ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqsstrdi GIF version

Theorem eqsstrdi 3244
Description: A chained subclass and equality deduction. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
eqsstrdi.1 (𝜑𝐴 = 𝐵)
eqsstrdi.2 𝐵𝐶
Assertion
Ref Expression
eqsstrdi (𝜑𝐴𝐶)

Proof of Theorem eqsstrdi
StepHypRef Expression
1 eqsstrdi.1 . 2 (𝜑𝐴 = 𝐵)
2 eqsstrdi.2 . . 3 𝐵𝐶
32a1i 9 . 2 (𝜑𝐵𝐶)
41, 3eqsstrd 3228 1 (𝜑𝐴𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1372  wss 3165
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-11 1528  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-in 3171  df-ss 3178
This theorem is referenced by:  eqsstrrdi  3245  resasplitss  5449  fimacnv  5703  en2other2  7286  exmidfodomrlemim  7291  pw1on  7320  suplocexprlemex  7817  1arith  12609  ennnfonelemkh  12702  aprap  13966  znf1o  14331  mplbasss  14376  toponsspwpwg  14412  ntrss2  14511  cnprcl2k  14596  reldvg  15069  bj-nntrans  15751  nninfsellemsuc  15813
  Copyright terms: Public domain W3C validator