| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqsstrdi | GIF version | ||
| Description: A chained subclass and equality deduction. (Contributed by Mario Carneiro, 2-Jan-2017.) |
| Ref | Expression |
|---|---|
| eqsstrdi.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| eqsstrdi.2 | ⊢ 𝐵 ⊆ 𝐶 |
| Ref | Expression |
|---|---|
| eqsstrdi | ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqsstrdi.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | eqsstrdi.2 | . . 3 ⊢ 𝐵 ⊆ 𝐶 | |
| 3 | 2 | a1i 9 | . 2 ⊢ (𝜑 → 𝐵 ⊆ 𝐶) |
| 4 | 1, 3 | eqsstrd 3260 | 1 ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1395 ⊆ wss 3197 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-11 1552 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-in 3203 df-ss 3210 |
| This theorem is referenced by: eqsstrrdi 3277 resasplitss 5504 fimacnv 5763 en2other2 7370 exmidfodomrlemim 7375 pw1on 7407 suplocexprlemex 7905 fzowrddc 11174 swrdlend 11185 1arith 12885 ennnfonelemkh 12978 aprap 14244 znf1o 14609 mplbasss 14654 toponsspwpwg 14690 ntrss2 14789 cnprcl2k 14874 reldvg 15347 bj-nntrans 16272 nninfsellemsuc 16337 |
| Copyright terms: Public domain | W3C validator |