![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eqsstrdi | GIF version |
Description: A chained subclass and equality deduction. (Contributed by Mario Carneiro, 2-Jan-2017.) |
Ref | Expression |
---|---|
eqsstrdi.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
eqsstrdi.2 | ⊢ 𝐵 ⊆ 𝐶 |
Ref | Expression |
---|---|
eqsstrdi | ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqsstrdi.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | eqsstrdi.2 | . . 3 ⊢ 𝐵 ⊆ 𝐶 | |
3 | 2 | a1i 9 | . 2 ⊢ (𝜑 → 𝐵 ⊆ 𝐶) |
4 | 1, 3 | eqsstrd 3216 | 1 ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 ⊆ wss 3154 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-11 1517 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-in 3160 df-ss 3167 |
This theorem is referenced by: eqsstrrdi 3233 resasplitss 5434 fimacnv 5688 en2other2 7258 exmidfodomrlemim 7263 pw1on 7288 suplocexprlemex 7784 1arith 12508 ennnfonelemkh 12572 aprap 13785 znf1o 14150 toponsspwpwg 14201 ntrss2 14300 cnprcl2k 14385 reldvg 14858 bj-nntrans 15513 nninfsellemsuc 15572 |
Copyright terms: Public domain | W3C validator |