Proof of Theorem fprodsplitdc
| Step | Hyp | Ref
| Expression |
| 1 | | iftrue 3567 |
. . . . 5
⊢ (𝑘 ∈ 𝐴 → if(𝑘 ∈ 𝐴, 𝐶, 1) = 𝐶) |
| 2 | 1 | prodeq2i 11744 |
. . . 4
⊢
∏𝑘 ∈
𝐴 if(𝑘 ∈ 𝐴, 𝐶, 1) = ∏𝑘 ∈ 𝐴 𝐶 |
| 3 | | ssun1 3327 |
. . . . . 6
⊢ 𝐴 ⊆ (𝐴 ∪ 𝐵) |
| 4 | | fprodsplitdc.2 |
. . . . . 6
⊢ (𝜑 → 𝑈 = (𝐴 ∪ 𝐵)) |
| 5 | 3, 4 | sseqtrrid 3235 |
. . . . 5
⊢ (𝜑 → 𝐴 ⊆ 𝑈) |
| 6 | 1 | adantl 277 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → if(𝑘 ∈ 𝐴, 𝐶, 1) = 𝐶) |
| 7 | 5 | sselda 3184 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑘 ∈ 𝑈) |
| 8 | | fprodsplitdc.4 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑈) → 𝐶 ∈ ℂ) |
| 9 | 7, 8 | syldan 282 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ ℂ) |
| 10 | 6, 9 | eqeltrd 2273 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → if(𝑘 ∈ 𝐴, 𝐶, 1) ∈ ℂ) |
| 11 | | fprodsplitdc.a |
. . . . 5
⊢ (𝜑 → ∀𝑗 ∈ 𝑈 DECID 𝑗 ∈ 𝐴) |
| 12 | | eldifn 3287 |
. . . . . . 7
⊢ (𝑘 ∈ (𝑈 ∖ 𝐴) → ¬ 𝑘 ∈ 𝐴) |
| 13 | 12 | iffalsed 3572 |
. . . . . 6
⊢ (𝑘 ∈ (𝑈 ∖ 𝐴) → if(𝑘 ∈ 𝐴, 𝐶, 1) = 1) |
| 14 | 13 | adantl 277 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑈 ∖ 𝐴)) → if(𝑘 ∈ 𝐴, 𝐶, 1) = 1) |
| 15 | | fprodsplitdc.3 |
. . . . 5
⊢ (𝜑 → 𝑈 ∈ Fin) |
| 16 | 5, 10, 11, 14, 15 | fprodssdc 11772 |
. . . 4
⊢ (𝜑 → ∏𝑘 ∈ 𝐴 if(𝑘 ∈ 𝐴, 𝐶, 1) = ∏𝑘 ∈ 𝑈 if(𝑘 ∈ 𝐴, 𝐶, 1)) |
| 17 | 2, 16 | eqtr3id 2243 |
. . 3
⊢ (𝜑 → ∏𝑘 ∈ 𝐴 𝐶 = ∏𝑘 ∈ 𝑈 if(𝑘 ∈ 𝐴, 𝐶, 1)) |
| 18 | | iftrue 3567 |
. . . . 5
⊢ (𝑘 ∈ 𝐵 → if(𝑘 ∈ 𝐵, 𝐶, 1) = 𝐶) |
| 19 | 18 | prodeq2i 11744 |
. . . 4
⊢
∏𝑘 ∈
𝐵 if(𝑘 ∈ 𝐵, 𝐶, 1) = ∏𝑘 ∈ 𝐵 𝐶 |
| 20 | | ssun2 3328 |
. . . . . 6
⊢ 𝐵 ⊆ (𝐴 ∪ 𝐵) |
| 21 | 20, 4 | sseqtrrid 3235 |
. . . . 5
⊢ (𝜑 → 𝐵 ⊆ 𝑈) |
| 22 | 18 | adantl 277 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → if(𝑘 ∈ 𝐵, 𝐶, 1) = 𝐶) |
| 23 | 21 | sselda 3184 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → 𝑘 ∈ 𝑈) |
| 24 | 23, 8 | syldan 282 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → 𝐶 ∈ ℂ) |
| 25 | 22, 24 | eqeltrd 2273 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → if(𝑘 ∈ 𝐵, 𝐶, 1) ∈ ℂ) |
| 26 | | fprodsplitdc.1 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝐴 ∩ 𝐵) = ∅) |
| 27 | | disj 3500 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∩ 𝐵) = ∅ ↔ ∀𝑗 ∈ 𝐴 ¬ 𝑗 ∈ 𝐵) |
| 28 | 26, 27 | sylib 122 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ∀𝑗 ∈ 𝐴 ¬ 𝑗 ∈ 𝐵) |
| 29 | 28 | ad2antrr 488 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑈) ∧ DECID 𝑗 ∈ 𝐴) → ∀𝑗 ∈ 𝐴 ¬ 𝑗 ∈ 𝐵) |
| 30 | 29 | r19.21bi 2585 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑗 ∈ 𝑈) ∧ DECID 𝑗 ∈ 𝐴) ∧ 𝑗 ∈ 𝐴) → ¬ 𝑗 ∈ 𝐵) |
| 31 | 30 | olcd 735 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑗 ∈ 𝑈) ∧ DECID 𝑗 ∈ 𝐴) ∧ 𝑗 ∈ 𝐴) → (𝑗 ∈ 𝐵 ∨ ¬ 𝑗 ∈ 𝐵)) |
| 32 | | df-dc 836 |
. . . . . . . . . 10
⊢
(DECID 𝑗 ∈ 𝐵 ↔ (𝑗 ∈ 𝐵 ∨ ¬ 𝑗 ∈ 𝐵)) |
| 33 | 31, 32 | sylibr 134 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑗 ∈ 𝑈) ∧ DECID 𝑗 ∈ 𝐴) ∧ 𝑗 ∈ 𝐴) → DECID 𝑗 ∈ 𝐵) |
| 34 | | simpr 110 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑗 ∈ 𝑈) ∧ DECID 𝑗 ∈ 𝐴) ∧ ¬ 𝑗 ∈ 𝐴) → ¬ 𝑗 ∈ 𝐴) |
| 35 | | simpllr 534 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑗 ∈ 𝑈) ∧ DECID 𝑗 ∈ 𝐴) ∧ ¬ 𝑗 ∈ 𝐴) → 𝑗 ∈ 𝑈) |
| 36 | 4 | eleq2d 2266 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝑗 ∈ 𝑈 ↔ 𝑗 ∈ (𝐴 ∪ 𝐵))) |
| 37 | 36 | ad3antrrr 492 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑗 ∈ 𝑈) ∧ DECID 𝑗 ∈ 𝐴) ∧ ¬ 𝑗 ∈ 𝐴) → (𝑗 ∈ 𝑈 ↔ 𝑗 ∈ (𝐴 ∪ 𝐵))) |
| 38 | 35, 37 | mpbid 147 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑗 ∈ 𝑈) ∧ DECID 𝑗 ∈ 𝐴) ∧ ¬ 𝑗 ∈ 𝐴) → 𝑗 ∈ (𝐴 ∪ 𝐵)) |
| 39 | | elun 3305 |
. . . . . . . . . . . . . 14
⊢ (𝑗 ∈ (𝐴 ∪ 𝐵) ↔ (𝑗 ∈ 𝐴 ∨ 𝑗 ∈ 𝐵)) |
| 40 | 38, 39 | sylib 122 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑗 ∈ 𝑈) ∧ DECID 𝑗 ∈ 𝐴) ∧ ¬ 𝑗 ∈ 𝐴) → (𝑗 ∈ 𝐴 ∨ 𝑗 ∈ 𝐵)) |
| 41 | 40 | orcomd 730 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑗 ∈ 𝑈) ∧ DECID 𝑗 ∈ 𝐴) ∧ ¬ 𝑗 ∈ 𝐴) → (𝑗 ∈ 𝐵 ∨ 𝑗 ∈ 𝐴)) |
| 42 | 34, 41 | ecased 1360 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑗 ∈ 𝑈) ∧ DECID 𝑗 ∈ 𝐴) ∧ ¬ 𝑗 ∈ 𝐴) → 𝑗 ∈ 𝐵) |
| 43 | 42 | orcd 734 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑗 ∈ 𝑈) ∧ DECID 𝑗 ∈ 𝐴) ∧ ¬ 𝑗 ∈ 𝐴) → (𝑗 ∈ 𝐵 ∨ ¬ 𝑗 ∈ 𝐵)) |
| 44 | 43, 32 | sylibr 134 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑗 ∈ 𝑈) ∧ DECID 𝑗 ∈ 𝐴) ∧ ¬ 𝑗 ∈ 𝐴) → DECID 𝑗 ∈ 𝐵) |
| 45 | | exmiddc 837 |
. . . . . . . . . 10
⊢
(DECID 𝑗 ∈ 𝐴 → (𝑗 ∈ 𝐴 ∨ ¬ 𝑗 ∈ 𝐴)) |
| 46 | 45 | adantl 277 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑈) ∧ DECID 𝑗 ∈ 𝐴) → (𝑗 ∈ 𝐴 ∨ ¬ 𝑗 ∈ 𝐴)) |
| 47 | 33, 44, 46 | mpjaodan 799 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑈) ∧ DECID 𝑗 ∈ 𝐴) → DECID 𝑗 ∈ 𝐵) |
| 48 | 47 | ex 115 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑈) → (DECID 𝑗 ∈ 𝐴 → DECID 𝑗 ∈ 𝐵)) |
| 49 | 48 | ralimdva 2564 |
. . . . . 6
⊢ (𝜑 → (∀𝑗 ∈ 𝑈 DECID 𝑗 ∈ 𝐴 → ∀𝑗 ∈ 𝑈 DECID 𝑗 ∈ 𝐵)) |
| 50 | 11, 49 | mpd 13 |
. . . . 5
⊢ (𝜑 → ∀𝑗 ∈ 𝑈 DECID 𝑗 ∈ 𝐵) |
| 51 | | eldifn 3287 |
. . . . . . 7
⊢ (𝑘 ∈ (𝑈 ∖ 𝐵) → ¬ 𝑘 ∈ 𝐵) |
| 52 | 51 | iffalsed 3572 |
. . . . . 6
⊢ (𝑘 ∈ (𝑈 ∖ 𝐵) → if(𝑘 ∈ 𝐵, 𝐶, 1) = 1) |
| 53 | 52 | adantl 277 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑈 ∖ 𝐵)) → if(𝑘 ∈ 𝐵, 𝐶, 1) = 1) |
| 54 | 21, 25, 50, 53, 15 | fprodssdc 11772 |
. . . 4
⊢ (𝜑 → ∏𝑘 ∈ 𝐵 if(𝑘 ∈ 𝐵, 𝐶, 1) = ∏𝑘 ∈ 𝑈 if(𝑘 ∈ 𝐵, 𝐶, 1)) |
| 55 | 19, 54 | eqtr3id 2243 |
. . 3
⊢ (𝜑 → ∏𝑘 ∈ 𝐵 𝐶 = ∏𝑘 ∈ 𝑈 if(𝑘 ∈ 𝐵, 𝐶, 1)) |
| 56 | 17, 55 | oveq12d 5943 |
. 2
⊢ (𝜑 → (∏𝑘 ∈ 𝐴 𝐶 · ∏𝑘 ∈ 𝐵 𝐶) = (∏𝑘 ∈ 𝑈 if(𝑘 ∈ 𝐴, 𝐶, 1) · ∏𝑘 ∈ 𝑈 if(𝑘 ∈ 𝐵, 𝐶, 1))) |
| 57 | | 1cnd 8059 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑈) → 1 ∈ ℂ) |
| 58 | | eleq1w 2257 |
. . . . . . . 8
⊢ (𝑗 = 𝑘 → (𝑗 ∈ 𝐴 ↔ 𝑘 ∈ 𝐴)) |
| 59 | 58 | dcbid 839 |
. . . . . . 7
⊢ (𝑗 = 𝑘 → (DECID 𝑗 ∈ 𝐴 ↔ DECID 𝑘 ∈ 𝐴)) |
| 60 | 59 | cbvralv 2729 |
. . . . . 6
⊢
(∀𝑗 ∈
𝑈 DECID
𝑗 ∈ 𝐴 ↔ ∀𝑘 ∈ 𝑈 DECID 𝑘 ∈ 𝐴) |
| 61 | 11, 60 | sylib 122 |
. . . . 5
⊢ (𝜑 → ∀𝑘 ∈ 𝑈 DECID 𝑘 ∈ 𝐴) |
| 62 | 61 | r19.21bi 2585 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑈) → DECID 𝑘 ∈ 𝐴) |
| 63 | 8, 57, 62 | ifcldcd 3598 |
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑈) → if(𝑘 ∈ 𝐴, 𝐶, 1) ∈ ℂ) |
| 64 | | eleq1w 2257 |
. . . . . . . 8
⊢ (𝑗 = 𝑘 → (𝑗 ∈ 𝐵 ↔ 𝑘 ∈ 𝐵)) |
| 65 | 64 | dcbid 839 |
. . . . . . 7
⊢ (𝑗 = 𝑘 → (DECID 𝑗 ∈ 𝐵 ↔ DECID 𝑘 ∈ 𝐵)) |
| 66 | 65 | cbvralv 2729 |
. . . . . 6
⊢
(∀𝑗 ∈
𝑈 DECID
𝑗 ∈ 𝐵 ↔ ∀𝑘 ∈ 𝑈 DECID 𝑘 ∈ 𝐵) |
| 67 | 50, 66 | sylib 122 |
. . . . 5
⊢ (𝜑 → ∀𝑘 ∈ 𝑈 DECID 𝑘 ∈ 𝐵) |
| 68 | 67 | r19.21bi 2585 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑈) → DECID 𝑘 ∈ 𝐵) |
| 69 | 8, 57, 68 | ifcldcd 3598 |
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑈) → if(𝑘 ∈ 𝐵, 𝐶, 1) ∈ ℂ) |
| 70 | 15, 63, 69 | fprodmul 11773 |
. 2
⊢ (𝜑 → ∏𝑘 ∈ 𝑈 (if(𝑘 ∈ 𝐴, 𝐶, 1) · if(𝑘 ∈ 𝐵, 𝐶, 1)) = (∏𝑘 ∈ 𝑈 if(𝑘 ∈ 𝐴, 𝐶, 1) · ∏𝑘 ∈ 𝑈 if(𝑘 ∈ 𝐵, 𝐶, 1))) |
| 71 | 4 | eleq2d 2266 |
. . . . . 6
⊢ (𝜑 → (𝑘 ∈ 𝑈 ↔ 𝑘 ∈ (𝐴 ∪ 𝐵))) |
| 72 | | elun 3305 |
. . . . . 6
⊢ (𝑘 ∈ (𝐴 ∪ 𝐵) ↔ (𝑘 ∈ 𝐴 ∨ 𝑘 ∈ 𝐵)) |
| 73 | 71, 72 | bitrdi 196 |
. . . . 5
⊢ (𝜑 → (𝑘 ∈ 𝑈 ↔ (𝑘 ∈ 𝐴 ∨ 𝑘 ∈ 𝐵))) |
| 74 | 73 | biimpa 296 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑈) → (𝑘 ∈ 𝐴 ∨ 𝑘 ∈ 𝐵)) |
| 75 | | disjel 3506 |
. . . . . . . . 9
⊢ (((𝐴 ∩ 𝐵) = ∅ ∧ 𝑘 ∈ 𝐴) → ¬ 𝑘 ∈ 𝐵) |
| 76 | 26, 75 | sylan 283 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → ¬ 𝑘 ∈ 𝐵) |
| 77 | 76 | iffalsed 3572 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → if(𝑘 ∈ 𝐵, 𝐶, 1) = 1) |
| 78 | 6, 77 | oveq12d 5943 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (if(𝑘 ∈ 𝐴, 𝐶, 1) · if(𝑘 ∈ 𝐵, 𝐶, 1)) = (𝐶 · 1)) |
| 79 | 9 | mulridd 8060 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝐶 · 1) = 𝐶) |
| 80 | 78, 79 | eqtrd 2229 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (if(𝑘 ∈ 𝐴, 𝐶, 1) · if(𝑘 ∈ 𝐵, 𝐶, 1)) = 𝐶) |
| 81 | 76 | ex 115 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑘 ∈ 𝐴 → ¬ 𝑘 ∈ 𝐵)) |
| 82 | 81 | con2d 625 |
. . . . . . . . 9
⊢ (𝜑 → (𝑘 ∈ 𝐵 → ¬ 𝑘 ∈ 𝐴)) |
| 83 | 82 | imp 124 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → ¬ 𝑘 ∈ 𝐴) |
| 84 | 83 | iffalsed 3572 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → if(𝑘 ∈ 𝐴, 𝐶, 1) = 1) |
| 85 | 84, 22 | oveq12d 5943 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → (if(𝑘 ∈ 𝐴, 𝐶, 1) · if(𝑘 ∈ 𝐵, 𝐶, 1)) = (1 · 𝐶)) |
| 86 | 24 | mulid2d 8062 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → (1 · 𝐶) = 𝐶) |
| 87 | 85, 86 | eqtrd 2229 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → (if(𝑘 ∈ 𝐴, 𝐶, 1) · if(𝑘 ∈ 𝐵, 𝐶, 1)) = 𝐶) |
| 88 | 80, 87 | jaodan 798 |
. . . 4
⊢ ((𝜑 ∧ (𝑘 ∈ 𝐴 ∨ 𝑘 ∈ 𝐵)) → (if(𝑘 ∈ 𝐴, 𝐶, 1) · if(𝑘 ∈ 𝐵, 𝐶, 1)) = 𝐶) |
| 89 | 74, 88 | syldan 282 |
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑈) → (if(𝑘 ∈ 𝐴, 𝐶, 1) · if(𝑘 ∈ 𝐵, 𝐶, 1)) = 𝐶) |
| 90 | 89 | prodeq2dv 11748 |
. 2
⊢ (𝜑 → ∏𝑘 ∈ 𝑈 (if(𝑘 ∈ 𝐴, 𝐶, 1) · if(𝑘 ∈ 𝐵, 𝐶, 1)) = ∏𝑘 ∈ 𝑈 𝐶) |
| 91 | 56, 70, 90 | 3eqtr2rd 2236 |
1
⊢ (𝜑 → ∏𝑘 ∈ 𝑈 𝐶 = (∏𝑘 ∈ 𝐴 𝐶 · ∏𝑘 ∈ 𝐵 𝐶)) |