![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ennnfonelemss | GIF version |
Description: Lemma for ennnfone 12426. We only add elements to 𝐻 as the index increases. (Contributed by Jim Kingdon, 15-Jul-2023.) |
Ref | Expression |
---|---|
ennnfonelemh.dceq | ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦) |
ennnfonelemh.f | ⊢ (𝜑 → 𝐹:ω–onto→𝐴) |
ennnfonelemh.ne | ⊢ (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹‘𝑘) ≠ (𝐹‘𝑗)) |
ennnfonelemh.g | ⊢ 𝐺 = (𝑥 ∈ (𝐴 ↑pm ω), 𝑦 ∈ ω ↦ if((𝐹‘𝑦) ∈ (𝐹 “ 𝑦), 𝑥, (𝑥 ∪ {⟨dom 𝑥, (𝐹‘𝑦)⟩}))) |
ennnfonelemh.n | ⊢ 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) |
ennnfonelemh.j | ⊢ 𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (◡𝑁‘(𝑥 − 1)))) |
ennnfonelemh.h | ⊢ 𝐻 = seq0(𝐺, 𝐽) |
ennnfonelemss.p | ⊢ (𝜑 → 𝑃 ∈ ℕ0) |
Ref | Expression |
---|---|
ennnfonelemss | ⊢ (𝜑 → (𝐻‘𝑃) ⊆ (𝐻‘(𝑃 + 1))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ennnfonelemh.dceq | . . . . . 6 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦) | |
2 | ennnfonelemh.f | . . . . . 6 ⊢ (𝜑 → 𝐹:ω–onto→𝐴) | |
3 | ennnfonelemh.ne | . . . . . 6 ⊢ (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹‘𝑘) ≠ (𝐹‘𝑗)) | |
4 | ennnfonelemh.g | . . . . . 6 ⊢ 𝐺 = (𝑥 ∈ (𝐴 ↑pm ω), 𝑦 ∈ ω ↦ if((𝐹‘𝑦) ∈ (𝐹 “ 𝑦), 𝑥, (𝑥 ∪ {⟨dom 𝑥, (𝐹‘𝑦)⟩}))) | |
5 | ennnfonelemh.n | . . . . . 6 ⊢ 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) | |
6 | ennnfonelemh.j | . . . . . 6 ⊢ 𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (◡𝑁‘(𝑥 − 1)))) | |
7 | ennnfonelemh.h | . . . . . 6 ⊢ 𝐻 = seq0(𝐺, 𝐽) | |
8 | ennnfonelemss.p | . . . . . 6 ⊢ (𝜑 → 𝑃 ∈ ℕ0) | |
9 | 1, 2, 3, 4, 5, 6, 7, 8 | ennnfonelemp1 12407 | . . . . 5 ⊢ (𝜑 → (𝐻‘(𝑃 + 1)) = if((𝐹‘(◡𝑁‘𝑃)) ∈ (𝐹 “ (◡𝑁‘𝑃)), (𝐻‘𝑃), ((𝐻‘𝑃) ∪ {⟨dom (𝐻‘𝑃), (𝐹‘(◡𝑁‘𝑃))⟩}))) |
10 | 9 | adantr 276 | . . . 4 ⊢ ((𝜑 ∧ (𝐹‘(◡𝑁‘𝑃)) ∈ (𝐹 “ (◡𝑁‘𝑃))) → (𝐻‘(𝑃 + 1)) = if((𝐹‘(◡𝑁‘𝑃)) ∈ (𝐹 “ (◡𝑁‘𝑃)), (𝐻‘𝑃), ((𝐻‘𝑃) ∪ {⟨dom (𝐻‘𝑃), (𝐹‘(◡𝑁‘𝑃))⟩}))) |
11 | simpr 110 | . . . . 5 ⊢ ((𝜑 ∧ (𝐹‘(◡𝑁‘𝑃)) ∈ (𝐹 “ (◡𝑁‘𝑃))) → (𝐹‘(◡𝑁‘𝑃)) ∈ (𝐹 “ (◡𝑁‘𝑃))) | |
12 | 11 | iftrued 3542 | . . . 4 ⊢ ((𝜑 ∧ (𝐹‘(◡𝑁‘𝑃)) ∈ (𝐹 “ (◡𝑁‘𝑃))) → if((𝐹‘(◡𝑁‘𝑃)) ∈ (𝐹 “ (◡𝑁‘𝑃)), (𝐻‘𝑃), ((𝐻‘𝑃) ∪ {⟨dom (𝐻‘𝑃), (𝐹‘(◡𝑁‘𝑃))⟩})) = (𝐻‘𝑃)) |
13 | 10, 12 | eqtrd 2210 | . . 3 ⊢ ((𝜑 ∧ (𝐹‘(◡𝑁‘𝑃)) ∈ (𝐹 “ (◡𝑁‘𝑃))) → (𝐻‘(𝑃 + 1)) = (𝐻‘𝑃)) |
14 | eqimss2 3211 | . . 3 ⊢ ((𝐻‘(𝑃 + 1)) = (𝐻‘𝑃) → (𝐻‘𝑃) ⊆ (𝐻‘(𝑃 + 1))) | |
15 | 13, 14 | syl 14 | . 2 ⊢ ((𝜑 ∧ (𝐹‘(◡𝑁‘𝑃)) ∈ (𝐹 “ (◡𝑁‘𝑃))) → (𝐻‘𝑃) ⊆ (𝐻‘(𝑃 + 1))) |
16 | ssun1 3299 | . . 3 ⊢ (𝐻‘𝑃) ⊆ ((𝐻‘𝑃) ∪ {⟨dom (𝐻‘𝑃), (𝐹‘(◡𝑁‘𝑃))⟩}) | |
17 | 9 | adantr 276 | . . . 4 ⊢ ((𝜑 ∧ ¬ (𝐹‘(◡𝑁‘𝑃)) ∈ (𝐹 “ (◡𝑁‘𝑃))) → (𝐻‘(𝑃 + 1)) = if((𝐹‘(◡𝑁‘𝑃)) ∈ (𝐹 “ (◡𝑁‘𝑃)), (𝐻‘𝑃), ((𝐻‘𝑃) ∪ {⟨dom (𝐻‘𝑃), (𝐹‘(◡𝑁‘𝑃))⟩}))) |
18 | simpr 110 | . . . . 5 ⊢ ((𝜑 ∧ ¬ (𝐹‘(◡𝑁‘𝑃)) ∈ (𝐹 “ (◡𝑁‘𝑃))) → ¬ (𝐹‘(◡𝑁‘𝑃)) ∈ (𝐹 “ (◡𝑁‘𝑃))) | |
19 | 18 | iffalsed 3545 | . . . 4 ⊢ ((𝜑 ∧ ¬ (𝐹‘(◡𝑁‘𝑃)) ∈ (𝐹 “ (◡𝑁‘𝑃))) → if((𝐹‘(◡𝑁‘𝑃)) ∈ (𝐹 “ (◡𝑁‘𝑃)), (𝐻‘𝑃), ((𝐻‘𝑃) ∪ {⟨dom (𝐻‘𝑃), (𝐹‘(◡𝑁‘𝑃))⟩})) = ((𝐻‘𝑃) ∪ {⟨dom (𝐻‘𝑃), (𝐹‘(◡𝑁‘𝑃))⟩})) |
20 | 17, 19 | eqtrd 2210 | . . 3 ⊢ ((𝜑 ∧ ¬ (𝐹‘(◡𝑁‘𝑃)) ∈ (𝐹 “ (◡𝑁‘𝑃))) → (𝐻‘(𝑃 + 1)) = ((𝐻‘𝑃) ∪ {⟨dom (𝐻‘𝑃), (𝐹‘(◡𝑁‘𝑃))⟩})) |
21 | 16, 20 | sseqtrrid 3207 | . 2 ⊢ ((𝜑 ∧ ¬ (𝐹‘(◡𝑁‘𝑃)) ∈ (𝐹 “ (◡𝑁‘𝑃))) → (𝐻‘𝑃) ⊆ (𝐻‘(𝑃 + 1))) |
22 | 5 | frechashgf1o 10428 | . . . . . . 7 ⊢ 𝑁:ω–1-1-onto→ℕ0 |
23 | f1ocnv 5475 | . . . . . . 7 ⊢ (𝑁:ω–1-1-onto→ℕ0 → ◡𝑁:ℕ0–1-1-onto→ω) | |
24 | f1of 5462 | . . . . . . 7 ⊢ (◡𝑁:ℕ0–1-1-onto→ω → ◡𝑁:ℕ0⟶ω) | |
25 | 22, 23, 24 | mp2b 8 | . . . . . 6 ⊢ ◡𝑁:ℕ0⟶ω |
26 | 25 | a1i 9 | . . . . 5 ⊢ (𝜑 → ◡𝑁:ℕ0⟶ω) |
27 | 26, 8 | ffvelcdmd 5653 | . . . 4 ⊢ (𝜑 → (◡𝑁‘𝑃) ∈ ω) |
28 | 1, 2, 27 | ennnfonelemdc 12400 | . . 3 ⊢ (𝜑 → DECID (𝐹‘(◡𝑁‘𝑃)) ∈ (𝐹 “ (◡𝑁‘𝑃))) |
29 | exmiddc 836 | . . 3 ⊢ (DECID (𝐹‘(◡𝑁‘𝑃)) ∈ (𝐹 “ (◡𝑁‘𝑃)) → ((𝐹‘(◡𝑁‘𝑃)) ∈ (𝐹 “ (◡𝑁‘𝑃)) ∨ ¬ (𝐹‘(◡𝑁‘𝑃)) ∈ (𝐹 “ (◡𝑁‘𝑃)))) | |
30 | 28, 29 | syl 14 | . 2 ⊢ (𝜑 → ((𝐹‘(◡𝑁‘𝑃)) ∈ (𝐹 “ (◡𝑁‘𝑃)) ∨ ¬ (𝐹‘(◡𝑁‘𝑃)) ∈ (𝐹 “ (◡𝑁‘𝑃)))) |
31 | 15, 21, 30 | mpjaodan 798 | 1 ⊢ (𝜑 → (𝐻‘𝑃) ⊆ (𝐻‘(𝑃 + 1))) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ∨ wo 708 DECID wdc 834 = wceq 1353 ∈ wcel 2148 ≠ wne 2347 ∀wral 2455 ∃wrex 2456 ∪ cun 3128 ⊆ wss 3130 ∅c0 3423 ifcif 3535 {csn 3593 ⟨cop 3596 ↦ cmpt 4065 suc csuc 4366 ωcom 4590 ◡ccnv 4626 dom cdm 4627 “ cima 4630 ⟶wf 5213 –onto→wfo 5215 –1-1-onto→wf1o 5216 ‘cfv 5217 (class class class)co 5875 ∈ cmpo 5877 freccfrec 6391 ↑pm cpm 6649 0cc0 7811 1c1 7812 + caddc 7814 − cmin 8128 ℕ0cn0 9176 ℤcz 9253 seqcseq 10445 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-coll 4119 ax-sep 4122 ax-nul 4130 ax-pow 4175 ax-pr 4210 ax-un 4434 ax-setind 4537 ax-iinf 4588 ax-cnex 7902 ax-resscn 7903 ax-1cn 7904 ax-1re 7905 ax-icn 7906 ax-addcl 7907 ax-addrcl 7908 ax-mulcl 7909 ax-addcom 7911 ax-addass 7913 ax-distr 7915 ax-i2m1 7916 ax-0lt1 7917 ax-0id 7919 ax-rnegex 7920 ax-cnre 7922 ax-pre-ltirr 7923 ax-pre-ltwlin 7924 ax-pre-lttrn 7925 ax-pre-ltadd 7927 |
This theorem depends on definitions: df-bi 117 df-dc 835 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-reu 2462 df-rab 2464 df-v 2740 df-sbc 2964 df-csb 3059 df-dif 3132 df-un 3134 df-in 3136 df-ss 3143 df-nul 3424 df-if 3536 df-pw 3578 df-sn 3599 df-pr 3600 df-op 3602 df-uni 3811 df-int 3846 df-iun 3889 df-br 4005 df-opab 4066 df-mpt 4067 df-tr 4103 df-id 4294 df-iord 4367 df-on 4369 df-ilim 4370 df-suc 4372 df-iom 4591 df-xp 4633 df-rel 4634 df-cnv 4635 df-co 4636 df-dm 4637 df-rn 4638 df-res 4639 df-ima 4640 df-iota 5179 df-fun 5219 df-fn 5220 df-f 5221 df-f1 5222 df-fo 5223 df-f1o 5224 df-fv 5225 df-riota 5831 df-ov 5878 df-oprab 5879 df-mpo 5880 df-1st 6141 df-2nd 6142 df-recs 6306 df-frec 6392 df-pm 6651 df-pnf 7994 df-mnf 7995 df-xr 7996 df-ltxr 7997 df-le 7998 df-sub 8130 df-neg 8131 df-inn 8920 df-n0 9177 df-z 9254 df-uz 9529 df-seqfrec 10446 |
This theorem is referenced by: ennnfoneleminc 12412 |
Copyright terms: Public domain | W3C validator |