ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqsstrdi GIF version

Theorem eqsstrdi 3249
Description: A chained subclass and equality deduction. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
eqsstrdi.1 (𝜑𝐴 = 𝐵)
eqsstrdi.2 𝐵𝐶
Assertion
Ref Expression
eqsstrdi (𝜑𝐴𝐶)

Proof of Theorem eqsstrdi
StepHypRef Expression
1 eqsstrdi.1 . 2 (𝜑𝐴 = 𝐵)
2 eqsstrdi.2 . . 3 𝐵𝐶
32a1i 9 . 2 (𝜑𝐵𝐶)
41, 3eqsstrd 3233 1 (𝜑𝐴𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1373  wss 3170
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-11 1530  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-in 3176  df-ss 3183
This theorem is referenced by:  eqsstrrdi  3250  resasplitss  5467  fimacnv  5722  en2other2  7320  exmidfodomrlemim  7325  pw1on  7357  suplocexprlemex  7855  fzowrddc  11123  swrdlend  11134  1arith  12765  ennnfonelemkh  12858  aprap  14123  znf1o  14488  mplbasss  14533  toponsspwpwg  14569  ntrss2  14668  cnprcl2k  14753  reldvg  15226  bj-nntrans  16025  nninfsellemsuc  16090
  Copyright terms: Public domain W3C validator