ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  istopon GIF version

Theorem istopon 14535
Description: Property of being a topology with a given base set. (Contributed by Stefan O'Rear, 31-Jan-2015.) (Revised by Mario Carneiro, 13-Aug-2015.)
Assertion
Ref Expression
istopon (𝐽 ∈ (TopOn‘𝐵) ↔ (𝐽 ∈ Top ∧ 𝐵 = 𝐽))

Proof of Theorem istopon
Dummy variables 𝑏 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 funtopon 14534 . . . . 5 Fun TopOn
2 funrel 5294 . . . . 5 (Fun TopOn → Rel TopOn)
31, 2ax-mp 5 . . . 4 Rel TopOn
4 relelfvdm 5618 . . . 4 ((Rel TopOn ∧ 𝐽 ∈ (TopOn‘𝐵)) → 𝐵 ∈ dom TopOn)
53, 4mpan 424 . . 3 (𝐽 ∈ (TopOn‘𝐵) → 𝐵 ∈ dom TopOn)
65elexd 2787 . 2 (𝐽 ∈ (TopOn‘𝐵) → 𝐵 ∈ V)
7 uniexg 4491 . . . 4 (𝐽 ∈ Top → 𝐽 ∈ V)
8 eleq1 2269 . . . 4 (𝐵 = 𝐽 → (𝐵 ∈ V ↔ 𝐽 ∈ V))
97, 8syl5ibrcom 157 . . 3 (𝐽 ∈ Top → (𝐵 = 𝐽𝐵 ∈ V))
109imp 124 . 2 ((𝐽 ∈ Top ∧ 𝐵 = 𝐽) → 𝐵 ∈ V)
11 eqeq1 2213 . . . . . 6 (𝑏 = 𝐵 → (𝑏 = 𝑗𝐵 = 𝑗))
1211rabbidv 2762 . . . . 5 (𝑏 = 𝐵 → {𝑗 ∈ Top ∣ 𝑏 = 𝑗} = {𝑗 ∈ Top ∣ 𝐵 = 𝑗})
13 df-topon 14533 . . . . 5 TopOn = (𝑏 ∈ V ↦ {𝑗 ∈ Top ∣ 𝑏 = 𝑗})
14 vpwex 4228 . . . . . . 7 𝒫 𝑏 ∈ V
1514pwex 4232 . . . . . 6 𝒫 𝒫 𝑏 ∈ V
16 rabss 3272 . . . . . . 7 ({𝑗 ∈ Top ∣ 𝑏 = 𝑗} ⊆ 𝒫 𝒫 𝑏 ↔ ∀𝑗 ∈ Top (𝑏 = 𝑗𝑗 ∈ 𝒫 𝒫 𝑏))
17 pwuni 4241 . . . . . . . . . 10 𝑗 ⊆ 𝒫 𝑗
18 pweq 3621 . . . . . . . . . 10 (𝑏 = 𝑗 → 𝒫 𝑏 = 𝒫 𝑗)
1917, 18sseqtrrid 3246 . . . . . . . . 9 (𝑏 = 𝑗𝑗 ⊆ 𝒫 𝑏)
20 velpw 3625 . . . . . . . . 9 (𝑗 ∈ 𝒫 𝒫 𝑏𝑗 ⊆ 𝒫 𝑏)
2119, 20sylibr 134 . . . . . . . 8 (𝑏 = 𝑗𝑗 ∈ 𝒫 𝒫 𝑏)
2221a1i 9 . . . . . . 7 (𝑗 ∈ Top → (𝑏 = 𝑗𝑗 ∈ 𝒫 𝒫 𝑏))
2316, 22mprgbir 2565 . . . . . 6 {𝑗 ∈ Top ∣ 𝑏 = 𝑗} ⊆ 𝒫 𝒫 𝑏
2415, 23ssexi 4187 . . . . 5 {𝑗 ∈ Top ∣ 𝑏 = 𝑗} ∈ V
2512, 13, 24fvmpt3i 5669 . . . 4 (𝐵 ∈ V → (TopOn‘𝐵) = {𝑗 ∈ Top ∣ 𝐵 = 𝑗})
2625eleq2d 2276 . . 3 (𝐵 ∈ V → (𝐽 ∈ (TopOn‘𝐵) ↔ 𝐽 ∈ {𝑗 ∈ Top ∣ 𝐵 = 𝑗}))
27 unieq 3862 . . . . 5 (𝑗 = 𝐽 𝑗 = 𝐽)
2827eqeq2d 2218 . . . 4 (𝑗 = 𝐽 → (𝐵 = 𝑗𝐵 = 𝐽))
2928elrab 2931 . . 3 (𝐽 ∈ {𝑗 ∈ Top ∣ 𝐵 = 𝑗} ↔ (𝐽 ∈ Top ∧ 𝐵 = 𝐽))
3026, 29bitrdi 196 . 2 (𝐵 ∈ V → (𝐽 ∈ (TopOn‘𝐵) ↔ (𝐽 ∈ Top ∧ 𝐵 = 𝐽)))
316, 10, 30pm5.21nii 706 1 (𝐽 ∈ (TopOn‘𝐵) ↔ (𝐽 ∈ Top ∧ 𝐵 = 𝐽))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1373  wcel 2177  {crab 2489  Vcvv 2773  wss 3168  𝒫 cpw 3618   cuni 3853  dom cdm 4680  Rel wrel 4685  Fun wfun 5271  cfv 5277  Topctop 14519  TopOnctopon 14532
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4167  ax-pow 4223  ax-pr 4258  ax-un 4485
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-rab 2494  df-v 2775  df-sbc 3001  df-un 3172  df-in 3174  df-ss 3181  df-pw 3620  df-sn 3641  df-pr 3642  df-op 3644  df-uni 3854  df-br 4049  df-opab 4111  df-mpt 4112  df-id 4345  df-xp 4686  df-rel 4687  df-cnv 4688  df-co 4689  df-dm 4690  df-iota 5238  df-fun 5279  df-fv 5285  df-topon 14533
This theorem is referenced by:  topontop  14536  toponuni  14537  toptopon  14540  toponcom  14549  istps2  14555  tgtopon  14588  distopon  14609  epttop  14612  resttopon  14693  resttopon2  14700  txtopon  14784
  Copyright terms: Public domain W3C validator