| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ennnfonelemss | GIF version | ||
| Description: Lemma for ennnfone 12642. We only add elements to 𝐻 as the index increases. (Contributed by Jim Kingdon, 15-Jul-2023.) |
| Ref | Expression |
|---|---|
| ennnfonelemh.dceq | ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦) |
| ennnfonelemh.f | ⊢ (𝜑 → 𝐹:ω–onto→𝐴) |
| ennnfonelemh.ne | ⊢ (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹‘𝑘) ≠ (𝐹‘𝑗)) |
| ennnfonelemh.g | ⊢ 𝐺 = (𝑥 ∈ (𝐴 ↑pm ω), 𝑦 ∈ ω ↦ if((𝐹‘𝑦) ∈ (𝐹 “ 𝑦), 𝑥, (𝑥 ∪ {〈dom 𝑥, (𝐹‘𝑦)〉}))) |
| ennnfonelemh.n | ⊢ 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) |
| ennnfonelemh.j | ⊢ 𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (◡𝑁‘(𝑥 − 1)))) |
| ennnfonelemh.h | ⊢ 𝐻 = seq0(𝐺, 𝐽) |
| ennnfonelemss.p | ⊢ (𝜑 → 𝑃 ∈ ℕ0) |
| Ref | Expression |
|---|---|
| ennnfonelemss | ⊢ (𝜑 → (𝐻‘𝑃) ⊆ (𝐻‘(𝑃 + 1))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ennnfonelemh.dceq | . . . . . 6 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦) | |
| 2 | ennnfonelemh.f | . . . . . 6 ⊢ (𝜑 → 𝐹:ω–onto→𝐴) | |
| 3 | ennnfonelemh.ne | . . . . . 6 ⊢ (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹‘𝑘) ≠ (𝐹‘𝑗)) | |
| 4 | ennnfonelemh.g | . . . . . 6 ⊢ 𝐺 = (𝑥 ∈ (𝐴 ↑pm ω), 𝑦 ∈ ω ↦ if((𝐹‘𝑦) ∈ (𝐹 “ 𝑦), 𝑥, (𝑥 ∪ {〈dom 𝑥, (𝐹‘𝑦)〉}))) | |
| 5 | ennnfonelemh.n | . . . . . 6 ⊢ 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) | |
| 6 | ennnfonelemh.j | . . . . . 6 ⊢ 𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (◡𝑁‘(𝑥 − 1)))) | |
| 7 | ennnfonelemh.h | . . . . . 6 ⊢ 𝐻 = seq0(𝐺, 𝐽) | |
| 8 | ennnfonelemss.p | . . . . . 6 ⊢ (𝜑 → 𝑃 ∈ ℕ0) | |
| 9 | 1, 2, 3, 4, 5, 6, 7, 8 | ennnfonelemp1 12623 | . . . . 5 ⊢ (𝜑 → (𝐻‘(𝑃 + 1)) = if((𝐹‘(◡𝑁‘𝑃)) ∈ (𝐹 “ (◡𝑁‘𝑃)), (𝐻‘𝑃), ((𝐻‘𝑃) ∪ {〈dom (𝐻‘𝑃), (𝐹‘(◡𝑁‘𝑃))〉}))) |
| 10 | 9 | adantr 276 | . . . 4 ⊢ ((𝜑 ∧ (𝐹‘(◡𝑁‘𝑃)) ∈ (𝐹 “ (◡𝑁‘𝑃))) → (𝐻‘(𝑃 + 1)) = if((𝐹‘(◡𝑁‘𝑃)) ∈ (𝐹 “ (◡𝑁‘𝑃)), (𝐻‘𝑃), ((𝐻‘𝑃) ∪ {〈dom (𝐻‘𝑃), (𝐹‘(◡𝑁‘𝑃))〉}))) |
| 11 | simpr 110 | . . . . 5 ⊢ ((𝜑 ∧ (𝐹‘(◡𝑁‘𝑃)) ∈ (𝐹 “ (◡𝑁‘𝑃))) → (𝐹‘(◡𝑁‘𝑃)) ∈ (𝐹 “ (◡𝑁‘𝑃))) | |
| 12 | 11 | iftrued 3568 | . . . 4 ⊢ ((𝜑 ∧ (𝐹‘(◡𝑁‘𝑃)) ∈ (𝐹 “ (◡𝑁‘𝑃))) → if((𝐹‘(◡𝑁‘𝑃)) ∈ (𝐹 “ (◡𝑁‘𝑃)), (𝐻‘𝑃), ((𝐻‘𝑃) ∪ {〈dom (𝐻‘𝑃), (𝐹‘(◡𝑁‘𝑃))〉})) = (𝐻‘𝑃)) |
| 13 | 10, 12 | eqtrd 2229 | . . 3 ⊢ ((𝜑 ∧ (𝐹‘(◡𝑁‘𝑃)) ∈ (𝐹 “ (◡𝑁‘𝑃))) → (𝐻‘(𝑃 + 1)) = (𝐻‘𝑃)) |
| 14 | eqimss2 3238 | . . 3 ⊢ ((𝐻‘(𝑃 + 1)) = (𝐻‘𝑃) → (𝐻‘𝑃) ⊆ (𝐻‘(𝑃 + 1))) | |
| 15 | 13, 14 | syl 14 | . 2 ⊢ ((𝜑 ∧ (𝐹‘(◡𝑁‘𝑃)) ∈ (𝐹 “ (◡𝑁‘𝑃))) → (𝐻‘𝑃) ⊆ (𝐻‘(𝑃 + 1))) |
| 16 | ssun1 3326 | . . 3 ⊢ (𝐻‘𝑃) ⊆ ((𝐻‘𝑃) ∪ {〈dom (𝐻‘𝑃), (𝐹‘(◡𝑁‘𝑃))〉}) | |
| 17 | 9 | adantr 276 | . . . 4 ⊢ ((𝜑 ∧ ¬ (𝐹‘(◡𝑁‘𝑃)) ∈ (𝐹 “ (◡𝑁‘𝑃))) → (𝐻‘(𝑃 + 1)) = if((𝐹‘(◡𝑁‘𝑃)) ∈ (𝐹 “ (◡𝑁‘𝑃)), (𝐻‘𝑃), ((𝐻‘𝑃) ∪ {〈dom (𝐻‘𝑃), (𝐹‘(◡𝑁‘𝑃))〉}))) |
| 18 | simpr 110 | . . . . 5 ⊢ ((𝜑 ∧ ¬ (𝐹‘(◡𝑁‘𝑃)) ∈ (𝐹 “ (◡𝑁‘𝑃))) → ¬ (𝐹‘(◡𝑁‘𝑃)) ∈ (𝐹 “ (◡𝑁‘𝑃))) | |
| 19 | 18 | iffalsed 3571 | . . . 4 ⊢ ((𝜑 ∧ ¬ (𝐹‘(◡𝑁‘𝑃)) ∈ (𝐹 “ (◡𝑁‘𝑃))) → if((𝐹‘(◡𝑁‘𝑃)) ∈ (𝐹 “ (◡𝑁‘𝑃)), (𝐻‘𝑃), ((𝐻‘𝑃) ∪ {〈dom (𝐻‘𝑃), (𝐹‘(◡𝑁‘𝑃))〉})) = ((𝐻‘𝑃) ∪ {〈dom (𝐻‘𝑃), (𝐹‘(◡𝑁‘𝑃))〉})) |
| 20 | 17, 19 | eqtrd 2229 | . . 3 ⊢ ((𝜑 ∧ ¬ (𝐹‘(◡𝑁‘𝑃)) ∈ (𝐹 “ (◡𝑁‘𝑃))) → (𝐻‘(𝑃 + 1)) = ((𝐻‘𝑃) ∪ {〈dom (𝐻‘𝑃), (𝐹‘(◡𝑁‘𝑃))〉})) |
| 21 | 16, 20 | sseqtrrid 3234 | . 2 ⊢ ((𝜑 ∧ ¬ (𝐹‘(◡𝑁‘𝑃)) ∈ (𝐹 “ (◡𝑁‘𝑃))) → (𝐻‘𝑃) ⊆ (𝐻‘(𝑃 + 1))) |
| 22 | 5 | frechashgf1o 10520 | . . . . . . 7 ⊢ 𝑁:ω–1-1-onto→ℕ0 |
| 23 | f1ocnv 5517 | . . . . . . 7 ⊢ (𝑁:ω–1-1-onto→ℕ0 → ◡𝑁:ℕ0–1-1-onto→ω) | |
| 24 | f1of 5504 | . . . . . . 7 ⊢ (◡𝑁:ℕ0–1-1-onto→ω → ◡𝑁:ℕ0⟶ω) | |
| 25 | 22, 23, 24 | mp2b 8 | . . . . . 6 ⊢ ◡𝑁:ℕ0⟶ω |
| 26 | 25 | a1i 9 | . . . . 5 ⊢ (𝜑 → ◡𝑁:ℕ0⟶ω) |
| 27 | 26, 8 | ffvelcdmd 5698 | . . . 4 ⊢ (𝜑 → (◡𝑁‘𝑃) ∈ ω) |
| 28 | 1, 2, 27 | ennnfonelemdc 12616 | . . 3 ⊢ (𝜑 → DECID (𝐹‘(◡𝑁‘𝑃)) ∈ (𝐹 “ (◡𝑁‘𝑃))) |
| 29 | exmiddc 837 | . . 3 ⊢ (DECID (𝐹‘(◡𝑁‘𝑃)) ∈ (𝐹 “ (◡𝑁‘𝑃)) → ((𝐹‘(◡𝑁‘𝑃)) ∈ (𝐹 “ (◡𝑁‘𝑃)) ∨ ¬ (𝐹‘(◡𝑁‘𝑃)) ∈ (𝐹 “ (◡𝑁‘𝑃)))) | |
| 30 | 28, 29 | syl 14 | . 2 ⊢ (𝜑 → ((𝐹‘(◡𝑁‘𝑃)) ∈ (𝐹 “ (◡𝑁‘𝑃)) ∨ ¬ (𝐹‘(◡𝑁‘𝑃)) ∈ (𝐹 “ (◡𝑁‘𝑃)))) |
| 31 | 15, 21, 30 | mpjaodan 799 | 1 ⊢ (𝜑 → (𝐻‘𝑃) ⊆ (𝐻‘(𝑃 + 1))) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ∨ wo 709 DECID wdc 835 = wceq 1364 ∈ wcel 2167 ≠ wne 2367 ∀wral 2475 ∃wrex 2476 ∪ cun 3155 ⊆ wss 3157 ∅c0 3450 ifcif 3561 {csn 3622 〈cop 3625 ↦ cmpt 4094 suc csuc 4400 ωcom 4626 ◡ccnv 4662 dom cdm 4663 “ cima 4666 ⟶wf 5254 –onto→wfo 5256 –1-1-onto→wf1o 5257 ‘cfv 5258 (class class class)co 5922 ∈ cmpo 5924 freccfrec 6448 ↑pm cpm 6708 0cc0 7879 1c1 7880 + caddc 7882 − cmin 8197 ℕ0cn0 9249 ℤcz 9326 seqcseq 10539 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-iinf 4624 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-addcom 7979 ax-addass 7981 ax-distr 7983 ax-i2m1 7984 ax-0lt1 7985 ax-0id 7987 ax-rnegex 7988 ax-cnre 7990 ax-pre-ltirr 7991 ax-pre-ltwlin 7992 ax-pre-lttrn 7993 ax-pre-ltadd 7995 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-if 3562 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-tr 4132 df-id 4328 df-iord 4401 df-on 4403 df-ilim 4404 df-suc 4406 df-iom 4627 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-recs 6363 df-frec 6449 df-pm 6710 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-sub 8199 df-neg 8200 df-inn 8991 df-n0 9250 df-z 9327 df-uz 9602 df-seqfrec 10540 |
| This theorem is referenced by: ennnfoneleminc 12628 |
| Copyright terms: Public domain | W3C validator |