ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqsstrdi GIF version

Theorem eqsstrdi 3276
Description: A chained subclass and equality deduction. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
eqsstrdi.1 (𝜑𝐴 = 𝐵)
eqsstrdi.2 𝐵𝐶
Assertion
Ref Expression
eqsstrdi (𝜑𝐴𝐶)

Proof of Theorem eqsstrdi
StepHypRef Expression
1 eqsstrdi.1 . 2 (𝜑𝐴 = 𝐵)
2 eqsstrdi.2 . . 3 𝐵𝐶
32a1i 9 . 2 (𝜑𝐵𝐶)
41, 3eqsstrd 3260 1 (𝜑𝐴𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1395  wss 3197
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-11 1552  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-in 3203  df-ss 3210
This theorem is referenced by:  eqsstrrdi  3277  resasplitss  5504  fimacnv  5763  en2other2  7370  exmidfodomrlemim  7375  pw1on  7407  suplocexprlemex  7905  fzowrddc  11174  swrdlend  11185  1arith  12885  ennnfonelemkh  12978  aprap  14244  znf1o  14609  mplbasss  14654  toponsspwpwg  14690  ntrss2  14789  cnprcl2k  14874  reldvg  15347  bj-nntrans  16272  nninfsellemsuc  16337
  Copyright terms: Public domain W3C validator