| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqsstrdi | GIF version | ||
| Description: A chained subclass and equality deduction. (Contributed by Mario Carneiro, 2-Jan-2017.) |
| Ref | Expression |
|---|---|
| eqsstrdi.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| eqsstrdi.2 | ⊢ 𝐵 ⊆ 𝐶 |
| Ref | Expression |
|---|---|
| eqsstrdi | ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqsstrdi.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | eqsstrdi.2 | . . 3 ⊢ 𝐵 ⊆ 𝐶 | |
| 3 | 2 | a1i 9 | . 2 ⊢ (𝜑 → 𝐵 ⊆ 𝐶) |
| 4 | 1, 3 | eqsstrd 3233 | 1 ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ⊆ wss 3170 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-11 1530 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-in 3176 df-ss 3183 |
| This theorem is referenced by: eqsstrrdi 3250 resasplitss 5467 fimacnv 5722 en2other2 7320 exmidfodomrlemim 7325 pw1on 7357 suplocexprlemex 7855 fzowrddc 11123 swrdlend 11134 1arith 12765 ennnfonelemkh 12858 aprap 14123 znf1o 14488 mplbasss 14533 toponsspwpwg 14569 ntrss2 14668 cnprcl2k 14753 reldvg 15226 bj-nntrans 16025 nninfsellemsuc 16090 |
| Copyright terms: Public domain | W3C validator |