ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fprodsplitdc GIF version

Theorem fprodsplitdc 11607
Description: Split a finite product into two parts. New proofs should use fprodsplit 11608 which is the same but with one fewer hypothesis. (Contributed by Scott Fenton, 16-Dec-2017.) (New usage is discouraged.)
Hypotheses
Ref Expression
fprodsplitdc.1 (𝜑 → (𝐴𝐵) = ∅)
fprodsplitdc.2 (𝜑𝑈 = (𝐴𝐵))
fprodsplitdc.3 (𝜑𝑈 ∈ Fin)
fprodsplitdc.a (𝜑 → ∀𝑗𝑈 DECID 𝑗𝐴)
fprodsplitdc.4 ((𝜑𝑘𝑈) → 𝐶 ∈ ℂ)
Assertion
Ref Expression
fprodsplitdc (𝜑 → ∏𝑘𝑈 𝐶 = (∏𝑘𝐴 𝐶 · ∏𝑘𝐵 𝐶))
Distinct variable groups:   𝐴,𝑗,𝑘   𝐵,𝑗,𝑘   𝜑,𝑗,𝑘   𝑈,𝑗,𝑘
Allowed substitution hints:   𝐶(𝑗,𝑘)

Proof of Theorem fprodsplitdc
StepHypRef Expression
1 iftrue 3541 . . . . 5 (𝑘𝐴 → if(𝑘𝐴, 𝐶, 1) = 𝐶)
21prodeq2i 11573 . . . 4 𝑘𝐴 if(𝑘𝐴, 𝐶, 1) = ∏𝑘𝐴 𝐶
3 ssun1 3300 . . . . . 6 𝐴 ⊆ (𝐴𝐵)
4 fprodsplitdc.2 . . . . . 6 (𝜑𝑈 = (𝐴𝐵))
53, 4sseqtrrid 3208 . . . . 5 (𝜑𝐴𝑈)
61adantl 277 . . . . . 6 ((𝜑𝑘𝐴) → if(𝑘𝐴, 𝐶, 1) = 𝐶)
75sselda 3157 . . . . . . 7 ((𝜑𝑘𝐴) → 𝑘𝑈)
8 fprodsplitdc.4 . . . . . . 7 ((𝜑𝑘𝑈) → 𝐶 ∈ ℂ)
97, 8syldan 282 . . . . . 6 ((𝜑𝑘𝐴) → 𝐶 ∈ ℂ)
106, 9eqeltrd 2254 . . . . 5 ((𝜑𝑘𝐴) → if(𝑘𝐴, 𝐶, 1) ∈ ℂ)
11 fprodsplitdc.a . . . . 5 (𝜑 → ∀𝑗𝑈 DECID 𝑗𝐴)
12 eldifn 3260 . . . . . . 7 (𝑘 ∈ (𝑈𝐴) → ¬ 𝑘𝐴)
1312iffalsed 3546 . . . . . 6 (𝑘 ∈ (𝑈𝐴) → if(𝑘𝐴, 𝐶, 1) = 1)
1413adantl 277 . . . . 5 ((𝜑𝑘 ∈ (𝑈𝐴)) → if(𝑘𝐴, 𝐶, 1) = 1)
15 fprodsplitdc.3 . . . . 5 (𝜑𝑈 ∈ Fin)
165, 10, 11, 14, 15fprodssdc 11601 . . . 4 (𝜑 → ∏𝑘𝐴 if(𝑘𝐴, 𝐶, 1) = ∏𝑘𝑈 if(𝑘𝐴, 𝐶, 1))
172, 16eqtr3id 2224 . . 3 (𝜑 → ∏𝑘𝐴 𝐶 = ∏𝑘𝑈 if(𝑘𝐴, 𝐶, 1))
18 iftrue 3541 . . . . 5 (𝑘𝐵 → if(𝑘𝐵, 𝐶, 1) = 𝐶)
1918prodeq2i 11573 . . . 4 𝑘𝐵 if(𝑘𝐵, 𝐶, 1) = ∏𝑘𝐵 𝐶
20 ssun2 3301 . . . . . 6 𝐵 ⊆ (𝐴𝐵)
2120, 4sseqtrrid 3208 . . . . 5 (𝜑𝐵𝑈)
2218adantl 277 . . . . . 6 ((𝜑𝑘𝐵) → if(𝑘𝐵, 𝐶, 1) = 𝐶)
2321sselda 3157 . . . . . . 7 ((𝜑𝑘𝐵) → 𝑘𝑈)
2423, 8syldan 282 . . . . . 6 ((𝜑𝑘𝐵) → 𝐶 ∈ ℂ)
2522, 24eqeltrd 2254 . . . . 5 ((𝜑𝑘𝐵) → if(𝑘𝐵, 𝐶, 1) ∈ ℂ)
26 fprodsplitdc.1 . . . . . . . . . . . . . 14 (𝜑 → (𝐴𝐵) = ∅)
27 disj 3473 . . . . . . . . . . . . . 14 ((𝐴𝐵) = ∅ ↔ ∀𝑗𝐴 ¬ 𝑗𝐵)
2826, 27sylib 122 . . . . . . . . . . . . 13 (𝜑 → ∀𝑗𝐴 ¬ 𝑗𝐵)
2928ad2antrr 488 . . . . . . . . . . . 12 (((𝜑𝑗𝑈) ∧ DECID 𝑗𝐴) → ∀𝑗𝐴 ¬ 𝑗𝐵)
3029r19.21bi 2565 . . . . . . . . . . 11 ((((𝜑𝑗𝑈) ∧ DECID 𝑗𝐴) ∧ 𝑗𝐴) → ¬ 𝑗𝐵)
3130olcd 734 . . . . . . . . . 10 ((((𝜑𝑗𝑈) ∧ DECID 𝑗𝐴) ∧ 𝑗𝐴) → (𝑗𝐵 ∨ ¬ 𝑗𝐵))
32 df-dc 835 . . . . . . . . . 10 (DECID 𝑗𝐵 ↔ (𝑗𝐵 ∨ ¬ 𝑗𝐵))
3331, 32sylibr 134 . . . . . . . . 9 ((((𝜑𝑗𝑈) ∧ DECID 𝑗𝐴) ∧ 𝑗𝐴) → DECID 𝑗𝐵)
34 simpr 110 . . . . . . . . . . . 12 ((((𝜑𝑗𝑈) ∧ DECID 𝑗𝐴) ∧ ¬ 𝑗𝐴) → ¬ 𝑗𝐴)
35 simpllr 534 . . . . . . . . . . . . . . 15 ((((𝜑𝑗𝑈) ∧ DECID 𝑗𝐴) ∧ ¬ 𝑗𝐴) → 𝑗𝑈)
364eleq2d 2247 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑗𝑈𝑗 ∈ (𝐴𝐵)))
3736ad3antrrr 492 . . . . . . . . . . . . . . 15 ((((𝜑𝑗𝑈) ∧ DECID 𝑗𝐴) ∧ ¬ 𝑗𝐴) → (𝑗𝑈𝑗 ∈ (𝐴𝐵)))
3835, 37mpbid 147 . . . . . . . . . . . . . 14 ((((𝜑𝑗𝑈) ∧ DECID 𝑗𝐴) ∧ ¬ 𝑗𝐴) → 𝑗 ∈ (𝐴𝐵))
39 elun 3278 . . . . . . . . . . . . . 14 (𝑗 ∈ (𝐴𝐵) ↔ (𝑗𝐴𝑗𝐵))
4038, 39sylib 122 . . . . . . . . . . . . 13 ((((𝜑𝑗𝑈) ∧ DECID 𝑗𝐴) ∧ ¬ 𝑗𝐴) → (𝑗𝐴𝑗𝐵))
4140orcomd 729 . . . . . . . . . . . 12 ((((𝜑𝑗𝑈) ∧ DECID 𝑗𝐴) ∧ ¬ 𝑗𝐴) → (𝑗𝐵𝑗𝐴))
4234, 41ecased 1349 . . . . . . . . . . 11 ((((𝜑𝑗𝑈) ∧ DECID 𝑗𝐴) ∧ ¬ 𝑗𝐴) → 𝑗𝐵)
4342orcd 733 . . . . . . . . . 10 ((((𝜑𝑗𝑈) ∧ DECID 𝑗𝐴) ∧ ¬ 𝑗𝐴) → (𝑗𝐵 ∨ ¬ 𝑗𝐵))
4443, 32sylibr 134 . . . . . . . . 9 ((((𝜑𝑗𝑈) ∧ DECID 𝑗𝐴) ∧ ¬ 𝑗𝐴) → DECID 𝑗𝐵)
45 exmiddc 836 . . . . . . . . . 10 (DECID 𝑗𝐴 → (𝑗𝐴 ∨ ¬ 𝑗𝐴))
4645adantl 277 . . . . . . . . 9 (((𝜑𝑗𝑈) ∧ DECID 𝑗𝐴) → (𝑗𝐴 ∨ ¬ 𝑗𝐴))
4733, 44, 46mpjaodan 798 . . . . . . . 8 (((𝜑𝑗𝑈) ∧ DECID 𝑗𝐴) → DECID 𝑗𝐵)
4847ex 115 . . . . . . 7 ((𝜑𝑗𝑈) → (DECID 𝑗𝐴DECID 𝑗𝐵))
4948ralimdva 2544 . . . . . 6 (𝜑 → (∀𝑗𝑈 DECID 𝑗𝐴 → ∀𝑗𝑈 DECID 𝑗𝐵))
5011, 49mpd 13 . . . . 5 (𝜑 → ∀𝑗𝑈 DECID 𝑗𝐵)
51 eldifn 3260 . . . . . . 7 (𝑘 ∈ (𝑈𝐵) → ¬ 𝑘𝐵)
5251iffalsed 3546 . . . . . 6 (𝑘 ∈ (𝑈𝐵) → if(𝑘𝐵, 𝐶, 1) = 1)
5352adantl 277 . . . . 5 ((𝜑𝑘 ∈ (𝑈𝐵)) → if(𝑘𝐵, 𝐶, 1) = 1)
5421, 25, 50, 53, 15fprodssdc 11601 . . . 4 (𝜑 → ∏𝑘𝐵 if(𝑘𝐵, 𝐶, 1) = ∏𝑘𝑈 if(𝑘𝐵, 𝐶, 1))
5519, 54eqtr3id 2224 . . 3 (𝜑 → ∏𝑘𝐵 𝐶 = ∏𝑘𝑈 if(𝑘𝐵, 𝐶, 1))
5617, 55oveq12d 5896 . 2 (𝜑 → (∏𝑘𝐴 𝐶 · ∏𝑘𝐵 𝐶) = (∏𝑘𝑈 if(𝑘𝐴, 𝐶, 1) · ∏𝑘𝑈 if(𝑘𝐵, 𝐶, 1)))
57 1cnd 7976 . . . 4 ((𝜑𝑘𝑈) → 1 ∈ ℂ)
58 eleq1w 2238 . . . . . . . 8 (𝑗 = 𝑘 → (𝑗𝐴𝑘𝐴))
5958dcbid 838 . . . . . . 7 (𝑗 = 𝑘 → (DECID 𝑗𝐴DECID 𝑘𝐴))
6059cbvralv 2705 . . . . . 6 (∀𝑗𝑈 DECID 𝑗𝐴 ↔ ∀𝑘𝑈 DECID 𝑘𝐴)
6111, 60sylib 122 . . . . 5 (𝜑 → ∀𝑘𝑈 DECID 𝑘𝐴)
6261r19.21bi 2565 . . . 4 ((𝜑𝑘𝑈) → DECID 𝑘𝐴)
638, 57, 62ifcldcd 3572 . . 3 ((𝜑𝑘𝑈) → if(𝑘𝐴, 𝐶, 1) ∈ ℂ)
64 eleq1w 2238 . . . . . . . 8 (𝑗 = 𝑘 → (𝑗𝐵𝑘𝐵))
6564dcbid 838 . . . . . . 7 (𝑗 = 𝑘 → (DECID 𝑗𝐵DECID 𝑘𝐵))
6665cbvralv 2705 . . . . . 6 (∀𝑗𝑈 DECID 𝑗𝐵 ↔ ∀𝑘𝑈 DECID 𝑘𝐵)
6750, 66sylib 122 . . . . 5 (𝜑 → ∀𝑘𝑈 DECID 𝑘𝐵)
6867r19.21bi 2565 . . . 4 ((𝜑𝑘𝑈) → DECID 𝑘𝐵)
698, 57, 68ifcldcd 3572 . . 3 ((𝜑𝑘𝑈) → if(𝑘𝐵, 𝐶, 1) ∈ ℂ)
7015, 63, 69fprodmul 11602 . 2 (𝜑 → ∏𝑘𝑈 (if(𝑘𝐴, 𝐶, 1) · if(𝑘𝐵, 𝐶, 1)) = (∏𝑘𝑈 if(𝑘𝐴, 𝐶, 1) · ∏𝑘𝑈 if(𝑘𝐵, 𝐶, 1)))
714eleq2d 2247 . . . . . 6 (𝜑 → (𝑘𝑈𝑘 ∈ (𝐴𝐵)))
72 elun 3278 . . . . . 6 (𝑘 ∈ (𝐴𝐵) ↔ (𝑘𝐴𝑘𝐵))
7371, 72bitrdi 196 . . . . 5 (𝜑 → (𝑘𝑈 ↔ (𝑘𝐴𝑘𝐵)))
7473biimpa 296 . . . 4 ((𝜑𝑘𝑈) → (𝑘𝐴𝑘𝐵))
75 disjel 3479 . . . . . . . . 9 (((𝐴𝐵) = ∅ ∧ 𝑘𝐴) → ¬ 𝑘𝐵)
7626, 75sylan 283 . . . . . . . 8 ((𝜑𝑘𝐴) → ¬ 𝑘𝐵)
7776iffalsed 3546 . . . . . . 7 ((𝜑𝑘𝐴) → if(𝑘𝐵, 𝐶, 1) = 1)
786, 77oveq12d 5896 . . . . . 6 ((𝜑𝑘𝐴) → (if(𝑘𝐴, 𝐶, 1) · if(𝑘𝐵, 𝐶, 1)) = (𝐶 · 1))
799mulridd 7977 . . . . . 6 ((𝜑𝑘𝐴) → (𝐶 · 1) = 𝐶)
8078, 79eqtrd 2210 . . . . 5 ((𝜑𝑘𝐴) → (if(𝑘𝐴, 𝐶, 1) · if(𝑘𝐵, 𝐶, 1)) = 𝐶)
8176ex 115 . . . . . . . . . 10 (𝜑 → (𝑘𝐴 → ¬ 𝑘𝐵))
8281con2d 624 . . . . . . . . 9 (𝜑 → (𝑘𝐵 → ¬ 𝑘𝐴))
8382imp 124 . . . . . . . 8 ((𝜑𝑘𝐵) → ¬ 𝑘𝐴)
8483iffalsed 3546 . . . . . . 7 ((𝜑𝑘𝐵) → if(𝑘𝐴, 𝐶, 1) = 1)
8584, 22oveq12d 5896 . . . . . 6 ((𝜑𝑘𝐵) → (if(𝑘𝐴, 𝐶, 1) · if(𝑘𝐵, 𝐶, 1)) = (1 · 𝐶))
8624mulid2d 7979 . . . . . 6 ((𝜑𝑘𝐵) → (1 · 𝐶) = 𝐶)
8785, 86eqtrd 2210 . . . . 5 ((𝜑𝑘𝐵) → (if(𝑘𝐴, 𝐶, 1) · if(𝑘𝐵, 𝐶, 1)) = 𝐶)
8880, 87jaodan 797 . . . 4 ((𝜑 ∧ (𝑘𝐴𝑘𝐵)) → (if(𝑘𝐴, 𝐶, 1) · if(𝑘𝐵, 𝐶, 1)) = 𝐶)
8974, 88syldan 282 . . 3 ((𝜑𝑘𝑈) → (if(𝑘𝐴, 𝐶, 1) · if(𝑘𝐵, 𝐶, 1)) = 𝐶)
9089prodeq2dv 11577 . 2 (𝜑 → ∏𝑘𝑈 (if(𝑘𝐴, 𝐶, 1) · if(𝑘𝐵, 𝐶, 1)) = ∏𝑘𝑈 𝐶)
9156, 70, 903eqtr2rd 2217 1 (𝜑 → ∏𝑘𝑈 𝐶 = (∏𝑘𝐴 𝐶 · ∏𝑘𝐵 𝐶))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 708  DECID wdc 834   = wceq 1353  wcel 2148  wral 2455  cdif 3128  cun 3129  cin 3130  c0 3424  ifcif 3536  (class class class)co 5878  Fincfn 6743  cc 7812  1c1 7815   · cmul 7819  cprod 11561
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-iinf 4589  ax-cnex 7905  ax-resscn 7906  ax-1cn 7907  ax-1re 7908  ax-icn 7909  ax-addcl 7910  ax-addrcl 7911  ax-mulcl 7912  ax-mulrcl 7913  ax-addcom 7914  ax-mulcom 7915  ax-addass 7916  ax-mulass 7917  ax-distr 7918  ax-i2m1 7919  ax-0lt1 7920  ax-1rid 7921  ax-0id 7922  ax-rnegex 7923  ax-precex 7924  ax-cnre 7925  ax-pre-ltirr 7926  ax-pre-ltwlin 7927  ax-pre-lttrn 7928  ax-pre-apti 7929  ax-pre-ltadd 7930  ax-pre-mulgt0 7931  ax-pre-mulext 7932  ax-arch 7933  ax-caucvg 7934
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-if 3537  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-tr 4104  df-id 4295  df-po 4298  df-iso 4299  df-iord 4368  df-on 4370  df-ilim 4371  df-suc 4373  df-iom 4592  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-isom 5227  df-riota 5834  df-ov 5881  df-oprab 5882  df-mpo 5883  df-1st 6144  df-2nd 6145  df-recs 6309  df-irdg 6374  df-frec 6395  df-1o 6420  df-oadd 6424  df-er 6538  df-en 6744  df-dom 6745  df-fin 6746  df-pnf 7997  df-mnf 7998  df-xr 7999  df-ltxr 8000  df-le 8001  df-sub 8133  df-neg 8134  df-reap 8535  df-ap 8542  df-div 8633  df-inn 8923  df-2 8981  df-3 8982  df-4 8983  df-n0 9180  df-z 9257  df-uz 9532  df-q 9623  df-rp 9657  df-fz 10012  df-fzo 10146  df-seqfrec 10449  df-exp 10523  df-ihash 10759  df-cj 10854  df-re 10855  df-im 10856  df-rsqrt 11010  df-abs 11011  df-clim 11290  df-proddc 11562
This theorem is referenced by:  fprodsplit  11608  fprodm1  11609  fprod1p  11610  fprodunsn  11615  fprodeq0  11628
  Copyright terms: Public domain W3C validator