Step | Hyp | Ref
| Expression |
1 | | funtopon 12804 |
. . . . 5
⊢ Fun
TopOn |
2 | | funrel 5215 |
. . . . 5
⊢ (Fun
TopOn → Rel TopOn) |
3 | 1, 2 | ax-mp 5 |
. . . 4
⊢ Rel
TopOn |
4 | | relelfvdm 5528 |
. . . 4
⊢ ((Rel
TopOn ∧ 𝐽 ∈
(TopOn‘𝐵)) →
𝐵 ∈ dom
TopOn) |
5 | 3, 4 | mpan 422 |
. . 3
⊢ (𝐽 ∈ (TopOn‘𝐵) → 𝐵 ∈ dom TopOn) |
6 | 5 | elexd 2743 |
. 2
⊢ (𝐽 ∈ (TopOn‘𝐵) → 𝐵 ∈ V) |
7 | | uniexg 4424 |
. . . 4
⊢ (𝐽 ∈ Top → ∪ 𝐽
∈ V) |
8 | | eleq1 2233 |
. . . 4
⊢ (𝐵 = ∪
𝐽 → (𝐵 ∈ V ↔ ∪ 𝐽
∈ V)) |
9 | 7, 8 | syl5ibrcom 156 |
. . 3
⊢ (𝐽 ∈ Top → (𝐵 = ∪
𝐽 → 𝐵 ∈ V)) |
10 | 9 | imp 123 |
. 2
⊢ ((𝐽 ∈ Top ∧ 𝐵 = ∪
𝐽) → 𝐵 ∈ V) |
11 | | eqeq1 2177 |
. . . . . 6
⊢ (𝑏 = 𝐵 → (𝑏 = ∪ 𝑗 ↔ 𝐵 = ∪ 𝑗)) |
12 | 11 | rabbidv 2719 |
. . . . 5
⊢ (𝑏 = 𝐵 → {𝑗 ∈ Top ∣ 𝑏 = ∪ 𝑗} = {𝑗 ∈ Top ∣ 𝐵 = ∪ 𝑗}) |
13 | | df-topon 12803 |
. . . . 5
⊢ TopOn =
(𝑏 ∈ V ↦ {𝑗 ∈ Top ∣ 𝑏 = ∪
𝑗}) |
14 | | vpwex 4165 |
. . . . . . 7
⊢ 𝒫
𝑏 ∈ V |
15 | 14 | pwex 4169 |
. . . . . 6
⊢ 𝒫
𝒫 𝑏 ∈
V |
16 | | rabss 3224 |
. . . . . . 7
⊢ ({𝑗 ∈ Top ∣ 𝑏 = ∪
𝑗} ⊆ 𝒫
𝒫 𝑏 ↔
∀𝑗 ∈ Top (𝑏 = ∪
𝑗 → 𝑗 ∈ 𝒫 𝒫 𝑏)) |
17 | | pwuni 4178 |
. . . . . . . . . 10
⊢ 𝑗 ⊆ 𝒫 ∪ 𝑗 |
18 | | pweq 3569 |
. . . . . . . . . 10
⊢ (𝑏 = ∪
𝑗 → 𝒫 𝑏 = 𝒫 ∪ 𝑗) |
19 | 17, 18 | sseqtrrid 3198 |
. . . . . . . . 9
⊢ (𝑏 = ∪
𝑗 → 𝑗 ⊆ 𝒫 𝑏) |
20 | | velpw 3573 |
. . . . . . . . 9
⊢ (𝑗 ∈ 𝒫 𝒫
𝑏 ↔ 𝑗 ⊆ 𝒫 𝑏) |
21 | 19, 20 | sylibr 133 |
. . . . . . . 8
⊢ (𝑏 = ∪
𝑗 → 𝑗 ∈ 𝒫 𝒫 𝑏) |
22 | 21 | a1i 9 |
. . . . . . 7
⊢ (𝑗 ∈ Top → (𝑏 = ∪
𝑗 → 𝑗 ∈ 𝒫 𝒫 𝑏)) |
23 | 16, 22 | mprgbir 2528 |
. . . . . 6
⊢ {𝑗 ∈ Top ∣ 𝑏 = ∪
𝑗} ⊆ 𝒫
𝒫 𝑏 |
24 | 15, 23 | ssexi 4127 |
. . . . 5
⊢ {𝑗 ∈ Top ∣ 𝑏 = ∪
𝑗} ∈
V |
25 | 12, 13, 24 | fvmpt3i 5576 |
. . . 4
⊢ (𝐵 ∈ V →
(TopOn‘𝐵) = {𝑗 ∈ Top ∣ 𝐵 = ∪
𝑗}) |
26 | 25 | eleq2d 2240 |
. . 3
⊢ (𝐵 ∈ V → (𝐽 ∈ (TopOn‘𝐵) ↔ 𝐽 ∈ {𝑗 ∈ Top ∣ 𝐵 = ∪ 𝑗})) |
27 | | unieq 3805 |
. . . . 5
⊢ (𝑗 = 𝐽 → ∪ 𝑗 = ∪
𝐽) |
28 | 27 | eqeq2d 2182 |
. . . 4
⊢ (𝑗 = 𝐽 → (𝐵 = ∪ 𝑗 ↔ 𝐵 = ∪ 𝐽)) |
29 | 28 | elrab 2886 |
. . 3
⊢ (𝐽 ∈ {𝑗 ∈ Top ∣ 𝐵 = ∪ 𝑗} ↔ (𝐽 ∈ Top ∧ 𝐵 = ∪ 𝐽)) |
30 | 26, 29 | bitrdi 195 |
. 2
⊢ (𝐵 ∈ V → (𝐽 ∈ (TopOn‘𝐵) ↔ (𝐽 ∈ Top ∧ 𝐵 = ∪ 𝐽))) |
31 | 6, 10, 30 | pm5.21nii 699 |
1
⊢ (𝐽 ∈ (TopOn‘𝐵) ↔ (𝐽 ∈ Top ∧ 𝐵 = ∪ 𝐽)) |