ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqsstrdi GIF version

Theorem eqsstrdi 3236
Description: A chained subclass and equality deduction. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
eqsstrdi.1 (𝜑𝐴 = 𝐵)
eqsstrdi.2 𝐵𝐶
Assertion
Ref Expression
eqsstrdi (𝜑𝐴𝐶)

Proof of Theorem eqsstrdi
StepHypRef Expression
1 eqsstrdi.1 . 2 (𝜑𝐴 = 𝐵)
2 eqsstrdi.2 . . 3 𝐵𝐶
32a1i 9 . 2 (𝜑𝐵𝐶)
41, 3eqsstrd 3220 1 (𝜑𝐴𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  wss 3157
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-11 1520  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-in 3163  df-ss 3170
This theorem is referenced by:  eqsstrrdi  3237  resasplitss  5440  fimacnv  5694  en2other2  7277  exmidfodomrlemim  7282  pw1on  7311  suplocexprlemex  7808  1arith  12563  ennnfonelemkh  12656  aprap  13920  znf1o  14285  mplbasss  14330  toponsspwpwg  14366  ntrss2  14465  cnprcl2k  14550  reldvg  15023  bj-nntrans  15705  nninfsellemsuc  15767
  Copyright terms: Public domain W3C validator