| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqsstrdi | GIF version | ||
| Description: A chained subclass and equality deduction. (Contributed by Mario Carneiro, 2-Jan-2017.) |
| Ref | Expression |
|---|---|
| eqsstrdi.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| eqsstrdi.2 | ⊢ 𝐵 ⊆ 𝐶 |
| Ref | Expression |
|---|---|
| eqsstrdi | ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqsstrdi.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | eqsstrdi.2 | . . 3 ⊢ 𝐵 ⊆ 𝐶 | |
| 3 | 2 | a1i 9 | . 2 ⊢ (𝜑 → 𝐵 ⊆ 𝐶) |
| 4 | 1, 3 | eqsstrd 3219 | 1 ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 ⊆ wss 3157 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-in 3163 df-ss 3170 |
| This theorem is referenced by: eqsstrrdi 3236 resasplitss 5437 fimacnv 5691 en2other2 7263 exmidfodomrlemim 7268 pw1on 7293 suplocexprlemex 7789 1arith 12536 ennnfonelemkh 12629 aprap 13842 znf1o 14207 toponsspwpwg 14258 ntrss2 14357 cnprcl2k 14442 reldvg 14915 bj-nntrans 15597 nninfsellemsuc 15656 |
| Copyright terms: Public domain | W3C validator |