ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fprodsplitdc GIF version

Theorem fprodsplitdc 11537
Description: Split a finite product into two parts. New proofs should use fprodsplit 11538 which is the same but with one fewer hypothesis. (Contributed by Scott Fenton, 16-Dec-2017.) (New usage is discouraged.)
Hypotheses
Ref Expression
fprodsplitdc.1 (𝜑 → (𝐴𝐵) = ∅)
fprodsplitdc.2 (𝜑𝑈 = (𝐴𝐵))
fprodsplitdc.3 (𝜑𝑈 ∈ Fin)
fprodsplitdc.a (𝜑 → ∀𝑗𝑈 DECID 𝑗𝐴)
fprodsplitdc.4 ((𝜑𝑘𝑈) → 𝐶 ∈ ℂ)
Assertion
Ref Expression
fprodsplitdc (𝜑 → ∏𝑘𝑈 𝐶 = (∏𝑘𝐴 𝐶 · ∏𝑘𝐵 𝐶))
Distinct variable groups:   𝐴,𝑗,𝑘   𝐵,𝑗,𝑘   𝜑,𝑗,𝑘   𝑈,𝑗,𝑘
Allowed substitution hints:   𝐶(𝑗,𝑘)

Proof of Theorem fprodsplitdc
StepHypRef Expression
1 iftrue 3525 . . . . 5 (𝑘𝐴 → if(𝑘𝐴, 𝐶, 1) = 𝐶)
21prodeq2i 11503 . . . 4 𝑘𝐴 if(𝑘𝐴, 𝐶, 1) = ∏𝑘𝐴 𝐶
3 ssun1 3285 . . . . . 6 𝐴 ⊆ (𝐴𝐵)
4 fprodsplitdc.2 . . . . . 6 (𝜑𝑈 = (𝐴𝐵))
53, 4sseqtrrid 3193 . . . . 5 (𝜑𝐴𝑈)
61adantl 275 . . . . . 6 ((𝜑𝑘𝐴) → if(𝑘𝐴, 𝐶, 1) = 𝐶)
75sselda 3142 . . . . . . 7 ((𝜑𝑘𝐴) → 𝑘𝑈)
8 fprodsplitdc.4 . . . . . . 7 ((𝜑𝑘𝑈) → 𝐶 ∈ ℂ)
97, 8syldan 280 . . . . . 6 ((𝜑𝑘𝐴) → 𝐶 ∈ ℂ)
106, 9eqeltrd 2243 . . . . 5 ((𝜑𝑘𝐴) → if(𝑘𝐴, 𝐶, 1) ∈ ℂ)
11 fprodsplitdc.a . . . . 5 (𝜑 → ∀𝑗𝑈 DECID 𝑗𝐴)
12 eldifn 3245 . . . . . . 7 (𝑘 ∈ (𝑈𝐴) → ¬ 𝑘𝐴)
1312iffalsed 3530 . . . . . 6 (𝑘 ∈ (𝑈𝐴) → if(𝑘𝐴, 𝐶, 1) = 1)
1413adantl 275 . . . . 5 ((𝜑𝑘 ∈ (𝑈𝐴)) → if(𝑘𝐴, 𝐶, 1) = 1)
15 fprodsplitdc.3 . . . . 5 (𝜑𝑈 ∈ Fin)
165, 10, 11, 14, 15fprodssdc 11531 . . . 4 (𝜑 → ∏𝑘𝐴 if(𝑘𝐴, 𝐶, 1) = ∏𝑘𝑈 if(𝑘𝐴, 𝐶, 1))
172, 16eqtr3id 2213 . . 3 (𝜑 → ∏𝑘𝐴 𝐶 = ∏𝑘𝑈 if(𝑘𝐴, 𝐶, 1))
18 iftrue 3525 . . . . 5 (𝑘𝐵 → if(𝑘𝐵, 𝐶, 1) = 𝐶)
1918prodeq2i 11503 . . . 4 𝑘𝐵 if(𝑘𝐵, 𝐶, 1) = ∏𝑘𝐵 𝐶
20 ssun2 3286 . . . . . 6 𝐵 ⊆ (𝐴𝐵)
2120, 4sseqtrrid 3193 . . . . 5 (𝜑𝐵𝑈)
2218adantl 275 . . . . . 6 ((𝜑𝑘𝐵) → if(𝑘𝐵, 𝐶, 1) = 𝐶)
2321sselda 3142 . . . . . . 7 ((𝜑𝑘𝐵) → 𝑘𝑈)
2423, 8syldan 280 . . . . . 6 ((𝜑𝑘𝐵) → 𝐶 ∈ ℂ)
2522, 24eqeltrd 2243 . . . . 5 ((𝜑𝑘𝐵) → if(𝑘𝐵, 𝐶, 1) ∈ ℂ)
26 fprodsplitdc.1 . . . . . . . . . . . . . 14 (𝜑 → (𝐴𝐵) = ∅)
27 disj 3457 . . . . . . . . . . . . . 14 ((𝐴𝐵) = ∅ ↔ ∀𝑗𝐴 ¬ 𝑗𝐵)
2826, 27sylib 121 . . . . . . . . . . . . 13 (𝜑 → ∀𝑗𝐴 ¬ 𝑗𝐵)
2928ad2antrr 480 . . . . . . . . . . . 12 (((𝜑𝑗𝑈) ∧ DECID 𝑗𝐴) → ∀𝑗𝐴 ¬ 𝑗𝐵)
3029r19.21bi 2554 . . . . . . . . . . 11 ((((𝜑𝑗𝑈) ∧ DECID 𝑗𝐴) ∧ 𝑗𝐴) → ¬ 𝑗𝐵)
3130olcd 724 . . . . . . . . . 10 ((((𝜑𝑗𝑈) ∧ DECID 𝑗𝐴) ∧ 𝑗𝐴) → (𝑗𝐵 ∨ ¬ 𝑗𝐵))
32 df-dc 825 . . . . . . . . . 10 (DECID 𝑗𝐵 ↔ (𝑗𝐵 ∨ ¬ 𝑗𝐵))
3331, 32sylibr 133 . . . . . . . . 9 ((((𝜑𝑗𝑈) ∧ DECID 𝑗𝐴) ∧ 𝑗𝐴) → DECID 𝑗𝐵)
34 simpr 109 . . . . . . . . . . . 12 ((((𝜑𝑗𝑈) ∧ DECID 𝑗𝐴) ∧ ¬ 𝑗𝐴) → ¬ 𝑗𝐴)
35 simpllr 524 . . . . . . . . . . . . . . 15 ((((𝜑𝑗𝑈) ∧ DECID 𝑗𝐴) ∧ ¬ 𝑗𝐴) → 𝑗𝑈)
364eleq2d 2236 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑗𝑈𝑗 ∈ (𝐴𝐵)))
3736ad3antrrr 484 . . . . . . . . . . . . . . 15 ((((𝜑𝑗𝑈) ∧ DECID 𝑗𝐴) ∧ ¬ 𝑗𝐴) → (𝑗𝑈𝑗 ∈ (𝐴𝐵)))
3835, 37mpbid 146 . . . . . . . . . . . . . 14 ((((𝜑𝑗𝑈) ∧ DECID 𝑗𝐴) ∧ ¬ 𝑗𝐴) → 𝑗 ∈ (𝐴𝐵))
39 elun 3263 . . . . . . . . . . . . . 14 (𝑗 ∈ (𝐴𝐵) ↔ (𝑗𝐴𝑗𝐵))
4038, 39sylib 121 . . . . . . . . . . . . 13 ((((𝜑𝑗𝑈) ∧ DECID 𝑗𝐴) ∧ ¬ 𝑗𝐴) → (𝑗𝐴𝑗𝐵))
4140orcomd 719 . . . . . . . . . . . 12 ((((𝜑𝑗𝑈) ∧ DECID 𝑗𝐴) ∧ ¬ 𝑗𝐴) → (𝑗𝐵𝑗𝐴))
4234, 41ecased 1339 . . . . . . . . . . 11 ((((𝜑𝑗𝑈) ∧ DECID 𝑗𝐴) ∧ ¬ 𝑗𝐴) → 𝑗𝐵)
4342orcd 723 . . . . . . . . . 10 ((((𝜑𝑗𝑈) ∧ DECID 𝑗𝐴) ∧ ¬ 𝑗𝐴) → (𝑗𝐵 ∨ ¬ 𝑗𝐵))
4443, 32sylibr 133 . . . . . . . . 9 ((((𝜑𝑗𝑈) ∧ DECID 𝑗𝐴) ∧ ¬ 𝑗𝐴) → DECID 𝑗𝐵)
45 exmiddc 826 . . . . . . . . . 10 (DECID 𝑗𝐴 → (𝑗𝐴 ∨ ¬ 𝑗𝐴))
4645adantl 275 . . . . . . . . 9 (((𝜑𝑗𝑈) ∧ DECID 𝑗𝐴) → (𝑗𝐴 ∨ ¬ 𝑗𝐴))
4733, 44, 46mpjaodan 788 . . . . . . . 8 (((𝜑𝑗𝑈) ∧ DECID 𝑗𝐴) → DECID 𝑗𝐵)
4847ex 114 . . . . . . 7 ((𝜑𝑗𝑈) → (DECID 𝑗𝐴DECID 𝑗𝐵))
4948ralimdva 2533 . . . . . 6 (𝜑 → (∀𝑗𝑈 DECID 𝑗𝐴 → ∀𝑗𝑈 DECID 𝑗𝐵))
5011, 49mpd 13 . . . . 5 (𝜑 → ∀𝑗𝑈 DECID 𝑗𝐵)
51 eldifn 3245 . . . . . . 7 (𝑘 ∈ (𝑈𝐵) → ¬ 𝑘𝐵)
5251iffalsed 3530 . . . . . 6 (𝑘 ∈ (𝑈𝐵) → if(𝑘𝐵, 𝐶, 1) = 1)
5352adantl 275 . . . . 5 ((𝜑𝑘 ∈ (𝑈𝐵)) → if(𝑘𝐵, 𝐶, 1) = 1)
5421, 25, 50, 53, 15fprodssdc 11531 . . . 4 (𝜑 → ∏𝑘𝐵 if(𝑘𝐵, 𝐶, 1) = ∏𝑘𝑈 if(𝑘𝐵, 𝐶, 1))
5519, 54eqtr3id 2213 . . 3 (𝜑 → ∏𝑘𝐵 𝐶 = ∏𝑘𝑈 if(𝑘𝐵, 𝐶, 1))
5617, 55oveq12d 5860 . 2 (𝜑 → (∏𝑘𝐴 𝐶 · ∏𝑘𝐵 𝐶) = (∏𝑘𝑈 if(𝑘𝐴, 𝐶, 1) · ∏𝑘𝑈 if(𝑘𝐵, 𝐶, 1)))
57 1cnd 7915 . . . 4 ((𝜑𝑘𝑈) → 1 ∈ ℂ)
58 eleq1w 2227 . . . . . . . 8 (𝑗 = 𝑘 → (𝑗𝐴𝑘𝐴))
5958dcbid 828 . . . . . . 7 (𝑗 = 𝑘 → (DECID 𝑗𝐴DECID 𝑘𝐴))
6059cbvralv 2692 . . . . . 6 (∀𝑗𝑈 DECID 𝑗𝐴 ↔ ∀𝑘𝑈 DECID 𝑘𝐴)
6111, 60sylib 121 . . . . 5 (𝜑 → ∀𝑘𝑈 DECID 𝑘𝐴)
6261r19.21bi 2554 . . . 4 ((𝜑𝑘𝑈) → DECID 𝑘𝐴)
638, 57, 62ifcldcd 3555 . . 3 ((𝜑𝑘𝑈) → if(𝑘𝐴, 𝐶, 1) ∈ ℂ)
64 eleq1w 2227 . . . . . . . 8 (𝑗 = 𝑘 → (𝑗𝐵𝑘𝐵))
6564dcbid 828 . . . . . . 7 (𝑗 = 𝑘 → (DECID 𝑗𝐵DECID 𝑘𝐵))
6665cbvralv 2692 . . . . . 6 (∀𝑗𝑈 DECID 𝑗𝐵 ↔ ∀𝑘𝑈 DECID 𝑘𝐵)
6750, 66sylib 121 . . . . 5 (𝜑 → ∀𝑘𝑈 DECID 𝑘𝐵)
6867r19.21bi 2554 . . . 4 ((𝜑𝑘𝑈) → DECID 𝑘𝐵)
698, 57, 68ifcldcd 3555 . . 3 ((𝜑𝑘𝑈) → if(𝑘𝐵, 𝐶, 1) ∈ ℂ)
7015, 63, 69fprodmul 11532 . 2 (𝜑 → ∏𝑘𝑈 (if(𝑘𝐴, 𝐶, 1) · if(𝑘𝐵, 𝐶, 1)) = (∏𝑘𝑈 if(𝑘𝐴, 𝐶, 1) · ∏𝑘𝑈 if(𝑘𝐵, 𝐶, 1)))
714eleq2d 2236 . . . . . 6 (𝜑 → (𝑘𝑈𝑘 ∈ (𝐴𝐵)))
72 elun 3263 . . . . . 6 (𝑘 ∈ (𝐴𝐵) ↔ (𝑘𝐴𝑘𝐵))
7371, 72bitrdi 195 . . . . 5 (𝜑 → (𝑘𝑈 ↔ (𝑘𝐴𝑘𝐵)))
7473biimpa 294 . . . 4 ((𝜑𝑘𝑈) → (𝑘𝐴𝑘𝐵))
75 disjel 3463 . . . . . . . . 9 (((𝐴𝐵) = ∅ ∧ 𝑘𝐴) → ¬ 𝑘𝐵)
7626, 75sylan 281 . . . . . . . 8 ((𝜑𝑘𝐴) → ¬ 𝑘𝐵)
7776iffalsed 3530 . . . . . . 7 ((𝜑𝑘𝐴) → if(𝑘𝐵, 𝐶, 1) = 1)
786, 77oveq12d 5860 . . . . . 6 ((𝜑𝑘𝐴) → (if(𝑘𝐴, 𝐶, 1) · if(𝑘𝐵, 𝐶, 1)) = (𝐶 · 1))
799mulid1d 7916 . . . . . 6 ((𝜑𝑘𝐴) → (𝐶 · 1) = 𝐶)
8078, 79eqtrd 2198 . . . . 5 ((𝜑𝑘𝐴) → (if(𝑘𝐴, 𝐶, 1) · if(𝑘𝐵, 𝐶, 1)) = 𝐶)
8176ex 114 . . . . . . . . . 10 (𝜑 → (𝑘𝐴 → ¬ 𝑘𝐵))
8281con2d 614 . . . . . . . . 9 (𝜑 → (𝑘𝐵 → ¬ 𝑘𝐴))
8382imp 123 . . . . . . . 8 ((𝜑𝑘𝐵) → ¬ 𝑘𝐴)
8483iffalsed 3530 . . . . . . 7 ((𝜑𝑘𝐵) → if(𝑘𝐴, 𝐶, 1) = 1)
8584, 22oveq12d 5860 . . . . . 6 ((𝜑𝑘𝐵) → (if(𝑘𝐴, 𝐶, 1) · if(𝑘𝐵, 𝐶, 1)) = (1 · 𝐶))
8624mulid2d 7917 . . . . . 6 ((𝜑𝑘𝐵) → (1 · 𝐶) = 𝐶)
8785, 86eqtrd 2198 . . . . 5 ((𝜑𝑘𝐵) → (if(𝑘𝐴, 𝐶, 1) · if(𝑘𝐵, 𝐶, 1)) = 𝐶)
8880, 87jaodan 787 . . . 4 ((𝜑 ∧ (𝑘𝐴𝑘𝐵)) → (if(𝑘𝐴, 𝐶, 1) · if(𝑘𝐵, 𝐶, 1)) = 𝐶)
8974, 88syldan 280 . . 3 ((𝜑𝑘𝑈) → (if(𝑘𝐴, 𝐶, 1) · if(𝑘𝐵, 𝐶, 1)) = 𝐶)
9089prodeq2dv 11507 . 2 (𝜑 → ∏𝑘𝑈 (if(𝑘𝐴, 𝐶, 1) · if(𝑘𝐵, 𝐶, 1)) = ∏𝑘𝑈 𝐶)
9156, 70, 903eqtr2rd 2205 1 (𝜑 → ∏𝑘𝑈 𝐶 = (∏𝑘𝐴 𝐶 · ∏𝑘𝐵 𝐶))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wo 698  DECID wdc 824   = wceq 1343  wcel 2136  wral 2444  cdif 3113  cun 3114  cin 3115  c0 3409  ifcif 3520  (class class class)co 5842  Fincfn 6706  cc 7751  1c1 7754   · cmul 7758  cprod 11491
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871  ax-arch 7872  ax-caucvg 7873
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-ilim 4347  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-isom 5197  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-irdg 6338  df-frec 6359  df-1o 6384  df-oadd 6388  df-er 6501  df-en 6707  df-dom 6708  df-fin 6709  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-inn 8858  df-2 8916  df-3 8917  df-4 8918  df-n0 9115  df-z 9192  df-uz 9467  df-q 9558  df-rp 9590  df-fz 9945  df-fzo 10078  df-seqfrec 10381  df-exp 10455  df-ihash 10689  df-cj 10784  df-re 10785  df-im 10786  df-rsqrt 10940  df-abs 10941  df-clim 11220  df-proddc 11492
This theorem is referenced by:  fprodsplit  11538  fprodm1  11539  fprod1p  11540  fprodunsn  11545  fprodeq0  11558
  Copyright terms: Public domain W3C validator