ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  istopon GIF version

Theorem istopon 14181
Description: Property of being a topology with a given base set. (Contributed by Stefan O'Rear, 31-Jan-2015.) (Revised by Mario Carneiro, 13-Aug-2015.)
Assertion
Ref Expression
istopon (𝐽 ∈ (TopOn‘𝐵) ↔ (𝐽 ∈ Top ∧ 𝐵 = 𝐽))

Proof of Theorem istopon
Dummy variables 𝑏 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 funtopon 14180 . . . . 5 Fun TopOn
2 funrel 5271 . . . . 5 (Fun TopOn → Rel TopOn)
31, 2ax-mp 5 . . . 4 Rel TopOn
4 relelfvdm 5586 . . . 4 ((Rel TopOn ∧ 𝐽 ∈ (TopOn‘𝐵)) → 𝐵 ∈ dom TopOn)
53, 4mpan 424 . . 3 (𝐽 ∈ (TopOn‘𝐵) → 𝐵 ∈ dom TopOn)
65elexd 2773 . 2 (𝐽 ∈ (TopOn‘𝐵) → 𝐵 ∈ V)
7 uniexg 4470 . . . 4 (𝐽 ∈ Top → 𝐽 ∈ V)
8 eleq1 2256 . . . 4 (𝐵 = 𝐽 → (𝐵 ∈ V ↔ 𝐽 ∈ V))
97, 8syl5ibrcom 157 . . 3 (𝐽 ∈ Top → (𝐵 = 𝐽𝐵 ∈ V))
109imp 124 . 2 ((𝐽 ∈ Top ∧ 𝐵 = 𝐽) → 𝐵 ∈ V)
11 eqeq1 2200 . . . . . 6 (𝑏 = 𝐵 → (𝑏 = 𝑗𝐵 = 𝑗))
1211rabbidv 2749 . . . . 5 (𝑏 = 𝐵 → {𝑗 ∈ Top ∣ 𝑏 = 𝑗} = {𝑗 ∈ Top ∣ 𝐵 = 𝑗})
13 df-topon 14179 . . . . 5 TopOn = (𝑏 ∈ V ↦ {𝑗 ∈ Top ∣ 𝑏 = 𝑗})
14 vpwex 4208 . . . . . . 7 𝒫 𝑏 ∈ V
1514pwex 4212 . . . . . 6 𝒫 𝒫 𝑏 ∈ V
16 rabss 3256 . . . . . . 7 ({𝑗 ∈ Top ∣ 𝑏 = 𝑗} ⊆ 𝒫 𝒫 𝑏 ↔ ∀𝑗 ∈ Top (𝑏 = 𝑗𝑗 ∈ 𝒫 𝒫 𝑏))
17 pwuni 4221 . . . . . . . . . 10 𝑗 ⊆ 𝒫 𝑗
18 pweq 3604 . . . . . . . . . 10 (𝑏 = 𝑗 → 𝒫 𝑏 = 𝒫 𝑗)
1917, 18sseqtrrid 3230 . . . . . . . . 9 (𝑏 = 𝑗𝑗 ⊆ 𝒫 𝑏)
20 velpw 3608 . . . . . . . . 9 (𝑗 ∈ 𝒫 𝒫 𝑏𝑗 ⊆ 𝒫 𝑏)
2119, 20sylibr 134 . . . . . . . 8 (𝑏 = 𝑗𝑗 ∈ 𝒫 𝒫 𝑏)
2221a1i 9 . . . . . . 7 (𝑗 ∈ Top → (𝑏 = 𝑗𝑗 ∈ 𝒫 𝒫 𝑏))
2316, 22mprgbir 2552 . . . . . 6 {𝑗 ∈ Top ∣ 𝑏 = 𝑗} ⊆ 𝒫 𝒫 𝑏
2415, 23ssexi 4167 . . . . 5 {𝑗 ∈ Top ∣ 𝑏 = 𝑗} ∈ V
2512, 13, 24fvmpt3i 5637 . . . 4 (𝐵 ∈ V → (TopOn‘𝐵) = {𝑗 ∈ Top ∣ 𝐵 = 𝑗})
2625eleq2d 2263 . . 3 (𝐵 ∈ V → (𝐽 ∈ (TopOn‘𝐵) ↔ 𝐽 ∈ {𝑗 ∈ Top ∣ 𝐵 = 𝑗}))
27 unieq 3844 . . . . 5 (𝑗 = 𝐽 𝑗 = 𝐽)
2827eqeq2d 2205 . . . 4 (𝑗 = 𝐽 → (𝐵 = 𝑗𝐵 = 𝐽))
2928elrab 2916 . . 3 (𝐽 ∈ {𝑗 ∈ Top ∣ 𝐵 = 𝑗} ↔ (𝐽 ∈ Top ∧ 𝐵 = 𝐽))
3026, 29bitrdi 196 . 2 (𝐵 ∈ V → (𝐽 ∈ (TopOn‘𝐵) ↔ (𝐽 ∈ Top ∧ 𝐵 = 𝐽)))
316, 10, 30pm5.21nii 705 1 (𝐽 ∈ (TopOn‘𝐵) ↔ (𝐽 ∈ Top ∧ 𝐵 = 𝐽))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2164  {crab 2476  Vcvv 2760  wss 3153  𝒫 cpw 3601   cuni 3835  dom cdm 4659  Rel wrel 4664  Fun wfun 5248  cfv 5254  Topctop 14165  TopOnctopon 14178
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2986  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-iota 5215  df-fun 5256  df-fv 5262  df-topon 14179
This theorem is referenced by:  topontop  14182  toponuni  14183  toptopon  14186  toponcom  14195  istps2  14201  tgtopon  14234  distopon  14255  epttop  14258  resttopon  14339  resttopon2  14346  txtopon  14430
  Copyright terms: Public domain W3C validator