![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ennnfonelemss | GIF version |
Description: Lemma for ennnfone 11783. We only add elements to 𝐻 as the index increases. (Contributed by Jim Kingdon, 15-Jul-2023.) |
Ref | Expression |
---|---|
ennnfonelemh.dceq | ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦) |
ennnfonelemh.f | ⊢ (𝜑 → 𝐹:ω–onto→𝐴) |
ennnfonelemh.ne | ⊢ (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹‘𝑘) ≠ (𝐹‘𝑗)) |
ennnfonelemh.g | ⊢ 𝐺 = (𝑥 ∈ (𝐴 ↑pm ω), 𝑦 ∈ ω ↦ if((𝐹‘𝑦) ∈ (𝐹 “ 𝑦), 𝑥, (𝑥 ∪ {〈dom 𝑥, (𝐹‘𝑦)〉}))) |
ennnfonelemh.n | ⊢ 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) |
ennnfonelemh.j | ⊢ 𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (◡𝑁‘(𝑥 − 1)))) |
ennnfonelemh.h | ⊢ 𝐻 = seq0(𝐺, 𝐽) |
ennnfonelemss.p | ⊢ (𝜑 → 𝑃 ∈ ℕ0) |
Ref | Expression |
---|---|
ennnfonelemss | ⊢ (𝜑 → (𝐻‘𝑃) ⊆ (𝐻‘(𝑃 + 1))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ennnfonelemh.dceq | . . . . . 6 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦) | |
2 | ennnfonelemh.f | . . . . . 6 ⊢ (𝜑 → 𝐹:ω–onto→𝐴) | |
3 | ennnfonelemh.ne | . . . . . 6 ⊢ (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹‘𝑘) ≠ (𝐹‘𝑗)) | |
4 | ennnfonelemh.g | . . . . . 6 ⊢ 𝐺 = (𝑥 ∈ (𝐴 ↑pm ω), 𝑦 ∈ ω ↦ if((𝐹‘𝑦) ∈ (𝐹 “ 𝑦), 𝑥, (𝑥 ∪ {〈dom 𝑥, (𝐹‘𝑦)〉}))) | |
5 | ennnfonelemh.n | . . . . . 6 ⊢ 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) | |
6 | ennnfonelemh.j | . . . . . 6 ⊢ 𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (◡𝑁‘(𝑥 − 1)))) | |
7 | ennnfonelemh.h | . . . . . 6 ⊢ 𝐻 = seq0(𝐺, 𝐽) | |
8 | ennnfonelemss.p | . . . . . 6 ⊢ (𝜑 → 𝑃 ∈ ℕ0) | |
9 | 1, 2, 3, 4, 5, 6, 7, 8 | ennnfonelemp1 11764 | . . . . 5 ⊢ (𝜑 → (𝐻‘(𝑃 + 1)) = if((𝐹‘(◡𝑁‘𝑃)) ∈ (𝐹 “ (◡𝑁‘𝑃)), (𝐻‘𝑃), ((𝐻‘𝑃) ∪ {〈dom (𝐻‘𝑃), (𝐹‘(◡𝑁‘𝑃))〉}))) |
10 | 9 | adantr 272 | . . . 4 ⊢ ((𝜑 ∧ (𝐹‘(◡𝑁‘𝑃)) ∈ (𝐹 “ (◡𝑁‘𝑃))) → (𝐻‘(𝑃 + 1)) = if((𝐹‘(◡𝑁‘𝑃)) ∈ (𝐹 “ (◡𝑁‘𝑃)), (𝐻‘𝑃), ((𝐻‘𝑃) ∪ {〈dom (𝐻‘𝑃), (𝐹‘(◡𝑁‘𝑃))〉}))) |
11 | simpr 109 | . . . . 5 ⊢ ((𝜑 ∧ (𝐹‘(◡𝑁‘𝑃)) ∈ (𝐹 “ (◡𝑁‘𝑃))) → (𝐹‘(◡𝑁‘𝑃)) ∈ (𝐹 “ (◡𝑁‘𝑃))) | |
12 | 11 | iftrued 3447 | . . . 4 ⊢ ((𝜑 ∧ (𝐹‘(◡𝑁‘𝑃)) ∈ (𝐹 “ (◡𝑁‘𝑃))) → if((𝐹‘(◡𝑁‘𝑃)) ∈ (𝐹 “ (◡𝑁‘𝑃)), (𝐻‘𝑃), ((𝐻‘𝑃) ∪ {〈dom (𝐻‘𝑃), (𝐹‘(◡𝑁‘𝑃))〉})) = (𝐻‘𝑃)) |
13 | 10, 12 | eqtrd 2147 | . . 3 ⊢ ((𝜑 ∧ (𝐹‘(◡𝑁‘𝑃)) ∈ (𝐹 “ (◡𝑁‘𝑃))) → (𝐻‘(𝑃 + 1)) = (𝐻‘𝑃)) |
14 | eqimss2 3118 | . . 3 ⊢ ((𝐻‘(𝑃 + 1)) = (𝐻‘𝑃) → (𝐻‘𝑃) ⊆ (𝐻‘(𝑃 + 1))) | |
15 | 13, 14 | syl 14 | . 2 ⊢ ((𝜑 ∧ (𝐹‘(◡𝑁‘𝑃)) ∈ (𝐹 “ (◡𝑁‘𝑃))) → (𝐻‘𝑃) ⊆ (𝐻‘(𝑃 + 1))) |
16 | ssun1 3205 | . . 3 ⊢ (𝐻‘𝑃) ⊆ ((𝐻‘𝑃) ∪ {〈dom (𝐻‘𝑃), (𝐹‘(◡𝑁‘𝑃))〉}) | |
17 | 9 | adantr 272 | . . . 4 ⊢ ((𝜑 ∧ ¬ (𝐹‘(◡𝑁‘𝑃)) ∈ (𝐹 “ (◡𝑁‘𝑃))) → (𝐻‘(𝑃 + 1)) = if((𝐹‘(◡𝑁‘𝑃)) ∈ (𝐹 “ (◡𝑁‘𝑃)), (𝐻‘𝑃), ((𝐻‘𝑃) ∪ {〈dom (𝐻‘𝑃), (𝐹‘(◡𝑁‘𝑃))〉}))) |
18 | simpr 109 | . . . . 5 ⊢ ((𝜑 ∧ ¬ (𝐹‘(◡𝑁‘𝑃)) ∈ (𝐹 “ (◡𝑁‘𝑃))) → ¬ (𝐹‘(◡𝑁‘𝑃)) ∈ (𝐹 “ (◡𝑁‘𝑃))) | |
19 | 18 | iffalsed 3450 | . . . 4 ⊢ ((𝜑 ∧ ¬ (𝐹‘(◡𝑁‘𝑃)) ∈ (𝐹 “ (◡𝑁‘𝑃))) → if((𝐹‘(◡𝑁‘𝑃)) ∈ (𝐹 “ (◡𝑁‘𝑃)), (𝐻‘𝑃), ((𝐻‘𝑃) ∪ {〈dom (𝐻‘𝑃), (𝐹‘(◡𝑁‘𝑃))〉})) = ((𝐻‘𝑃) ∪ {〈dom (𝐻‘𝑃), (𝐹‘(◡𝑁‘𝑃))〉})) |
20 | 17, 19 | eqtrd 2147 | . . 3 ⊢ ((𝜑 ∧ ¬ (𝐹‘(◡𝑁‘𝑃)) ∈ (𝐹 “ (◡𝑁‘𝑃))) → (𝐻‘(𝑃 + 1)) = ((𝐻‘𝑃) ∪ {〈dom (𝐻‘𝑃), (𝐹‘(◡𝑁‘𝑃))〉})) |
21 | 16, 20 | sseqtrrid 3114 | . 2 ⊢ ((𝜑 ∧ ¬ (𝐹‘(◡𝑁‘𝑃)) ∈ (𝐹 “ (◡𝑁‘𝑃))) → (𝐻‘𝑃) ⊆ (𝐻‘(𝑃 + 1))) |
22 | 5 | frechashgf1o 10094 | . . . . . . 7 ⊢ 𝑁:ω–1-1-onto→ℕ0 |
23 | f1ocnv 5336 | . . . . . . 7 ⊢ (𝑁:ω–1-1-onto→ℕ0 → ◡𝑁:ℕ0–1-1-onto→ω) | |
24 | f1of 5323 | . . . . . . 7 ⊢ (◡𝑁:ℕ0–1-1-onto→ω → ◡𝑁:ℕ0⟶ω) | |
25 | 22, 23, 24 | mp2b 8 | . . . . . 6 ⊢ ◡𝑁:ℕ0⟶ω |
26 | 25 | a1i 9 | . . . . 5 ⊢ (𝜑 → ◡𝑁:ℕ0⟶ω) |
27 | 26, 8 | ffvelrnd 5510 | . . . 4 ⊢ (𝜑 → (◡𝑁‘𝑃) ∈ ω) |
28 | 1, 2, 27 | ennnfonelemdc 11757 | . . 3 ⊢ (𝜑 → DECID (𝐹‘(◡𝑁‘𝑃)) ∈ (𝐹 “ (◡𝑁‘𝑃))) |
29 | exmiddc 804 | . . 3 ⊢ (DECID (𝐹‘(◡𝑁‘𝑃)) ∈ (𝐹 “ (◡𝑁‘𝑃)) → ((𝐹‘(◡𝑁‘𝑃)) ∈ (𝐹 “ (◡𝑁‘𝑃)) ∨ ¬ (𝐹‘(◡𝑁‘𝑃)) ∈ (𝐹 “ (◡𝑁‘𝑃)))) | |
30 | 28, 29 | syl 14 | . 2 ⊢ (𝜑 → ((𝐹‘(◡𝑁‘𝑃)) ∈ (𝐹 “ (◡𝑁‘𝑃)) ∨ ¬ (𝐹‘(◡𝑁‘𝑃)) ∈ (𝐹 “ (◡𝑁‘𝑃)))) |
31 | 15, 21, 30 | mpjaodan 770 | 1 ⊢ (𝜑 → (𝐻‘𝑃) ⊆ (𝐻‘(𝑃 + 1))) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 103 ∨ wo 680 DECID wdc 802 = wceq 1314 ∈ wcel 1463 ≠ wne 2282 ∀wral 2390 ∃wrex 2391 ∪ cun 3035 ⊆ wss 3037 ∅c0 3329 ifcif 3440 {csn 3493 〈cop 3496 ↦ cmpt 3949 suc csuc 4247 ωcom 4464 ◡ccnv 4498 dom cdm 4499 “ cima 4502 ⟶wf 5077 –onto→wfo 5079 –1-1-onto→wf1o 5080 ‘cfv 5081 (class class class)co 5728 ∈ cmpo 5730 freccfrec 6241 ↑pm cpm 6497 0cc0 7547 1c1 7548 + caddc 7550 − cmin 7856 ℕ0cn0 8881 ℤcz 8958 seqcseq 10111 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 586 ax-in2 587 ax-io 681 ax-5 1406 ax-7 1407 ax-gen 1408 ax-ie1 1452 ax-ie2 1453 ax-8 1465 ax-10 1466 ax-11 1467 ax-i12 1468 ax-bndl 1469 ax-4 1470 ax-13 1474 ax-14 1475 ax-17 1489 ax-i9 1493 ax-ial 1497 ax-i5r 1498 ax-ext 2097 ax-coll 4003 ax-sep 4006 ax-nul 4014 ax-pow 4058 ax-pr 4091 ax-un 4315 ax-setind 4412 ax-iinf 4462 ax-cnex 7636 ax-resscn 7637 ax-1cn 7638 ax-1re 7639 ax-icn 7640 ax-addcl 7641 ax-addrcl 7642 ax-mulcl 7643 ax-addcom 7645 ax-addass 7647 ax-distr 7649 ax-i2m1 7650 ax-0lt1 7651 ax-0id 7653 ax-rnegex 7654 ax-cnre 7656 ax-pre-ltirr 7657 ax-pre-ltwlin 7658 ax-pre-lttrn 7659 ax-pre-ltadd 7661 |
This theorem depends on definitions: df-bi 116 df-dc 803 df-3or 946 df-3an 947 df-tru 1317 df-fal 1320 df-nf 1420 df-sb 1719 df-eu 1978 df-mo 1979 df-clab 2102 df-cleq 2108 df-clel 2111 df-nfc 2244 df-ne 2283 df-nel 2378 df-ral 2395 df-rex 2396 df-reu 2397 df-rab 2399 df-v 2659 df-sbc 2879 df-csb 2972 df-dif 3039 df-un 3041 df-in 3043 df-ss 3050 df-nul 3330 df-if 3441 df-pw 3478 df-sn 3499 df-pr 3500 df-op 3502 df-uni 3703 df-int 3738 df-iun 3781 df-br 3896 df-opab 3950 df-mpt 3951 df-tr 3987 df-id 4175 df-iord 4248 df-on 4250 df-ilim 4251 df-suc 4253 df-iom 4465 df-xp 4505 df-rel 4506 df-cnv 4507 df-co 4508 df-dm 4509 df-rn 4510 df-res 4511 df-ima 4512 df-iota 5046 df-fun 5083 df-fn 5084 df-f 5085 df-f1 5086 df-fo 5087 df-f1o 5088 df-fv 5089 df-riota 5684 df-ov 5731 df-oprab 5732 df-mpo 5733 df-1st 5992 df-2nd 5993 df-recs 6156 df-frec 6242 df-pm 6499 df-pnf 7726 df-mnf 7727 df-xr 7728 df-ltxr 7729 df-le 7730 df-sub 7858 df-neg 7859 df-inn 8631 df-n0 8882 df-z 8959 df-uz 9229 df-seqfrec 10112 |
This theorem is referenced by: ennnfoneleminc 11769 |
Copyright terms: Public domain | W3C validator |