ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fprodsplitdc GIF version

Theorem fprodsplitdc 11957
Description: Split a finite product into two parts. New proofs should use fprodsplit 11958 which is the same but with one fewer hypothesis. (Contributed by Scott Fenton, 16-Dec-2017.) (New usage is discouraged.)
Hypotheses
Ref Expression
fprodsplitdc.1 (𝜑 → (𝐴𝐵) = ∅)
fprodsplitdc.2 (𝜑𝑈 = (𝐴𝐵))
fprodsplitdc.3 (𝜑𝑈 ∈ Fin)
fprodsplitdc.a (𝜑 → ∀𝑗𝑈 DECID 𝑗𝐴)
fprodsplitdc.4 ((𝜑𝑘𝑈) → 𝐶 ∈ ℂ)
Assertion
Ref Expression
fprodsplitdc (𝜑 → ∏𝑘𝑈 𝐶 = (∏𝑘𝐴 𝐶 · ∏𝑘𝐵 𝐶))
Distinct variable groups:   𝐴,𝑗,𝑘   𝐵,𝑗,𝑘   𝜑,𝑗,𝑘   𝑈,𝑗,𝑘
Allowed substitution hints:   𝐶(𝑗,𝑘)

Proof of Theorem fprodsplitdc
StepHypRef Expression
1 iftrue 3578 . . . . 5 (𝑘𝐴 → if(𝑘𝐴, 𝐶, 1) = 𝐶)
21prodeq2i 11923 . . . 4 𝑘𝐴 if(𝑘𝐴, 𝐶, 1) = ∏𝑘𝐴 𝐶
3 ssun1 3338 . . . . . 6 𝐴 ⊆ (𝐴𝐵)
4 fprodsplitdc.2 . . . . . 6 (𝜑𝑈 = (𝐴𝐵))
53, 4sseqtrrid 3246 . . . . 5 (𝜑𝐴𝑈)
61adantl 277 . . . . . 6 ((𝜑𝑘𝐴) → if(𝑘𝐴, 𝐶, 1) = 𝐶)
75sselda 3195 . . . . . . 7 ((𝜑𝑘𝐴) → 𝑘𝑈)
8 fprodsplitdc.4 . . . . . . 7 ((𝜑𝑘𝑈) → 𝐶 ∈ ℂ)
97, 8syldan 282 . . . . . 6 ((𝜑𝑘𝐴) → 𝐶 ∈ ℂ)
106, 9eqeltrd 2283 . . . . 5 ((𝜑𝑘𝐴) → if(𝑘𝐴, 𝐶, 1) ∈ ℂ)
11 fprodsplitdc.a . . . . 5 (𝜑 → ∀𝑗𝑈 DECID 𝑗𝐴)
12 eldifn 3298 . . . . . . 7 (𝑘 ∈ (𝑈𝐴) → ¬ 𝑘𝐴)
1312iffalsed 3583 . . . . . 6 (𝑘 ∈ (𝑈𝐴) → if(𝑘𝐴, 𝐶, 1) = 1)
1413adantl 277 . . . . 5 ((𝜑𝑘 ∈ (𝑈𝐴)) → if(𝑘𝐴, 𝐶, 1) = 1)
15 fprodsplitdc.3 . . . . 5 (𝜑𝑈 ∈ Fin)
165, 10, 11, 14, 15fprodssdc 11951 . . . 4 (𝜑 → ∏𝑘𝐴 if(𝑘𝐴, 𝐶, 1) = ∏𝑘𝑈 if(𝑘𝐴, 𝐶, 1))
172, 16eqtr3id 2253 . . 3 (𝜑 → ∏𝑘𝐴 𝐶 = ∏𝑘𝑈 if(𝑘𝐴, 𝐶, 1))
18 iftrue 3578 . . . . 5 (𝑘𝐵 → if(𝑘𝐵, 𝐶, 1) = 𝐶)
1918prodeq2i 11923 . . . 4 𝑘𝐵 if(𝑘𝐵, 𝐶, 1) = ∏𝑘𝐵 𝐶
20 ssun2 3339 . . . . . 6 𝐵 ⊆ (𝐴𝐵)
2120, 4sseqtrrid 3246 . . . . 5 (𝜑𝐵𝑈)
2218adantl 277 . . . . . 6 ((𝜑𝑘𝐵) → if(𝑘𝐵, 𝐶, 1) = 𝐶)
2321sselda 3195 . . . . . . 7 ((𝜑𝑘𝐵) → 𝑘𝑈)
2423, 8syldan 282 . . . . . 6 ((𝜑𝑘𝐵) → 𝐶 ∈ ℂ)
2522, 24eqeltrd 2283 . . . . 5 ((𝜑𝑘𝐵) → if(𝑘𝐵, 𝐶, 1) ∈ ℂ)
26 fprodsplitdc.1 . . . . . . . . . . . . . 14 (𝜑 → (𝐴𝐵) = ∅)
27 disj 3511 . . . . . . . . . . . . . 14 ((𝐴𝐵) = ∅ ↔ ∀𝑗𝐴 ¬ 𝑗𝐵)
2826, 27sylib 122 . . . . . . . . . . . . 13 (𝜑 → ∀𝑗𝐴 ¬ 𝑗𝐵)
2928ad2antrr 488 . . . . . . . . . . . 12 (((𝜑𝑗𝑈) ∧ DECID 𝑗𝐴) → ∀𝑗𝐴 ¬ 𝑗𝐵)
3029r19.21bi 2595 . . . . . . . . . . 11 ((((𝜑𝑗𝑈) ∧ DECID 𝑗𝐴) ∧ 𝑗𝐴) → ¬ 𝑗𝐵)
3130olcd 736 . . . . . . . . . 10 ((((𝜑𝑗𝑈) ∧ DECID 𝑗𝐴) ∧ 𝑗𝐴) → (𝑗𝐵 ∨ ¬ 𝑗𝐵))
32 df-dc 837 . . . . . . . . . 10 (DECID 𝑗𝐵 ↔ (𝑗𝐵 ∨ ¬ 𝑗𝐵))
3331, 32sylibr 134 . . . . . . . . 9 ((((𝜑𝑗𝑈) ∧ DECID 𝑗𝐴) ∧ 𝑗𝐴) → DECID 𝑗𝐵)
34 simpr 110 . . . . . . . . . . . 12 ((((𝜑𝑗𝑈) ∧ DECID 𝑗𝐴) ∧ ¬ 𝑗𝐴) → ¬ 𝑗𝐴)
35 simpllr 534 . . . . . . . . . . . . . . 15 ((((𝜑𝑗𝑈) ∧ DECID 𝑗𝐴) ∧ ¬ 𝑗𝐴) → 𝑗𝑈)
364eleq2d 2276 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑗𝑈𝑗 ∈ (𝐴𝐵)))
3736ad3antrrr 492 . . . . . . . . . . . . . . 15 ((((𝜑𝑗𝑈) ∧ DECID 𝑗𝐴) ∧ ¬ 𝑗𝐴) → (𝑗𝑈𝑗 ∈ (𝐴𝐵)))
3835, 37mpbid 147 . . . . . . . . . . . . . 14 ((((𝜑𝑗𝑈) ∧ DECID 𝑗𝐴) ∧ ¬ 𝑗𝐴) → 𝑗 ∈ (𝐴𝐵))
39 elun 3316 . . . . . . . . . . . . . 14 (𝑗 ∈ (𝐴𝐵) ↔ (𝑗𝐴𝑗𝐵))
4038, 39sylib 122 . . . . . . . . . . . . 13 ((((𝜑𝑗𝑈) ∧ DECID 𝑗𝐴) ∧ ¬ 𝑗𝐴) → (𝑗𝐴𝑗𝐵))
4140orcomd 731 . . . . . . . . . . . 12 ((((𝜑𝑗𝑈) ∧ DECID 𝑗𝐴) ∧ ¬ 𝑗𝐴) → (𝑗𝐵𝑗𝐴))
4234, 41ecased 1362 . . . . . . . . . . 11 ((((𝜑𝑗𝑈) ∧ DECID 𝑗𝐴) ∧ ¬ 𝑗𝐴) → 𝑗𝐵)
4342orcd 735 . . . . . . . . . 10 ((((𝜑𝑗𝑈) ∧ DECID 𝑗𝐴) ∧ ¬ 𝑗𝐴) → (𝑗𝐵 ∨ ¬ 𝑗𝐵))
4443, 32sylibr 134 . . . . . . . . 9 ((((𝜑𝑗𝑈) ∧ DECID 𝑗𝐴) ∧ ¬ 𝑗𝐴) → DECID 𝑗𝐵)
45 exmiddc 838 . . . . . . . . . 10 (DECID 𝑗𝐴 → (𝑗𝐴 ∨ ¬ 𝑗𝐴))
4645adantl 277 . . . . . . . . 9 (((𝜑𝑗𝑈) ∧ DECID 𝑗𝐴) → (𝑗𝐴 ∨ ¬ 𝑗𝐴))
4733, 44, 46mpjaodan 800 . . . . . . . 8 (((𝜑𝑗𝑈) ∧ DECID 𝑗𝐴) → DECID 𝑗𝐵)
4847ex 115 . . . . . . 7 ((𝜑𝑗𝑈) → (DECID 𝑗𝐴DECID 𝑗𝐵))
4948ralimdva 2574 . . . . . 6 (𝜑 → (∀𝑗𝑈 DECID 𝑗𝐴 → ∀𝑗𝑈 DECID 𝑗𝐵))
5011, 49mpd 13 . . . . 5 (𝜑 → ∀𝑗𝑈 DECID 𝑗𝐵)
51 eldifn 3298 . . . . . . 7 (𝑘 ∈ (𝑈𝐵) → ¬ 𝑘𝐵)
5251iffalsed 3583 . . . . . 6 (𝑘 ∈ (𝑈𝐵) → if(𝑘𝐵, 𝐶, 1) = 1)
5352adantl 277 . . . . 5 ((𝜑𝑘 ∈ (𝑈𝐵)) → if(𝑘𝐵, 𝐶, 1) = 1)
5421, 25, 50, 53, 15fprodssdc 11951 . . . 4 (𝜑 → ∏𝑘𝐵 if(𝑘𝐵, 𝐶, 1) = ∏𝑘𝑈 if(𝑘𝐵, 𝐶, 1))
5519, 54eqtr3id 2253 . . 3 (𝜑 → ∏𝑘𝐵 𝐶 = ∏𝑘𝑈 if(𝑘𝐵, 𝐶, 1))
5617, 55oveq12d 5972 . 2 (𝜑 → (∏𝑘𝐴 𝐶 · ∏𝑘𝐵 𝐶) = (∏𝑘𝑈 if(𝑘𝐴, 𝐶, 1) · ∏𝑘𝑈 if(𝑘𝐵, 𝐶, 1)))
57 1cnd 8101 . . . 4 ((𝜑𝑘𝑈) → 1 ∈ ℂ)
58 eleq1w 2267 . . . . . . . 8 (𝑗 = 𝑘 → (𝑗𝐴𝑘𝐴))
5958dcbid 840 . . . . . . 7 (𝑗 = 𝑘 → (DECID 𝑗𝐴DECID 𝑘𝐴))
6059cbvralv 2739 . . . . . 6 (∀𝑗𝑈 DECID 𝑗𝐴 ↔ ∀𝑘𝑈 DECID 𝑘𝐴)
6111, 60sylib 122 . . . . 5 (𝜑 → ∀𝑘𝑈 DECID 𝑘𝐴)
6261r19.21bi 2595 . . . 4 ((𝜑𝑘𝑈) → DECID 𝑘𝐴)
638, 57, 62ifcldcd 3610 . . 3 ((𝜑𝑘𝑈) → if(𝑘𝐴, 𝐶, 1) ∈ ℂ)
64 eleq1w 2267 . . . . . . . 8 (𝑗 = 𝑘 → (𝑗𝐵𝑘𝐵))
6564dcbid 840 . . . . . . 7 (𝑗 = 𝑘 → (DECID 𝑗𝐵DECID 𝑘𝐵))
6665cbvralv 2739 . . . . . 6 (∀𝑗𝑈 DECID 𝑗𝐵 ↔ ∀𝑘𝑈 DECID 𝑘𝐵)
6750, 66sylib 122 . . . . 5 (𝜑 → ∀𝑘𝑈 DECID 𝑘𝐵)
6867r19.21bi 2595 . . . 4 ((𝜑𝑘𝑈) → DECID 𝑘𝐵)
698, 57, 68ifcldcd 3610 . . 3 ((𝜑𝑘𝑈) → if(𝑘𝐵, 𝐶, 1) ∈ ℂ)
7015, 63, 69fprodmul 11952 . 2 (𝜑 → ∏𝑘𝑈 (if(𝑘𝐴, 𝐶, 1) · if(𝑘𝐵, 𝐶, 1)) = (∏𝑘𝑈 if(𝑘𝐴, 𝐶, 1) · ∏𝑘𝑈 if(𝑘𝐵, 𝐶, 1)))
714eleq2d 2276 . . . . . 6 (𝜑 → (𝑘𝑈𝑘 ∈ (𝐴𝐵)))
72 elun 3316 . . . . . 6 (𝑘 ∈ (𝐴𝐵) ↔ (𝑘𝐴𝑘𝐵))
7371, 72bitrdi 196 . . . . 5 (𝜑 → (𝑘𝑈 ↔ (𝑘𝐴𝑘𝐵)))
7473biimpa 296 . . . 4 ((𝜑𝑘𝑈) → (𝑘𝐴𝑘𝐵))
75 disjel 3517 . . . . . . . . 9 (((𝐴𝐵) = ∅ ∧ 𝑘𝐴) → ¬ 𝑘𝐵)
7626, 75sylan 283 . . . . . . . 8 ((𝜑𝑘𝐴) → ¬ 𝑘𝐵)
7776iffalsed 3583 . . . . . . 7 ((𝜑𝑘𝐴) → if(𝑘𝐵, 𝐶, 1) = 1)
786, 77oveq12d 5972 . . . . . 6 ((𝜑𝑘𝐴) → (if(𝑘𝐴, 𝐶, 1) · if(𝑘𝐵, 𝐶, 1)) = (𝐶 · 1))
799mulridd 8102 . . . . . 6 ((𝜑𝑘𝐴) → (𝐶 · 1) = 𝐶)
8078, 79eqtrd 2239 . . . . 5 ((𝜑𝑘𝐴) → (if(𝑘𝐴, 𝐶, 1) · if(𝑘𝐵, 𝐶, 1)) = 𝐶)
8176ex 115 . . . . . . . . . 10 (𝜑 → (𝑘𝐴 → ¬ 𝑘𝐵))
8281con2d 625 . . . . . . . . 9 (𝜑 → (𝑘𝐵 → ¬ 𝑘𝐴))
8382imp 124 . . . . . . . 8 ((𝜑𝑘𝐵) → ¬ 𝑘𝐴)
8483iffalsed 3583 . . . . . . 7 ((𝜑𝑘𝐵) → if(𝑘𝐴, 𝐶, 1) = 1)
8584, 22oveq12d 5972 . . . . . 6 ((𝜑𝑘𝐵) → (if(𝑘𝐴, 𝐶, 1) · if(𝑘𝐵, 𝐶, 1)) = (1 · 𝐶))
8624mulid2d 8104 . . . . . 6 ((𝜑𝑘𝐵) → (1 · 𝐶) = 𝐶)
8785, 86eqtrd 2239 . . . . 5 ((𝜑𝑘𝐵) → (if(𝑘𝐴, 𝐶, 1) · if(𝑘𝐵, 𝐶, 1)) = 𝐶)
8880, 87jaodan 799 . . . 4 ((𝜑 ∧ (𝑘𝐴𝑘𝐵)) → (if(𝑘𝐴, 𝐶, 1) · if(𝑘𝐵, 𝐶, 1)) = 𝐶)
8974, 88syldan 282 . . 3 ((𝜑𝑘𝑈) → (if(𝑘𝐴, 𝐶, 1) · if(𝑘𝐵, 𝐶, 1)) = 𝐶)
9089prodeq2dv 11927 . 2 (𝜑 → ∏𝑘𝑈 (if(𝑘𝐴, 𝐶, 1) · if(𝑘𝐵, 𝐶, 1)) = ∏𝑘𝑈 𝐶)
9156, 70, 903eqtr2rd 2246 1 (𝜑 → ∏𝑘𝑈 𝐶 = (∏𝑘𝐴 𝐶 · ∏𝑘𝐵 𝐶))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 710  DECID wdc 836   = wceq 1373  wcel 2177  wral 2485  cdif 3165  cun 3166  cin 3167  c0 3462  ifcif 3573  (class class class)co 5954  Fincfn 6837  cc 7936  1c1 7939   · cmul 7943  cprod 11911
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4164  ax-sep 4167  ax-nul 4175  ax-pow 4223  ax-pr 4258  ax-un 4485  ax-setind 4590  ax-iinf 4641  ax-cnex 8029  ax-resscn 8030  ax-1cn 8031  ax-1re 8032  ax-icn 8033  ax-addcl 8034  ax-addrcl 8035  ax-mulcl 8036  ax-mulrcl 8037  ax-addcom 8038  ax-mulcom 8039  ax-addass 8040  ax-mulass 8041  ax-distr 8042  ax-i2m1 8043  ax-0lt1 8044  ax-1rid 8045  ax-0id 8046  ax-rnegex 8047  ax-precex 8048  ax-cnre 8049  ax-pre-ltirr 8050  ax-pre-ltwlin 8051  ax-pre-lttrn 8052  ax-pre-apti 8053  ax-pre-ltadd 8054  ax-pre-mulgt0 8055  ax-pre-mulext 8056  ax-arch 8057  ax-caucvg 8058
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3001  df-csb 3096  df-dif 3170  df-un 3172  df-in 3174  df-ss 3181  df-nul 3463  df-if 3574  df-pw 3620  df-sn 3641  df-pr 3642  df-op 3644  df-uni 3854  df-int 3889  df-iun 3932  df-br 4049  df-opab 4111  df-mpt 4112  df-tr 4148  df-id 4345  df-po 4348  df-iso 4349  df-iord 4418  df-on 4420  df-ilim 4421  df-suc 4423  df-iom 4644  df-xp 4686  df-rel 4687  df-cnv 4688  df-co 4689  df-dm 4690  df-rn 4691  df-res 4692  df-ima 4693  df-iota 5238  df-fun 5279  df-fn 5280  df-f 5281  df-f1 5282  df-fo 5283  df-f1o 5284  df-fv 5285  df-isom 5286  df-riota 5909  df-ov 5957  df-oprab 5958  df-mpo 5959  df-1st 6236  df-2nd 6237  df-recs 6401  df-irdg 6466  df-frec 6487  df-1o 6512  df-oadd 6516  df-er 6630  df-en 6838  df-dom 6839  df-fin 6840  df-pnf 8122  df-mnf 8123  df-xr 8124  df-ltxr 8125  df-le 8126  df-sub 8258  df-neg 8259  df-reap 8661  df-ap 8668  df-div 8759  df-inn 9050  df-2 9108  df-3 9109  df-4 9110  df-n0 9309  df-z 9386  df-uz 9662  df-q 9754  df-rp 9789  df-fz 10144  df-fzo 10278  df-seqfrec 10606  df-exp 10697  df-ihash 10934  df-cj 11203  df-re 11204  df-im 11205  df-rsqrt 11359  df-abs 11360  df-clim 11640  df-proddc 11912
This theorem is referenced by:  fprodsplit  11958  fprodm1  11959  fprod1p  11960  fprodunsn  11965  fprodeq0  11978
  Copyright terms: Public domain W3C validator