) = 1)
1413adantl 275 . . . . 5 ((𝜑𝑘 ∈ (𝑈𝐴)) → if(𝑘𝐴, 𝐶, 1) = 1)
15 fprodsplitdc.3 . . . . 5 (𝜑𝑈 ∈ Fin)
165, 10, 11, 14, 15fprodssdc 11553 . . . 4 (𝜑 → ∏𝑘𝐴 if(𝑘𝐴, 𝐶, 1) = ∏𝑘𝑈 if(𝑘𝐴, 𝐶, 1))
172, 16eqtr3id 2217 . . 3 (𝜑 → ∏𝑘𝐴 𝐶 = ∏𝑘𝑈 if(𝑘𝐴, 𝐶, 1))
18 iftrue 3531 . . . . 5 (𝑘𝐵 → if(𝑘𝐵, 𝐶, 1) = 𝐶)
1918prodeq2i 11525 . . . 4 𝑘𝐵 if(𝑘𝐵, 𝐶, 1) = ∏𝑘𝐵 𝐶
20 ssun2 3291 . . . . . 6 𝐵 ⊆ (𝐴𝐵)
2120, 4sseqtrrid 3198 . . . . 5 (𝜑𝐵𝑈)
2218adantl 275 . . . . . 6 ((𝜑𝑘𝐵) → if(𝑘𝐵, 𝐶, 1) = 𝐶)
2321sselda 3147 . . . . . . 7 ((𝜑𝑘𝐵) → 𝑘𝑈)
2423, 8syldan 280 . . . . . 6 ((𝜑𝑘𝐵) → 𝐶 ∈ ℂ)
2522, 24eqeltrd 2247 . . . . 5 ((𝜑𝑘𝐵) → if(𝑘𝐵, 𝐶, 1) ∈ ℂ)
26 fprodsplitdc.1 . . . . . . . . . . . . . 14 (𝜑 → (𝐴𝐵) = ∅)
27 disj 3463 . . . . . . . . . . . . . 14 ((𝐴𝐵) = ∅ ↔ ∀𝑗𝐴 ¬ 𝑗𝐵)
2826, 27sylib 121 . . . . . . . . . . . . 13 (𝜑 → ∀𝑗𝐴 ¬ 𝑗𝐵)
2928ad2antrr 485 . . . . . . . . . . . 12 (((𝜑𝑗𝑈) ∧ DECID 𝑗𝐴) → ∀𝑗𝐴 ¬ 𝑗𝐵)
3029r19.21bi 2558 . . . . . . . . . . 11 ((((𝜑𝑗𝑈) ∧ DECID 𝑗𝐴) ∧ 𝑗𝐴) → ¬ 𝑗𝐵)
3130olcd 729 . . . . . . . . . 10 ((((𝜑𝑗𝑈) ∧ DECID 𝑗𝐴) ∧ 𝑗𝐴) → (𝑗𝐵 ∨ ¬ 𝑗𝐵))
32 df-dc 830 . . . . . . . . . 10 (DECID 𝑗𝐵 ↔ (𝑗𝐵 ∨ ¬ 𝑗𝐵))
3331, 32sylibr 133 . . . . . . . . 9 ((((𝜑𝑗𝑈) ∧ DECID 𝑗𝐴) ∧ 𝑗𝐴) → DECID 𝑗𝐵)
34 simpr 109 . . . . . . . . . . . 12 ((((𝜑𝑗𝑈) ∧ DECID 𝑗𝐴) ∧ ¬ 𝑗𝐴) → ¬ 𝑗𝐴)
35 simpllr 529 . . . . . . . . . . . . . . 15 ((((𝜑𝑗𝑈) ∧ DECID 𝑗𝐴) ∧ ¬ 𝑗𝐴) → 𝑗𝑈)
364eleq2d 2240 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑗𝑈𝑗 ∈ (𝐴𝐵)))
3736ad3antrrr 489 . . . . . . . . . . . . . . 15 ((((𝜑𝑗𝑈) ∧ DECID 𝑗𝐴) ∧ ¬ 𝑗𝐴) → (𝑗𝑈𝑗 ∈ (𝐴𝐵)))
3835, 37mpbid 146 . . . . . . . . . . . . . 14 ((((𝜑𝑗𝑈) ∧ DECID 𝑗𝐴) ∧ ¬ 𝑗𝐴) → 𝑗 ∈ (𝐴𝐵))
39 elun 3268 . . . . . . . . . . . . . 14 (𝑗 ∈ (𝐴𝐵) ↔ (𝑗𝐴𝑗𝐵))
4038, 39sylib 121 . . . . . . . . . . . . 13 ((((𝜑𝑗𝑈) ∧ DECID 𝑗𝐴) ∧ ¬ 𝑗𝐴) → (𝑗𝐴𝑗𝐵))
4140orcomd 724 . . . . . . . . . . . 12 ((((𝜑𝑗𝑈) ∧ DECID 𝑗𝐴) ∧ ¬ 𝑗𝐴) → (𝑗𝐵𝑗𝐴))
4234, 41ecased 1344 . . . . . . . . . . 11 ((((𝜑𝑗𝑈) ∧ DECID 𝑗𝐴) ∧ ¬ 𝑗𝐴) → 𝑗𝐵)
4342orcd 728 . . . . . . . . . 10 ((((𝜑𝑗𝑈) ∧ DECID 𝑗𝐴) ∧ ¬ 𝑗𝐴) → (𝑗𝐵 ∨ ¬ 𝑗𝐵))
4443, 32sylibr 133 . . . . . . . . 9 ((((𝜑𝑗𝑈) ∧ DECID 𝑗𝐴) ∧ ¬ 𝑗𝐴) → DECID 𝑗𝐵)
45 exmiddc 831 . . . . . . . . . 10 (DECID 𝑗𝐴 → (𝑗𝐴 ∨ ¬ 𝑗𝐴))
4645adantl 275 . . . . . . . . 9 (((𝜑𝑗𝑈) ∧ DECID 𝑗𝐴) → (𝑗𝐴 ∨ ¬ 𝑗𝐴))
4733, 44, 46mpjaodan 793 . . . . . . . 8 (((𝜑𝑗𝑈) ∧ DECID 𝑗𝐴) → DECID 𝑗𝐵)
4847ex 114 . . . . . . 7 ((𝜑𝑗𝑈) → (DECID 𝑗𝐴DECID 𝑗𝐵))
4948ralimdva 2537 . . . . . 6 (𝜑 → (∀𝑗𝑈 DECID 𝑗𝐴 → ∀𝑗𝑈 DECID 𝑗𝐵))
5011, 49mpd 13 . . . . 5 (𝜑 → ∀𝑗𝑈 DECID 𝑗𝐵)
51 eldifn 3250 . . . . . . 7 (𝑘 ∈ (𝑈𝐵) → ¬ 𝑘𝐵)
5251iffalsed 3536 . . . . . 6 (𝑘 ∈ (𝑈𝐵) → if(𝑘𝐵, 𝐶, 1) = 1)
5352adantl 275 . . . . 5 ((𝜑𝑘 ∈ (𝑈𝐵)) → if(𝑘𝐵, 𝐶, 1) = 1)
5421, 25, 50, 53, 15fprodssdc 11553 . . . 4 (𝜑 → ∏𝑘𝐵 if(𝑘𝐵, 𝐶, 1) = ∏𝑘𝑈 if(𝑘𝐵, 𝐶, 1))
5519, 54eqtr3id 2217 . . 3 (𝜑 → ∏𝑘𝐵 𝐶 = ∏𝑘𝑈 if(𝑘𝐵, 𝐶, 1))
5617, 55oveq12d 5871 . 2 (𝜑 → (∏𝑘𝐴 𝐶 · ∏𝑘𝐵 𝐶) = (∏𝑘𝑈 if(𝑘𝐴, 𝐶, 1) · ∏𝑘𝑈 if(𝑘𝐵, 𝐶, 1)))
57 1cnd 7936 . . . 4 ((𝜑𝑘𝑈) → 1 ∈ ℂ)
58 eleq1w 2231 . . . . . . . 8 (𝑗 = 𝑘 → (𝑗𝐴𝑘𝐴))
5958dcbid 833 . . . . . . 7 (𝑗 = 𝑘 → (DECID 𝑗𝐴DECID 𝑘𝐴))
6059cbvralv 2696 . . . . . 6 (∀𝑗𝑈 DECID 𝑗𝐴 ↔ ∀𝑘𝑈 DECID 𝑘𝐴)
6111, 60sylib 121 . . . . 5 (𝜑 → ∀𝑘𝑈 DECID 𝑘𝐴)
6261r19.21bi 2558 . . . 4 ((𝜑𝑘𝑈) → DECID 𝑘𝐴)
638, 57, 62ifcldcd 3561 . . 3 ((𝜑𝑘𝑈) → if(𝑘𝐴, 𝐶, 1) ∈ ℂ)
64 eleq1w 2231 . . . . . . . 8 (𝑗 = 𝑘 → (𝑗𝐵𝑘𝐵))
6564dcbid 833 . . . . . . 7 (𝑗 = 𝑘 → (DECID 𝑗𝐵DECID 𝑘𝐵))
6665cbvralv 2696 . . . . . 6 (∀𝑗𝑈 DECID 𝑗𝐵 ↔ ∀𝑘𝑈 DECID 𝑘𝐵)
6750, 66sylib 121 . . . . 5 (𝜑 → ∀𝑘𝑈 DECID 𝑘𝐵)
6867r19.21bi 2558 . . . 4 ((𝜑𝑘𝑈) → DECID 𝑘𝐵)
698, 57, 68ifcldcd 3561 . . 3 ((𝜑𝑘𝑈) → if(𝑘𝐵, 𝐶, 1) ∈ ℂ)
7015, 63, 69fprodmul 11554 . 2 (𝜑 → ∏𝑘𝑈 (if(𝑘𝐴, 𝐶, 1) · if(𝑘𝐵, 𝐶, 1)) = (∏𝑘𝑈 if(𝑘𝐴, 𝐶, 1) · ∏𝑘𝑈 if(𝑘𝐵, 𝐶, 1)))
714eleq2d 2240 . . . . . 6 (𝜑 → (𝑘𝑈𝑘 ∈ (𝐴𝐵)))
72 elun 3268 . . . . . 6 (𝑘 ∈ (𝐴𝐵) ↔ (𝑘𝐴𝑘𝐵))
7371, 72bitrdi 195 . . . . 5 (𝜑 → (𝑘𝑈 ↔ (𝑘𝐴𝑘𝐵)))
7473biimpa 294 . . . 4 ((𝜑𝑘𝑈) → (𝑘𝐴𝑘𝐵))
75 disjel 3469 . . . . . . . . 9 (((𝐴𝐵) = ∅ ∧ 𝑘𝐴) → ¬ 𝑘𝐵)
7626, 75sylan 281 . . . . . . . 8 ((𝜑𝑘𝐴) → ¬ 𝑘𝐵)
7776iffalsed 3536 . . . . . . 7 ((𝜑𝑘𝐴) → if(𝑘𝐵, 𝐶, 1) = 1)
786, 77oveq12d 5871 . . . . . 6 ((𝜑𝑘𝐴) → (if(𝑘𝐴, 𝐶, 1) · if(𝑘𝐵, 𝐶, 1)) = (𝐶 · 1))
799mulid1d 7937 . . . . . 6 ((𝜑𝑘𝐴) → (𝐶 · 1) = 𝐶)
8078, 79eqtrd 2203 . . . . 5 ((𝜑𝑘𝐴) → (if(𝑘𝐴, 𝐶, 1) · if(𝑘𝐵, 𝐶, 1)) = 𝐶)
8176ex 114 . . . . . . . . . 10 (𝜑 → (𝑘𝐴 → ¬ 𝑘𝐵))
8281con2d 619 . . . . . . . . 9 (𝜑 → (𝑘𝐵 → ¬ 𝑘𝐴))
8382imp 123 . . . . . . . 8 ((𝜑𝑘𝐵) → ¬ 𝑘𝐴)
8483iffalsed 3536 . . . . . . 7 ((𝜑𝑘𝐵) → if(𝑘𝐴, 𝐶, 1) = 1)
8584, 22oveq12d 5871 . . . . . 6 ((𝜑𝑘𝐵) → (if(𝑘𝐴, 𝐶, 1) · if(𝑘𝐵, 𝐶, 1)) = (1 · 𝐶))
8624mulid2d 7938 . . . . . 6 ((𝜑𝑘𝐵) → (1 · 𝐶) = 𝐶)
8785, 86eqtrd 2203 . . . . 5 ((𝜑𝑘𝐵) → (if(𝑘𝐴, 𝐶, 1) · if(𝑘𝐵, 𝐶, 1)) = 𝐶)
8880, 87jaodan 792 . . . 4 ((𝜑 ∧ (𝑘𝐴𝑘𝐵)) → (if(𝑘𝐴, 𝐶, 1) · if(𝑘𝐵, 𝐶, 1)) = 𝐶)
8974, 88syldan 280 . . 3 ((𝜑𝑘𝑈) → (if(𝑘𝐴, 𝐶, 1) · if(𝑘𝐵, 𝐶, 1)) = 𝐶)
9089prodeq2dv 11529 . 2 (𝜑 → ∏𝑘𝑈 (if(𝑘𝐴, 𝐶, 1) · if(𝑘𝐵, 𝐶, 1)) = ∏𝑘𝑈 𝐶)
9156, 70, 903eqtr2rd 2210 1 (𝜑 → ∏𝑘𝑈 𝐶 = (∏𝑘𝐴 𝐶 · ∏𝑘𝐵 𝐶))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wo 703  DECID wdc 829   = wceq 1348  wcel 2141  wral 2448  cdif 3118  cun 3119  cin 3120  c0 3414  ifcif 3526  (class class class)co 5853  Fincfn 6718  cc 7772  1c1 7775   · cmul 7779  cprod 11513
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890  ax-pre-mulgt0 7891  ax-pre-mulext 7892  ax-arch 7893  ax-caucvg 7894
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-po 4281  df-iso 4282  df-iord 4351  df-on 4353  df-ilim 4354  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-isom 5207  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-irdg 6349  df-frec 6370  df-1o 6395  df-oadd 6399  df-er 6513  df-en 6719  df-dom 6720  df-fin 6721  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-reap 8494  df-ap 8501  df-div 8590  df-inn 8879  df-2 8937  df-3 8938  df-4 8939  df-n0 9136  df-z 9213  df-uz 9488  df-q 9579  df-rp 9611  df-fz 9966  df-fzo 10099  df-seqfrec 10402  df-exp 10476  df-ihash 10710  df-cj 10806  df-re 10807  df-im 10808  df-rsqrt 10962  df-abs 10963  df-clim 11242  df-proddc 11514
This theorem is referenced by:  fprodsplit  11560  fprodm1  11561  fprod1p  11562  fprodunsn  11567  fprodeq0  11580
  Copyright terms: Public domain W3C validator