Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ennnfonelemss | GIF version |
Description: Lemma for ennnfone 12126. We only add elements to 𝐻 as the index increases. (Contributed by Jim Kingdon, 15-Jul-2023.) |
Ref | Expression |
---|---|
ennnfonelemh.dceq | ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦) |
ennnfonelemh.f | ⊢ (𝜑 → 𝐹:ω–onto→𝐴) |
ennnfonelemh.ne | ⊢ (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹‘𝑘) ≠ (𝐹‘𝑗)) |
ennnfonelemh.g | ⊢ 𝐺 = (𝑥 ∈ (𝐴 ↑pm ω), 𝑦 ∈ ω ↦ if((𝐹‘𝑦) ∈ (𝐹 “ 𝑦), 𝑥, (𝑥 ∪ {〈dom 𝑥, (𝐹‘𝑦)〉}))) |
ennnfonelemh.n | ⊢ 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) |
ennnfonelemh.j | ⊢ 𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (◡𝑁‘(𝑥 − 1)))) |
ennnfonelemh.h | ⊢ 𝐻 = seq0(𝐺, 𝐽) |
ennnfonelemss.p | ⊢ (𝜑 → 𝑃 ∈ ℕ0) |
Ref | Expression |
---|---|
ennnfonelemss | ⊢ (𝜑 → (𝐻‘𝑃) ⊆ (𝐻‘(𝑃 + 1))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ennnfonelemh.dceq | . . . . . 6 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦) | |
2 | ennnfonelemh.f | . . . . . 6 ⊢ (𝜑 → 𝐹:ω–onto→𝐴) | |
3 | ennnfonelemh.ne | . . . . . 6 ⊢ (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹‘𝑘) ≠ (𝐹‘𝑗)) | |
4 | ennnfonelemh.g | . . . . . 6 ⊢ 𝐺 = (𝑥 ∈ (𝐴 ↑pm ω), 𝑦 ∈ ω ↦ if((𝐹‘𝑦) ∈ (𝐹 “ 𝑦), 𝑥, (𝑥 ∪ {〈dom 𝑥, (𝐹‘𝑦)〉}))) | |
5 | ennnfonelemh.n | . . . . . 6 ⊢ 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) | |
6 | ennnfonelemh.j | . . . . . 6 ⊢ 𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (◡𝑁‘(𝑥 − 1)))) | |
7 | ennnfonelemh.h | . . . . . 6 ⊢ 𝐻 = seq0(𝐺, 𝐽) | |
8 | ennnfonelemss.p | . . . . . 6 ⊢ (𝜑 → 𝑃 ∈ ℕ0) | |
9 | 1, 2, 3, 4, 5, 6, 7, 8 | ennnfonelemp1 12107 | . . . . 5 ⊢ (𝜑 → (𝐻‘(𝑃 + 1)) = if((𝐹‘(◡𝑁‘𝑃)) ∈ (𝐹 “ (◡𝑁‘𝑃)), (𝐻‘𝑃), ((𝐻‘𝑃) ∪ {〈dom (𝐻‘𝑃), (𝐹‘(◡𝑁‘𝑃))〉}))) |
10 | 9 | adantr 274 | . . . 4 ⊢ ((𝜑 ∧ (𝐹‘(◡𝑁‘𝑃)) ∈ (𝐹 “ (◡𝑁‘𝑃))) → (𝐻‘(𝑃 + 1)) = if((𝐹‘(◡𝑁‘𝑃)) ∈ (𝐹 “ (◡𝑁‘𝑃)), (𝐻‘𝑃), ((𝐻‘𝑃) ∪ {〈dom (𝐻‘𝑃), (𝐹‘(◡𝑁‘𝑃))〉}))) |
11 | simpr 109 | . . . . 5 ⊢ ((𝜑 ∧ (𝐹‘(◡𝑁‘𝑃)) ∈ (𝐹 “ (◡𝑁‘𝑃))) → (𝐹‘(◡𝑁‘𝑃)) ∈ (𝐹 “ (◡𝑁‘𝑃))) | |
12 | 11 | iftrued 3512 | . . . 4 ⊢ ((𝜑 ∧ (𝐹‘(◡𝑁‘𝑃)) ∈ (𝐹 “ (◡𝑁‘𝑃))) → if((𝐹‘(◡𝑁‘𝑃)) ∈ (𝐹 “ (◡𝑁‘𝑃)), (𝐻‘𝑃), ((𝐻‘𝑃) ∪ {〈dom (𝐻‘𝑃), (𝐹‘(◡𝑁‘𝑃))〉})) = (𝐻‘𝑃)) |
13 | 10, 12 | eqtrd 2190 | . . 3 ⊢ ((𝜑 ∧ (𝐹‘(◡𝑁‘𝑃)) ∈ (𝐹 “ (◡𝑁‘𝑃))) → (𝐻‘(𝑃 + 1)) = (𝐻‘𝑃)) |
14 | eqimss2 3183 | . . 3 ⊢ ((𝐻‘(𝑃 + 1)) = (𝐻‘𝑃) → (𝐻‘𝑃) ⊆ (𝐻‘(𝑃 + 1))) | |
15 | 13, 14 | syl 14 | . 2 ⊢ ((𝜑 ∧ (𝐹‘(◡𝑁‘𝑃)) ∈ (𝐹 “ (◡𝑁‘𝑃))) → (𝐻‘𝑃) ⊆ (𝐻‘(𝑃 + 1))) |
16 | ssun1 3270 | . . 3 ⊢ (𝐻‘𝑃) ⊆ ((𝐻‘𝑃) ∪ {〈dom (𝐻‘𝑃), (𝐹‘(◡𝑁‘𝑃))〉}) | |
17 | 9 | adantr 274 | . . . 4 ⊢ ((𝜑 ∧ ¬ (𝐹‘(◡𝑁‘𝑃)) ∈ (𝐹 “ (◡𝑁‘𝑃))) → (𝐻‘(𝑃 + 1)) = if((𝐹‘(◡𝑁‘𝑃)) ∈ (𝐹 “ (◡𝑁‘𝑃)), (𝐻‘𝑃), ((𝐻‘𝑃) ∪ {〈dom (𝐻‘𝑃), (𝐹‘(◡𝑁‘𝑃))〉}))) |
18 | simpr 109 | . . . . 5 ⊢ ((𝜑 ∧ ¬ (𝐹‘(◡𝑁‘𝑃)) ∈ (𝐹 “ (◡𝑁‘𝑃))) → ¬ (𝐹‘(◡𝑁‘𝑃)) ∈ (𝐹 “ (◡𝑁‘𝑃))) | |
19 | 18 | iffalsed 3515 | . . . 4 ⊢ ((𝜑 ∧ ¬ (𝐹‘(◡𝑁‘𝑃)) ∈ (𝐹 “ (◡𝑁‘𝑃))) → if((𝐹‘(◡𝑁‘𝑃)) ∈ (𝐹 “ (◡𝑁‘𝑃)), (𝐻‘𝑃), ((𝐻‘𝑃) ∪ {〈dom (𝐻‘𝑃), (𝐹‘(◡𝑁‘𝑃))〉})) = ((𝐻‘𝑃) ∪ {〈dom (𝐻‘𝑃), (𝐹‘(◡𝑁‘𝑃))〉})) |
20 | 17, 19 | eqtrd 2190 | . . 3 ⊢ ((𝜑 ∧ ¬ (𝐹‘(◡𝑁‘𝑃)) ∈ (𝐹 “ (◡𝑁‘𝑃))) → (𝐻‘(𝑃 + 1)) = ((𝐻‘𝑃) ∪ {〈dom (𝐻‘𝑃), (𝐹‘(◡𝑁‘𝑃))〉})) |
21 | 16, 20 | sseqtrrid 3179 | . 2 ⊢ ((𝜑 ∧ ¬ (𝐹‘(◡𝑁‘𝑃)) ∈ (𝐹 “ (◡𝑁‘𝑃))) → (𝐻‘𝑃) ⊆ (𝐻‘(𝑃 + 1))) |
22 | 5 | frechashgf1o 10309 | . . . . . . 7 ⊢ 𝑁:ω–1-1-onto→ℕ0 |
23 | f1ocnv 5424 | . . . . . . 7 ⊢ (𝑁:ω–1-1-onto→ℕ0 → ◡𝑁:ℕ0–1-1-onto→ω) | |
24 | f1of 5411 | . . . . . . 7 ⊢ (◡𝑁:ℕ0–1-1-onto→ω → ◡𝑁:ℕ0⟶ω) | |
25 | 22, 23, 24 | mp2b 8 | . . . . . 6 ⊢ ◡𝑁:ℕ0⟶ω |
26 | 25 | a1i 9 | . . . . 5 ⊢ (𝜑 → ◡𝑁:ℕ0⟶ω) |
27 | 26, 8 | ffvelrnd 5600 | . . . 4 ⊢ (𝜑 → (◡𝑁‘𝑃) ∈ ω) |
28 | 1, 2, 27 | ennnfonelemdc 12100 | . . 3 ⊢ (𝜑 → DECID (𝐹‘(◡𝑁‘𝑃)) ∈ (𝐹 “ (◡𝑁‘𝑃))) |
29 | exmiddc 822 | . . 3 ⊢ (DECID (𝐹‘(◡𝑁‘𝑃)) ∈ (𝐹 “ (◡𝑁‘𝑃)) → ((𝐹‘(◡𝑁‘𝑃)) ∈ (𝐹 “ (◡𝑁‘𝑃)) ∨ ¬ (𝐹‘(◡𝑁‘𝑃)) ∈ (𝐹 “ (◡𝑁‘𝑃)))) | |
30 | 28, 29 | syl 14 | . 2 ⊢ (𝜑 → ((𝐹‘(◡𝑁‘𝑃)) ∈ (𝐹 “ (◡𝑁‘𝑃)) ∨ ¬ (𝐹‘(◡𝑁‘𝑃)) ∈ (𝐹 “ (◡𝑁‘𝑃)))) |
31 | 15, 21, 30 | mpjaodan 788 | 1 ⊢ (𝜑 → (𝐻‘𝑃) ⊆ (𝐻‘(𝑃 + 1))) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 103 ∨ wo 698 DECID wdc 820 = wceq 1335 ∈ wcel 2128 ≠ wne 2327 ∀wral 2435 ∃wrex 2436 ∪ cun 3100 ⊆ wss 3102 ∅c0 3394 ifcif 3505 {csn 3560 〈cop 3563 ↦ cmpt 4025 suc csuc 4324 ωcom 4547 ◡ccnv 4582 dom cdm 4583 “ cima 4586 ⟶wf 5163 –onto→wfo 5165 –1-1-onto→wf1o 5166 ‘cfv 5167 (class class class)co 5818 ∈ cmpo 5820 freccfrec 6331 ↑pm cpm 6587 0cc0 7715 1c1 7716 + caddc 7718 − cmin 8029 ℕ0cn0 9073 ℤcz 9150 seqcseq 10326 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-coll 4079 ax-sep 4082 ax-nul 4090 ax-pow 4134 ax-pr 4168 ax-un 4392 ax-setind 4494 ax-iinf 4545 ax-cnex 7806 ax-resscn 7807 ax-1cn 7808 ax-1re 7809 ax-icn 7810 ax-addcl 7811 ax-addrcl 7812 ax-mulcl 7813 ax-addcom 7815 ax-addass 7817 ax-distr 7819 ax-i2m1 7820 ax-0lt1 7821 ax-0id 7823 ax-rnegex 7824 ax-cnre 7826 ax-pre-ltirr 7827 ax-pre-ltwlin 7828 ax-pre-lttrn 7829 ax-pre-ltadd 7831 |
This theorem depends on definitions: df-bi 116 df-dc 821 df-3or 964 df-3an 965 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-nel 2423 df-ral 2440 df-rex 2441 df-reu 2442 df-rab 2444 df-v 2714 df-sbc 2938 df-csb 3032 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-nul 3395 df-if 3506 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-int 3808 df-iun 3851 df-br 3966 df-opab 4026 df-mpt 4027 df-tr 4063 df-id 4252 df-iord 4325 df-on 4327 df-ilim 4328 df-suc 4330 df-iom 4548 df-xp 4589 df-rel 4590 df-cnv 4591 df-co 4592 df-dm 4593 df-rn 4594 df-res 4595 df-ima 4596 df-iota 5132 df-fun 5169 df-fn 5170 df-f 5171 df-f1 5172 df-fo 5173 df-f1o 5174 df-fv 5175 df-riota 5774 df-ov 5821 df-oprab 5822 df-mpo 5823 df-1st 6082 df-2nd 6083 df-recs 6246 df-frec 6332 df-pm 6589 df-pnf 7897 df-mnf 7898 df-xr 7899 df-ltxr 7900 df-le 7901 df-sub 8031 df-neg 8032 df-inn 8817 df-n0 9074 df-z 9151 df-uz 9423 df-seqfrec 10327 |
This theorem is referenced by: ennnfoneleminc 12112 |
Copyright terms: Public domain | W3C validator |