ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  istopon GIF version

Theorem istopon 12651
Description: Property of being a topology with a given base set. (Contributed by Stefan O'Rear, 31-Jan-2015.) (Revised by Mario Carneiro, 13-Aug-2015.)
Assertion
Ref Expression
istopon (𝐽 ∈ (TopOn‘𝐵) ↔ (𝐽 ∈ Top ∧ 𝐵 = 𝐽))

Proof of Theorem istopon
Dummy variables 𝑏 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 funtopon 12650 . . . . 5 Fun TopOn
2 funrel 5205 . . . . 5 (Fun TopOn → Rel TopOn)
31, 2ax-mp 5 . . . 4 Rel TopOn
4 relelfvdm 5518 . . . 4 ((Rel TopOn ∧ 𝐽 ∈ (TopOn‘𝐵)) → 𝐵 ∈ dom TopOn)
53, 4mpan 421 . . 3 (𝐽 ∈ (TopOn‘𝐵) → 𝐵 ∈ dom TopOn)
65elexd 2739 . 2 (𝐽 ∈ (TopOn‘𝐵) → 𝐵 ∈ V)
7 uniexg 4417 . . . 4 (𝐽 ∈ Top → 𝐽 ∈ V)
8 eleq1 2229 . . . 4 (𝐵 = 𝐽 → (𝐵 ∈ V ↔ 𝐽 ∈ V))
97, 8syl5ibrcom 156 . . 3 (𝐽 ∈ Top → (𝐵 = 𝐽𝐵 ∈ V))
109imp 123 . 2 ((𝐽 ∈ Top ∧ 𝐵 = 𝐽) → 𝐵 ∈ V)
11 eqeq1 2172 . . . . . 6 (𝑏 = 𝐵 → (𝑏 = 𝑗𝐵 = 𝑗))
1211rabbidv 2715 . . . . 5 (𝑏 = 𝐵 → {𝑗 ∈ Top ∣ 𝑏 = 𝑗} = {𝑗 ∈ Top ∣ 𝐵 = 𝑗})
13 df-topon 12649 . . . . 5 TopOn = (𝑏 ∈ V ↦ {𝑗 ∈ Top ∣ 𝑏 = 𝑗})
14 vpwex 4158 . . . . . . 7 𝒫 𝑏 ∈ V
1514pwex 4162 . . . . . 6 𝒫 𝒫 𝑏 ∈ V
16 rabss 3219 . . . . . . 7 ({𝑗 ∈ Top ∣ 𝑏 = 𝑗} ⊆ 𝒫 𝒫 𝑏 ↔ ∀𝑗 ∈ Top (𝑏 = 𝑗𝑗 ∈ 𝒫 𝒫 𝑏))
17 pwuni 4171 . . . . . . . . . 10 𝑗 ⊆ 𝒫 𝑗
18 pweq 3562 . . . . . . . . . 10 (𝑏 = 𝑗 → 𝒫 𝑏 = 𝒫 𝑗)
1917, 18sseqtrrid 3193 . . . . . . . . 9 (𝑏 = 𝑗𝑗 ⊆ 𝒫 𝑏)
20 velpw 3566 . . . . . . . . 9 (𝑗 ∈ 𝒫 𝒫 𝑏𝑗 ⊆ 𝒫 𝑏)
2119, 20sylibr 133 . . . . . . . 8 (𝑏 = 𝑗𝑗 ∈ 𝒫 𝒫 𝑏)
2221a1i 9 . . . . . . 7 (𝑗 ∈ Top → (𝑏 = 𝑗𝑗 ∈ 𝒫 𝒫 𝑏))
2316, 22mprgbir 2524 . . . . . 6 {𝑗 ∈ Top ∣ 𝑏 = 𝑗} ⊆ 𝒫 𝒫 𝑏
2415, 23ssexi 4120 . . . . 5 {𝑗 ∈ Top ∣ 𝑏 = 𝑗} ∈ V
2512, 13, 24fvmpt3i 5566 . . . 4 (𝐵 ∈ V → (TopOn‘𝐵) = {𝑗 ∈ Top ∣ 𝐵 = 𝑗})
2625eleq2d 2236 . . 3 (𝐵 ∈ V → (𝐽 ∈ (TopOn‘𝐵) ↔ 𝐽 ∈ {𝑗 ∈ Top ∣ 𝐵 = 𝑗}))
27 unieq 3798 . . . . 5 (𝑗 = 𝐽 𝑗 = 𝐽)
2827eqeq2d 2177 . . . 4 (𝑗 = 𝐽 → (𝐵 = 𝑗𝐵 = 𝐽))
2928elrab 2882 . . 3 (𝐽 ∈ {𝑗 ∈ Top ∣ 𝐵 = 𝑗} ↔ (𝐽 ∈ Top ∧ 𝐵 = 𝐽))
3026, 29bitrdi 195 . 2 (𝐵 ∈ V → (𝐽 ∈ (TopOn‘𝐵) ↔ (𝐽 ∈ Top ∧ 𝐵 = 𝐽)))
316, 10, 30pm5.21nii 694 1 (𝐽 ∈ (TopOn‘𝐵) ↔ (𝐽 ∈ Top ∧ 𝐵 = 𝐽))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1343  wcel 2136  {crab 2448  Vcvv 2726  wss 3116  𝒫 cpw 3559   cuni 3789  dom cdm 4604  Rel wrel 4609  Fun wfun 5182  cfv 5188  Topctop 12635  TopOnctopon 12648
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-rab 2453  df-v 2728  df-sbc 2952  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-iota 5153  df-fun 5190  df-fv 5196  df-topon 12649
This theorem is referenced by:  topontop  12652  toponuni  12653  toptopon  12656  toponcom  12665  istps2  12671  tgtopon  12706  distopon  12727  epttop  12730  resttopon  12811  resttopon2  12818  txtopon  12902
  Copyright terms: Public domain W3C validator