ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fprodsplitdc GIF version

Theorem fprodsplitdc 12093
Description: Split a finite product into two parts. New proofs should use fprodsplit 12094 which is the same but with one fewer hypothesis. (Contributed by Scott Fenton, 16-Dec-2017.) (New usage is discouraged.)
Hypotheses
Ref Expression
fprodsplitdc.1 (𝜑 → (𝐴𝐵) = ∅)
fprodsplitdc.2 (𝜑𝑈 = (𝐴𝐵))
fprodsplitdc.3 (𝜑𝑈 ∈ Fin)
fprodsplitdc.a (𝜑 → ∀𝑗𝑈 DECID 𝑗𝐴)
fprodsplitdc.4 ((𝜑𝑘𝑈) → 𝐶 ∈ ℂ)
Assertion
Ref Expression
fprodsplitdc (𝜑 → ∏𝑘𝑈 𝐶 = (∏𝑘𝐴 𝐶 · ∏𝑘𝐵 𝐶))
Distinct variable groups:   𝐴,𝑗,𝑘   𝐵,𝑗,𝑘   𝜑,𝑗,𝑘   𝑈,𝑗,𝑘
Allowed substitution hints:   𝐶(𝑗,𝑘)

Proof of Theorem fprodsplitdc
StepHypRef Expression
1 iftrue 3607 . . . . 5 (𝑘𝐴 → if(𝑘𝐴, 𝐶, 1) = 𝐶)
21prodeq2i 12059 . . . 4 𝑘𝐴 if(𝑘𝐴, 𝐶, 1) = ∏𝑘𝐴 𝐶
3 ssun1 3367 . . . . . 6 𝐴 ⊆ (𝐴𝐵)
4 fprodsplitdc.2 . . . . . 6 (𝜑𝑈 = (𝐴𝐵))
53, 4sseqtrrid 3275 . . . . 5 (𝜑𝐴𝑈)
61adantl 277 . . . . . 6 ((𝜑𝑘𝐴) → if(𝑘𝐴, 𝐶, 1) = 𝐶)
75sselda 3224 . . . . . . 7 ((𝜑𝑘𝐴) → 𝑘𝑈)
8 fprodsplitdc.4 . . . . . . 7 ((𝜑𝑘𝑈) → 𝐶 ∈ ℂ)
97, 8syldan 282 . . . . . 6 ((𝜑𝑘𝐴) → 𝐶 ∈ ℂ)
106, 9eqeltrd 2306 . . . . 5 ((𝜑𝑘𝐴) → if(𝑘𝐴, 𝐶, 1) ∈ ℂ)
11 fprodsplitdc.a . . . . 5 (𝜑 → ∀𝑗𝑈 DECID 𝑗𝐴)
12 eldifn 3327 . . . . . . 7 (𝑘 ∈ (𝑈𝐴) → ¬ 𝑘𝐴)
1312iffalsed 3612 . . . . . 6 (𝑘 ∈ (𝑈𝐴) → if(𝑘𝐴, 𝐶, 1) = 1)
1413adantl 277 . . . . 5 ((𝜑𝑘 ∈ (𝑈𝐴)) → if(𝑘𝐴, 𝐶, 1) = 1)
15 fprodsplitdc.3 . . . . 5 (𝜑𝑈 ∈ Fin)
165, 10, 11, 14, 15fprodssdc 12087 . . . 4 (𝜑 → ∏𝑘𝐴 if(𝑘𝐴, 𝐶, 1) = ∏𝑘𝑈 if(𝑘𝐴, 𝐶, 1))
172, 16eqtr3id 2276 . . 3 (𝜑 → ∏𝑘𝐴 𝐶 = ∏𝑘𝑈 if(𝑘𝐴, 𝐶, 1))
18 iftrue 3607 . . . . 5 (𝑘𝐵 → if(𝑘𝐵, 𝐶, 1) = 𝐶)
1918prodeq2i 12059 . . . 4 𝑘𝐵 if(𝑘𝐵, 𝐶, 1) = ∏𝑘𝐵 𝐶
20 ssun2 3368 . . . . . 6 𝐵 ⊆ (𝐴𝐵)
2120, 4sseqtrrid 3275 . . . . 5 (𝜑𝐵𝑈)
2218adantl 277 . . . . . 6 ((𝜑𝑘𝐵) → if(𝑘𝐵, 𝐶, 1) = 𝐶)
2321sselda 3224 . . . . . . 7 ((𝜑𝑘𝐵) → 𝑘𝑈)
2423, 8syldan 282 . . . . . 6 ((𝜑𝑘𝐵) → 𝐶 ∈ ℂ)
2522, 24eqeltrd 2306 . . . . 5 ((𝜑𝑘𝐵) → if(𝑘𝐵, 𝐶, 1) ∈ ℂ)
26 fprodsplitdc.1 . . . . . . . . . . . . . 14 (𝜑 → (𝐴𝐵) = ∅)
27 disj 3540 . . . . . . . . . . . . . 14 ((𝐴𝐵) = ∅ ↔ ∀𝑗𝐴 ¬ 𝑗𝐵)
2826, 27sylib 122 . . . . . . . . . . . . 13 (𝜑 → ∀𝑗𝐴 ¬ 𝑗𝐵)
2928ad2antrr 488 . . . . . . . . . . . 12 (((𝜑𝑗𝑈) ∧ DECID 𝑗𝐴) → ∀𝑗𝐴 ¬ 𝑗𝐵)
3029r19.21bi 2618 . . . . . . . . . . 11 ((((𝜑𝑗𝑈) ∧ DECID 𝑗𝐴) ∧ 𝑗𝐴) → ¬ 𝑗𝐵)
3130olcd 739 . . . . . . . . . 10 ((((𝜑𝑗𝑈) ∧ DECID 𝑗𝐴) ∧ 𝑗𝐴) → (𝑗𝐵 ∨ ¬ 𝑗𝐵))
32 df-dc 840 . . . . . . . . . 10 (DECID 𝑗𝐵 ↔ (𝑗𝐵 ∨ ¬ 𝑗𝐵))
3331, 32sylibr 134 . . . . . . . . 9 ((((𝜑𝑗𝑈) ∧ DECID 𝑗𝐴) ∧ 𝑗𝐴) → DECID 𝑗𝐵)
34 simpr 110 . . . . . . . . . . . 12 ((((𝜑𝑗𝑈) ∧ DECID 𝑗𝐴) ∧ ¬ 𝑗𝐴) → ¬ 𝑗𝐴)
35 simpllr 534 . . . . . . . . . . . . . . 15 ((((𝜑𝑗𝑈) ∧ DECID 𝑗𝐴) ∧ ¬ 𝑗𝐴) → 𝑗𝑈)
364eleq2d 2299 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑗𝑈𝑗 ∈ (𝐴𝐵)))
3736ad3antrrr 492 . . . . . . . . . . . . . . 15 ((((𝜑𝑗𝑈) ∧ DECID 𝑗𝐴) ∧ ¬ 𝑗𝐴) → (𝑗𝑈𝑗 ∈ (𝐴𝐵)))
3835, 37mpbid 147 . . . . . . . . . . . . . 14 ((((𝜑𝑗𝑈) ∧ DECID 𝑗𝐴) ∧ ¬ 𝑗𝐴) → 𝑗 ∈ (𝐴𝐵))
39 elun 3345 . . . . . . . . . . . . . 14 (𝑗 ∈ (𝐴𝐵) ↔ (𝑗𝐴𝑗𝐵))
4038, 39sylib 122 . . . . . . . . . . . . 13 ((((𝜑𝑗𝑈) ∧ DECID 𝑗𝐴) ∧ ¬ 𝑗𝐴) → (𝑗𝐴𝑗𝐵))
4140orcomd 734 . . . . . . . . . . . 12 ((((𝜑𝑗𝑈) ∧ DECID 𝑗𝐴) ∧ ¬ 𝑗𝐴) → (𝑗𝐵𝑗𝐴))
4234, 41ecased 1383 . . . . . . . . . . 11 ((((𝜑𝑗𝑈) ∧ DECID 𝑗𝐴) ∧ ¬ 𝑗𝐴) → 𝑗𝐵)
4342orcd 738 . . . . . . . . . 10 ((((𝜑𝑗𝑈) ∧ DECID 𝑗𝐴) ∧ ¬ 𝑗𝐴) → (𝑗𝐵 ∨ ¬ 𝑗𝐵))
4443, 32sylibr 134 . . . . . . . . 9 ((((𝜑𝑗𝑈) ∧ DECID 𝑗𝐴) ∧ ¬ 𝑗𝐴) → DECID 𝑗𝐵)
45 exmiddc 841 . . . . . . . . . 10 (DECID 𝑗𝐴 → (𝑗𝐴 ∨ ¬ 𝑗𝐴))
4645adantl 277 . . . . . . . . 9 (((𝜑𝑗𝑈) ∧ DECID 𝑗𝐴) → (𝑗𝐴 ∨ ¬ 𝑗𝐴))
4733, 44, 46mpjaodan 803 . . . . . . . 8 (((𝜑𝑗𝑈) ∧ DECID 𝑗𝐴) → DECID 𝑗𝐵)
4847ex 115 . . . . . . 7 ((𝜑𝑗𝑈) → (DECID 𝑗𝐴DECID 𝑗𝐵))
4948ralimdva 2597 . . . . . 6 (𝜑 → (∀𝑗𝑈 DECID 𝑗𝐴 → ∀𝑗𝑈 DECID 𝑗𝐵))
5011, 49mpd 13 . . . . 5 (𝜑 → ∀𝑗𝑈 DECID 𝑗𝐵)
51 eldifn 3327 . . . . . . 7 (𝑘 ∈ (𝑈𝐵) → ¬ 𝑘𝐵)
5251iffalsed 3612 . . . . . 6 (𝑘 ∈ (𝑈𝐵) → if(𝑘𝐵, 𝐶, 1) = 1)
5352adantl 277 . . . . 5 ((𝜑𝑘 ∈ (𝑈𝐵)) → if(𝑘𝐵, 𝐶, 1) = 1)
5421, 25, 50, 53, 15fprodssdc 12087 . . . 4 (𝜑 → ∏𝑘𝐵 if(𝑘𝐵, 𝐶, 1) = ∏𝑘𝑈 if(𝑘𝐵, 𝐶, 1))
5519, 54eqtr3id 2276 . . 3 (𝜑 → ∏𝑘𝐵 𝐶 = ∏𝑘𝑈 if(𝑘𝐵, 𝐶, 1))
5617, 55oveq12d 6012 . 2 (𝜑 → (∏𝑘𝐴 𝐶 · ∏𝑘𝐵 𝐶) = (∏𝑘𝑈 if(𝑘𝐴, 𝐶, 1) · ∏𝑘𝑈 if(𝑘𝐵, 𝐶, 1)))
57 1cnd 8150 . . . 4 ((𝜑𝑘𝑈) → 1 ∈ ℂ)
58 eleq1w 2290 . . . . . . . 8 (𝑗 = 𝑘 → (𝑗𝐴𝑘𝐴))
5958dcbid 843 . . . . . . 7 (𝑗 = 𝑘 → (DECID 𝑗𝐴DECID 𝑘𝐴))
6059cbvralv 2765 . . . . . 6 (∀𝑗𝑈 DECID 𝑗𝐴 ↔ ∀𝑘𝑈 DECID 𝑘𝐴)
6111, 60sylib 122 . . . . 5 (𝜑 → ∀𝑘𝑈 DECID 𝑘𝐴)
6261r19.21bi 2618 . . . 4 ((𝜑𝑘𝑈) → DECID 𝑘𝐴)
638, 57, 62ifcldcd 3640 . . 3 ((𝜑𝑘𝑈) → if(𝑘𝐴, 𝐶, 1) ∈ ℂ)
64 eleq1w 2290 . . . . . . . 8 (𝑗 = 𝑘 → (𝑗𝐵𝑘𝐵))
6564dcbid 843 . . . . . . 7 (𝑗 = 𝑘 → (DECID 𝑗𝐵DECID 𝑘𝐵))
6665cbvralv 2765 . . . . . 6 (∀𝑗𝑈 DECID 𝑗𝐵 ↔ ∀𝑘𝑈 DECID 𝑘𝐵)
6750, 66sylib 122 . . . . 5 (𝜑 → ∀𝑘𝑈 DECID 𝑘𝐵)
6867r19.21bi 2618 . . . 4 ((𝜑𝑘𝑈) → DECID 𝑘𝐵)
698, 57, 68ifcldcd 3640 . . 3 ((𝜑𝑘𝑈) → if(𝑘𝐵, 𝐶, 1) ∈ ℂ)
7015, 63, 69fprodmul 12088 . 2 (𝜑 → ∏𝑘𝑈 (if(𝑘𝐴, 𝐶, 1) · if(𝑘𝐵, 𝐶, 1)) = (∏𝑘𝑈 if(𝑘𝐴, 𝐶, 1) · ∏𝑘𝑈 if(𝑘𝐵, 𝐶, 1)))
714eleq2d 2299 . . . . . 6 (𝜑 → (𝑘𝑈𝑘 ∈ (𝐴𝐵)))
72 elun 3345 . . . . . 6 (𝑘 ∈ (𝐴𝐵) ↔ (𝑘𝐴𝑘𝐵))
7371, 72bitrdi 196 . . . . 5 (𝜑 → (𝑘𝑈 ↔ (𝑘𝐴𝑘𝐵)))
7473biimpa 296 . . . 4 ((𝜑𝑘𝑈) → (𝑘𝐴𝑘𝐵))
75 disjel 3546 . . . . . . . . 9 (((𝐴𝐵) = ∅ ∧ 𝑘𝐴) → ¬ 𝑘𝐵)
7626, 75sylan 283 . . . . . . . 8 ((𝜑𝑘𝐴) → ¬ 𝑘𝐵)
7776iffalsed 3612 . . . . . . 7 ((𝜑𝑘𝐴) → if(𝑘𝐵, 𝐶, 1) = 1)
786, 77oveq12d 6012 . . . . . 6 ((𝜑𝑘𝐴) → (if(𝑘𝐴, 𝐶, 1) · if(𝑘𝐵, 𝐶, 1)) = (𝐶 · 1))
799mulridd 8151 . . . . . 6 ((𝜑𝑘𝐴) → (𝐶 · 1) = 𝐶)
8078, 79eqtrd 2262 . . . . 5 ((𝜑𝑘𝐴) → (if(𝑘𝐴, 𝐶, 1) · if(𝑘𝐵, 𝐶, 1)) = 𝐶)
8176ex 115 . . . . . . . . . 10 (𝜑 → (𝑘𝐴 → ¬ 𝑘𝐵))
8281con2d 627 . . . . . . . . 9 (𝜑 → (𝑘𝐵 → ¬ 𝑘𝐴))
8382imp 124 . . . . . . . 8 ((𝜑𝑘𝐵) → ¬ 𝑘𝐴)
8483iffalsed 3612 . . . . . . 7 ((𝜑𝑘𝐵) → if(𝑘𝐴, 𝐶, 1) = 1)
8584, 22oveq12d 6012 . . . . . 6 ((𝜑𝑘𝐵) → (if(𝑘𝐴, 𝐶, 1) · if(𝑘𝐵, 𝐶, 1)) = (1 · 𝐶))
8624mulid2d 8153 . . . . . 6 ((𝜑𝑘𝐵) → (1 · 𝐶) = 𝐶)
8785, 86eqtrd 2262 . . . . 5 ((𝜑𝑘𝐵) → (if(𝑘𝐴, 𝐶, 1) · if(𝑘𝐵, 𝐶, 1)) = 𝐶)
8880, 87jaodan 802 . . . 4 ((𝜑 ∧ (𝑘𝐴𝑘𝐵)) → (if(𝑘𝐴, 𝐶, 1) · if(𝑘𝐵, 𝐶, 1)) = 𝐶)
8974, 88syldan 282 . . 3 ((𝜑𝑘𝑈) → (if(𝑘𝐴, 𝐶, 1) · if(𝑘𝐵, 𝐶, 1)) = 𝐶)
9089prodeq2dv 12063 . 2 (𝜑 → ∏𝑘𝑈 (if(𝑘𝐴, 𝐶, 1) · if(𝑘𝐵, 𝐶, 1)) = ∏𝑘𝑈 𝐶)
9156, 70, 903eqtr2rd 2269 1 (𝜑 → ∏𝑘𝑈 𝐶 = (∏𝑘𝐴 𝐶 · ∏𝑘𝐵 𝐶))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 713  DECID wdc 839   = wceq 1395  wcel 2200  wral 2508  cdif 3194  cun 3195  cin 3196  c0 3491  ifcif 3602  (class class class)co 5994  Fincfn 6877  cc 7985  1c1 7988   · cmul 7992  cprod 12047
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4521  ax-setind 4626  ax-iinf 4677  ax-cnex 8078  ax-resscn 8079  ax-1cn 8080  ax-1re 8081  ax-icn 8082  ax-addcl 8083  ax-addrcl 8084  ax-mulcl 8085  ax-mulrcl 8086  ax-addcom 8087  ax-mulcom 8088  ax-addass 8089  ax-mulass 8090  ax-distr 8091  ax-i2m1 8092  ax-0lt1 8093  ax-1rid 8094  ax-0id 8095  ax-rnegex 8096  ax-precex 8097  ax-cnre 8098  ax-pre-ltirr 8099  ax-pre-ltwlin 8100  ax-pre-lttrn 8101  ax-pre-apti 8102  ax-pre-ltadd 8103  ax-pre-mulgt0 8104  ax-pre-mulext 8105  ax-arch 8106  ax-caucvg 8107
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4381  df-po 4384  df-iso 4385  df-iord 4454  df-on 4456  df-ilim 4457  df-suc 4459  df-iom 4680  df-xp 4722  df-rel 4723  df-cnv 4724  df-co 4725  df-dm 4726  df-rn 4727  df-res 4728  df-ima 4729  df-iota 5274  df-fun 5316  df-fn 5317  df-f 5318  df-f1 5319  df-fo 5320  df-f1o 5321  df-fv 5322  df-isom 5323  df-riota 5947  df-ov 5997  df-oprab 5998  df-mpo 5999  df-1st 6276  df-2nd 6277  df-recs 6441  df-irdg 6506  df-frec 6527  df-1o 6552  df-oadd 6556  df-er 6670  df-en 6878  df-dom 6879  df-fin 6880  df-pnf 8171  df-mnf 8172  df-xr 8173  df-ltxr 8174  df-le 8175  df-sub 8307  df-neg 8308  df-reap 8710  df-ap 8717  df-div 8808  df-inn 9099  df-2 9157  df-3 9158  df-4 9159  df-n0 9358  df-z 9435  df-uz 9711  df-q 9803  df-rp 9838  df-fz 10193  df-fzo 10327  df-seqfrec 10657  df-exp 10748  df-ihash 10985  df-cj 11339  df-re 11340  df-im 11341  df-rsqrt 11495  df-abs 11496  df-clim 11776  df-proddc 12048
This theorem is referenced by:  fprodsplit  12094  fprodm1  12095  fprod1p  12096  fprodunsn  12101  fprodeq0  12114
  Copyright terms: Public domain W3C validator