ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prodssdc GIF version

Theorem prodssdc 11944
Description: Change the index set to a subset in an upper integer product. (Contributed by Scott Fenton, 11-Dec-2017.) (Revised by Jim Kingdon, 6-Aug-2024.)
Hypotheses
Ref Expression
prodss.1 (𝜑𝐴𝐵)
prodss.2 ((𝜑𝑘𝐴) → 𝐶 ∈ ℂ)
prodssdc.3 (𝜑 → ∃𝑛 ∈ (ℤ𝑀)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , (𝑘 ∈ (ℤ𝑀) ↦ if(𝑘𝐵, 𝐶, 1))) ⇝ 𝑦))
prodssdc.a (𝜑 → ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐴)
prodssdc.m (𝜑𝑀 ∈ ℤ)
prodss.4 ((𝜑𝑘 ∈ (𝐵𝐴)) → 𝐶 = 1)
prodss.5 (𝜑𝐵 ⊆ (ℤ𝑀))
prodssdc.b (𝜑 → ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐵)
Assertion
Ref Expression
prodssdc (𝜑 → ∏𝑘𝐴 𝐶 = ∏𝑘𝐵 𝐶)
Distinct variable groups:   𝐴,𝑗,𝑘,𝑛,𝑦   𝐵,𝑗,𝑘,𝑛,𝑦   𝐶,𝑗,𝑛,𝑦   𝑗,𝑀,𝑘,𝑛,𝑦   𝜑,𝑗,𝑘,𝑛,𝑦
Allowed substitution hint:   𝐶(𝑘)

Proof of Theorem prodssdc
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 eqid 2206 . . . 4 (ℤ𝑀) = (ℤ𝑀)
2 prodssdc.m . . . 4 (𝜑𝑀 ∈ ℤ)
3 prodssdc.3 . . . 4 (𝜑 → ∃𝑛 ∈ (ℤ𝑀)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , (𝑘 ∈ (ℤ𝑀) ↦ if(𝑘𝐵, 𝐶, 1))) ⇝ 𝑦))
4 prodss.1 . . . . 5 (𝜑𝐴𝐵)
5 prodss.5 . . . . 5 (𝜑𝐵 ⊆ (ℤ𝑀))
64, 5sstrd 3204 . . . 4 (𝜑𝐴 ⊆ (ℤ𝑀))
7 prodssdc.a . . . 4 (𝜑 → ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐴)
8 simpr 110 . . . . . 6 ((𝜑𝑚 ∈ (ℤ𝑀)) → 𝑚 ∈ (ℤ𝑀))
9 eleq1w 2267 . . . . . . . . . 10 (𝑗 = 𝑚 → (𝑗𝐵𝑚𝐵))
109dcbid 840 . . . . . . . . 9 (𝑗 = 𝑚 → (DECID 𝑗𝐵DECID 𝑚𝐵))
11 prodssdc.b . . . . . . . . . 10 (𝜑 → ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐵)
1211adantr 276 . . . . . . . . 9 ((𝜑𝑚 ∈ (ℤ𝑀)) → ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐵)
1310, 12, 8rspcdva 2883 . . . . . . . 8 ((𝜑𝑚 ∈ (ℤ𝑀)) → DECID 𝑚𝐵)
14 exmiddc 838 . . . . . . . 8 (DECID 𝑚𝐵 → (𝑚𝐵 ∨ ¬ 𝑚𝐵))
1513, 14syl 14 . . . . . . 7 ((𝜑𝑚 ∈ (ℤ𝑀)) → (𝑚𝐵 ∨ ¬ 𝑚𝐵))
16 iftrue 3577 . . . . . . . . . . . 12 (𝑚𝐵 → if(𝑚𝐵, 𝑚 / 𝑘𝐶, 1) = 𝑚 / 𝑘𝐶)
1716adantl 277 . . . . . . . . . . 11 ((𝜑𝑚𝐵) → if(𝑚𝐵, 𝑚 / 𝑘𝐶, 1) = 𝑚 / 𝑘𝐶)
18 prodss.2 . . . . . . . . . . . . . . . 16 ((𝜑𝑘𝐴) → 𝐶 ∈ ℂ)
1918ex 115 . . . . . . . . . . . . . . 15 (𝜑 → (𝑘𝐴𝐶 ∈ ℂ))
2019adantr 276 . . . . . . . . . . . . . 14 ((𝜑𝑘𝐵) → (𝑘𝐴𝐶 ∈ ℂ))
21 eldif 3176 . . . . . . . . . . . . . . . 16 (𝑘 ∈ (𝐵𝐴) ↔ (𝑘𝐵 ∧ ¬ 𝑘𝐴))
22 prodss.4 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘 ∈ (𝐵𝐴)) → 𝐶 = 1)
23 ax-1cn 8025 . . . . . . . . . . . . . . . . 17 1 ∈ ℂ
2422, 23eqeltrdi 2297 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ (𝐵𝐴)) → 𝐶 ∈ ℂ)
2521, 24sylan2br 288 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑘𝐵 ∧ ¬ 𝑘𝐴)) → 𝐶 ∈ ℂ)
2625expr 375 . . . . . . . . . . . . . 14 ((𝜑𝑘𝐵) → (¬ 𝑘𝐴𝐶 ∈ ℂ))
27 eleq1w 2267 . . . . . . . . . . . . . . . . 17 (𝑗 = 𝑘 → (𝑗𝐴𝑘𝐴))
2827dcbid 840 . . . . . . . . . . . . . . . 16 (𝑗 = 𝑘 → (DECID 𝑗𝐴DECID 𝑘𝐴))
297adantr 276 . . . . . . . . . . . . . . . 16 ((𝜑𝑘𝐵) → ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐴)
305sselda 3194 . . . . . . . . . . . . . . . 16 ((𝜑𝑘𝐵) → 𝑘 ∈ (ℤ𝑀))
3128, 29, 30rspcdva 2883 . . . . . . . . . . . . . . 15 ((𝜑𝑘𝐵) → DECID 𝑘𝐴)
32 exmiddc 838 . . . . . . . . . . . . . . 15 (DECID 𝑘𝐴 → (𝑘𝐴 ∨ ¬ 𝑘𝐴))
3331, 32syl 14 . . . . . . . . . . . . . 14 ((𝜑𝑘𝐵) → (𝑘𝐴 ∨ ¬ 𝑘𝐴))
3420, 26, 33mpjaod 720 . . . . . . . . . . . . 13 ((𝜑𝑘𝐵) → 𝐶 ∈ ℂ)
3534ralrimiva 2580 . . . . . . . . . . . 12 (𝜑 → ∀𝑘𝐵 𝐶 ∈ ℂ)
36 nfcsb1v 3127 . . . . . . . . . . . . . 14 𝑘𝑚 / 𝑘𝐶
3736nfel1 2360 . . . . . . . . . . . . 13 𝑘𝑚 / 𝑘𝐶 ∈ ℂ
38 csbeq1a 3103 . . . . . . . . . . . . . 14 (𝑘 = 𝑚𝐶 = 𝑚 / 𝑘𝐶)
3938eleq1d 2275 . . . . . . . . . . . . 13 (𝑘 = 𝑚 → (𝐶 ∈ ℂ ↔ 𝑚 / 𝑘𝐶 ∈ ℂ))
4037, 39rspc 2872 . . . . . . . . . . . 12 (𝑚𝐵 → (∀𝑘𝐵 𝐶 ∈ ℂ → 𝑚 / 𝑘𝐶 ∈ ℂ))
4135, 40mpan9 281 . . . . . . . . . . 11 ((𝜑𝑚𝐵) → 𝑚 / 𝑘𝐶 ∈ ℂ)
4217, 41eqeltrd 2283 . . . . . . . . . 10 ((𝜑𝑚𝐵) → if(𝑚𝐵, 𝑚 / 𝑘𝐶, 1) ∈ ℂ)
4342ex 115 . . . . . . . . 9 (𝜑 → (𝑚𝐵 → if(𝑚𝐵, 𝑚 / 𝑘𝐶, 1) ∈ ℂ))
44 iffalse 3580 . . . . . . . . . . 11 𝑚𝐵 → if(𝑚𝐵, 𝑚 / 𝑘𝐶, 1) = 1)
4544, 23eqeltrdi 2297 . . . . . . . . . 10 𝑚𝐵 → if(𝑚𝐵, 𝑚 / 𝑘𝐶, 1) ∈ ℂ)
4645a1i 9 . . . . . . . . 9 (𝜑 → (¬ 𝑚𝐵 → if(𝑚𝐵, 𝑚 / 𝑘𝐶, 1) ∈ ℂ))
4743, 46jaod 719 . . . . . . . 8 (𝜑 → ((𝑚𝐵 ∨ ¬ 𝑚𝐵) → if(𝑚𝐵, 𝑚 / 𝑘𝐶, 1) ∈ ℂ))
4847adantr 276 . . . . . . 7 ((𝜑𝑚 ∈ (ℤ𝑀)) → ((𝑚𝐵 ∨ ¬ 𝑚𝐵) → if(𝑚𝐵, 𝑚 / 𝑘𝐶, 1) ∈ ℂ))
4915, 48mpd 13 . . . . . 6 ((𝜑𝑚 ∈ (ℤ𝑀)) → if(𝑚𝐵, 𝑚 / 𝑘𝐶, 1) ∈ ℂ)
50 nfcv 2349 . . . . . . 7 𝑘𝑚
51 nfv 1552 . . . . . . . 8 𝑘 𝑚𝐵
52 nfcv 2349 . . . . . . . 8 𝑘1
5351, 36, 52nfif 3600 . . . . . . 7 𝑘if(𝑚𝐵, 𝑚 / 𝑘𝐶, 1)
54 eleq1w 2267 . . . . . . . 8 (𝑘 = 𝑚 → (𝑘𝐵𝑚𝐵))
5554, 38ifbieq1d 3594 . . . . . . 7 (𝑘 = 𝑚 → if(𝑘𝐵, 𝐶, 1) = if(𝑚𝐵, 𝑚 / 𝑘𝐶, 1))
56 eqid 2206 . . . . . . 7 (𝑘 ∈ (ℤ𝑀) ↦ if(𝑘𝐵, 𝐶, 1)) = (𝑘 ∈ (ℤ𝑀) ↦ if(𝑘𝐵, 𝐶, 1))
5750, 53, 55, 56fvmptf 5679 . . . . . 6 ((𝑚 ∈ (ℤ𝑀) ∧ if(𝑚𝐵, 𝑚 / 𝑘𝐶, 1) ∈ ℂ) → ((𝑘 ∈ (ℤ𝑀) ↦ if(𝑘𝐵, 𝐶, 1))‘𝑚) = if(𝑚𝐵, 𝑚 / 𝑘𝐶, 1))
588, 49, 57syl2anc 411 . . . . 5 ((𝜑𝑚 ∈ (ℤ𝑀)) → ((𝑘 ∈ (ℤ𝑀) ↦ if(𝑘𝐵, 𝐶, 1))‘𝑚) = if(𝑚𝐵, 𝑚 / 𝑘𝐶, 1))
59 iftrue 3577 . . . . . . . . . . . . . . 15 (𝑚𝐴 → if(𝑚𝐴, ((𝑘𝐴𝐶)‘𝑚), 1) = ((𝑘𝐴𝐶)‘𝑚))
6059adantl 277 . . . . . . . . . . . . . 14 ((𝜑𝑚𝐴) → if(𝑚𝐴, ((𝑘𝐴𝐶)‘𝑚), 1) = ((𝑘𝐴𝐶)‘𝑚))
61 simpr 110 . . . . . . . . . . . . . . 15 ((𝜑𝑚𝐴) → 𝑚𝐴)
624sselda 3194 . . . . . . . . . . . . . . . 16 ((𝜑𝑚𝐴) → 𝑚𝐵)
6362, 41syldan 282 . . . . . . . . . . . . . . 15 ((𝜑𝑚𝐴) → 𝑚 / 𝑘𝐶 ∈ ℂ)
64 eqid 2206 . . . . . . . . . . . . . . . 16 (𝑘𝐴𝐶) = (𝑘𝐴𝐶)
6564fvmpts 5664 . . . . . . . . . . . . . . 15 ((𝑚𝐴𝑚 / 𝑘𝐶 ∈ ℂ) → ((𝑘𝐴𝐶)‘𝑚) = 𝑚 / 𝑘𝐶)
6661, 63, 65syl2anc 411 . . . . . . . . . . . . . 14 ((𝜑𝑚𝐴) → ((𝑘𝐴𝐶)‘𝑚) = 𝑚 / 𝑘𝐶)
6760, 66eqtrd 2239 . . . . . . . . . . . . 13 ((𝜑𝑚𝐴) → if(𝑚𝐴, ((𝑘𝐴𝐶)‘𝑚), 1) = 𝑚 / 𝑘𝐶)
6867ex 115 . . . . . . . . . . . 12 (𝜑 → (𝑚𝐴 → if(𝑚𝐴, ((𝑘𝐴𝐶)‘𝑚), 1) = 𝑚 / 𝑘𝐶))
6968adantr 276 . . . . . . . . . . 11 ((𝜑𝑚𝐵) → (𝑚𝐴 → if(𝑚𝐴, ((𝑘𝐴𝐶)‘𝑚), 1) = 𝑚 / 𝑘𝐶))
70 iffalse 3580 . . . . . . . . . . . . . . 15 𝑚𝐴 → if(𝑚𝐴, ((𝑘𝐴𝐶)‘𝑚), 1) = 1)
7170adantl 277 . . . . . . . . . . . . . 14 ((𝑚𝐵 ∧ ¬ 𝑚𝐴) → if(𝑚𝐴, ((𝑘𝐴𝐶)‘𝑚), 1) = 1)
7271adantl 277 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑚𝐵 ∧ ¬ 𝑚𝐴)) → if(𝑚𝐴, ((𝑘𝐴𝐶)‘𝑚), 1) = 1)
73 eldif 3176 . . . . . . . . . . . . . 14 (𝑚 ∈ (𝐵𝐴) ↔ (𝑚𝐵 ∧ ¬ 𝑚𝐴))
7422ralrimiva 2580 . . . . . . . . . . . . . . 15 (𝜑 → ∀𝑘 ∈ (𝐵𝐴)𝐶 = 1)
7536nfeq1 2359 . . . . . . . . . . . . . . . 16 𝑘𝑚 / 𝑘𝐶 = 1
7638eqeq1d 2215 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑚 → (𝐶 = 1 ↔ 𝑚 / 𝑘𝐶 = 1))
7775, 76rspc 2872 . . . . . . . . . . . . . . 15 (𝑚 ∈ (𝐵𝐴) → (∀𝑘 ∈ (𝐵𝐴)𝐶 = 1 → 𝑚 / 𝑘𝐶 = 1))
7874, 77mpan9 281 . . . . . . . . . . . . . 14 ((𝜑𝑚 ∈ (𝐵𝐴)) → 𝑚 / 𝑘𝐶 = 1)
7973, 78sylan2br 288 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑚𝐵 ∧ ¬ 𝑚𝐴)) → 𝑚 / 𝑘𝐶 = 1)
8072, 79eqtr4d 2242 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑚𝐵 ∧ ¬ 𝑚𝐴)) → if(𝑚𝐴, ((𝑘𝐴𝐶)‘𝑚), 1) = 𝑚 / 𝑘𝐶)
8180expr 375 . . . . . . . . . . 11 ((𝜑𝑚𝐵) → (¬ 𝑚𝐴 → if(𝑚𝐴, ((𝑘𝐴𝐶)‘𝑚), 1) = 𝑚 / 𝑘𝐶))
82 eleq1w 2267 . . . . . . . . . . . . . 14 (𝑗 = 𝑚 → (𝑗𝐴𝑚𝐴))
8382dcbid 840 . . . . . . . . . . . . 13 (𝑗 = 𝑚 → (DECID 𝑗𝐴DECID 𝑚𝐴))
847adantr 276 . . . . . . . . . . . . 13 ((𝜑𝑚𝐵) → ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐴)
855sselda 3194 . . . . . . . . . . . . 13 ((𝜑𝑚𝐵) → 𝑚 ∈ (ℤ𝑀))
8683, 84, 85rspcdva 2883 . . . . . . . . . . . 12 ((𝜑𝑚𝐵) → DECID 𝑚𝐴)
87 exmiddc 838 . . . . . . . . . . . 12 (DECID 𝑚𝐴 → (𝑚𝐴 ∨ ¬ 𝑚𝐴))
8886, 87syl 14 . . . . . . . . . . 11 ((𝜑𝑚𝐵) → (𝑚𝐴 ∨ ¬ 𝑚𝐴))
8969, 81, 88mpjaod 720 . . . . . . . . . 10 ((𝜑𝑚𝐵) → if(𝑚𝐴, ((𝑘𝐴𝐶)‘𝑚), 1) = 𝑚 / 𝑘𝐶)
9089, 17eqtr4d 2242 . . . . . . . . 9 ((𝜑𝑚𝐵) → if(𝑚𝐴, ((𝑘𝐴𝐶)‘𝑚), 1) = if(𝑚𝐵, 𝑚 / 𝑘𝐶, 1))
9190ex 115 . . . . . . . 8 (𝜑 → (𝑚𝐵 → if(𝑚𝐴, ((𝑘𝐴𝐶)‘𝑚), 1) = if(𝑚𝐵, 𝑚 / 𝑘𝐶, 1)))
924ssneld 3196 . . . . . . . . . . . 12 (𝜑 → (¬ 𝑚𝐵 → ¬ 𝑚𝐴))
9392imp 124 . . . . . . . . . . 11 ((𝜑 ∧ ¬ 𝑚𝐵) → ¬ 𝑚𝐴)
9493, 70syl 14 . . . . . . . . . 10 ((𝜑 ∧ ¬ 𝑚𝐵) → if(𝑚𝐴, ((𝑘𝐴𝐶)‘𝑚), 1) = 1)
9544adantl 277 . . . . . . . . . 10 ((𝜑 ∧ ¬ 𝑚𝐵) → if(𝑚𝐵, 𝑚 / 𝑘𝐶, 1) = 1)
9694, 95eqtr4d 2242 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝑚𝐵) → if(𝑚𝐴, ((𝑘𝐴𝐶)‘𝑚), 1) = if(𝑚𝐵, 𝑚 / 𝑘𝐶, 1))
9796ex 115 . . . . . . . 8 (𝜑 → (¬ 𝑚𝐵 → if(𝑚𝐴, ((𝑘𝐴𝐶)‘𝑚), 1) = if(𝑚𝐵, 𝑚 / 𝑘𝐶, 1)))
9891, 97jaod 719 . . . . . . 7 (𝜑 → ((𝑚𝐵 ∨ ¬ 𝑚𝐵) → if(𝑚𝐴, ((𝑘𝐴𝐶)‘𝑚), 1) = if(𝑚𝐵, 𝑚 / 𝑘𝐶, 1)))
9998adantr 276 . . . . . 6 ((𝜑𝑚 ∈ (ℤ𝑀)) → ((𝑚𝐵 ∨ ¬ 𝑚𝐵) → if(𝑚𝐴, ((𝑘𝐴𝐶)‘𝑚), 1) = if(𝑚𝐵, 𝑚 / 𝑘𝐶, 1)))
10015, 99mpd 13 . . . . 5 ((𝜑𝑚 ∈ (ℤ𝑀)) → if(𝑚𝐴, ((𝑘𝐴𝐶)‘𝑚), 1) = if(𝑚𝐵, 𝑚 / 𝑘𝐶, 1))
10158, 100eqtr4d 2242 . . . 4 ((𝜑𝑚 ∈ (ℤ𝑀)) → ((𝑘 ∈ (ℤ𝑀) ↦ if(𝑘𝐵, 𝐶, 1))‘𝑚) = if(𝑚𝐴, ((𝑘𝐴𝐶)‘𝑚), 1))
10218fmpttd 5742 . . . . 5 (𝜑 → (𝑘𝐴𝐶):𝐴⟶ℂ)
103102ffvelcdmda 5722 . . . 4 ((𝜑𝑚𝐴) → ((𝑘𝐴𝐶)‘𝑚) ∈ ℂ)
1041, 2, 3, 6, 7, 101, 103zproddc 11934 . . 3 (𝜑 → ∏𝑚𝐴 ((𝑘𝐴𝐶)‘𝑚) = ( ⇝ ‘seq𝑀( · , (𝑘 ∈ (ℤ𝑀) ↦ if(𝑘𝐵, 𝐶, 1)))))
105 simpr 110 . . . . . . . . . . 11 ((𝜑𝑚𝐵) → 𝑚𝐵)
106 eqid 2206 . . . . . . . . . . . 12 (𝑘𝐵𝐶) = (𝑘𝐵𝐶)
107106fvmpts 5664 . . . . . . . . . . 11 ((𝑚𝐵𝑚 / 𝑘𝐶 ∈ ℂ) → ((𝑘𝐵𝐶)‘𝑚) = 𝑚 / 𝑘𝐶)
108105, 41, 107syl2anc 411 . . . . . . . . . 10 ((𝜑𝑚𝐵) → ((𝑘𝐵𝐶)‘𝑚) = 𝑚 / 𝑘𝐶)
109108ifeq1d 3589 . . . . . . . . 9 ((𝜑𝑚𝐵) → if(𝑚𝐵, ((𝑘𝐵𝐶)‘𝑚), 1) = if(𝑚𝐵, 𝑚 / 𝑘𝐶, 1))
110109ex 115 . . . . . . . 8 (𝜑 → (𝑚𝐵 → if(𝑚𝐵, ((𝑘𝐵𝐶)‘𝑚), 1) = if(𝑚𝐵, 𝑚 / 𝑘𝐶, 1)))
111 iffalse 3580 . . . . . . . . . 10 𝑚𝐵 → if(𝑚𝐵, ((𝑘𝐵𝐶)‘𝑚), 1) = 1)
112111, 44eqtr4d 2242 . . . . . . . . 9 𝑚𝐵 → if(𝑚𝐵, ((𝑘𝐵𝐶)‘𝑚), 1) = if(𝑚𝐵, 𝑚 / 𝑘𝐶, 1))
113112a1i 9 . . . . . . . 8 (𝜑 → (¬ 𝑚𝐵 → if(𝑚𝐵, ((𝑘𝐵𝐶)‘𝑚), 1) = if(𝑚𝐵, 𝑚 / 𝑘𝐶, 1)))
114110, 113jaod 719 . . . . . . 7 (𝜑 → ((𝑚𝐵 ∨ ¬ 𝑚𝐵) → if(𝑚𝐵, ((𝑘𝐵𝐶)‘𝑚), 1) = if(𝑚𝐵, 𝑚 / 𝑘𝐶, 1)))
115114adantr 276 . . . . . 6 ((𝜑𝑚 ∈ (ℤ𝑀)) → ((𝑚𝐵 ∨ ¬ 𝑚𝐵) → if(𝑚𝐵, ((𝑘𝐵𝐶)‘𝑚), 1) = if(𝑚𝐵, 𝑚 / 𝑘𝐶, 1)))
11615, 115mpd 13 . . . . 5 ((𝜑𝑚 ∈ (ℤ𝑀)) → if(𝑚𝐵, ((𝑘𝐵𝐶)‘𝑚), 1) = if(𝑚𝐵, 𝑚 / 𝑘𝐶, 1))
11758, 116eqtr4d 2242 . . . 4 ((𝜑𝑚 ∈ (ℤ𝑀)) → ((𝑘 ∈ (ℤ𝑀) ↦ if(𝑘𝐵, 𝐶, 1))‘𝑚) = if(𝑚𝐵, ((𝑘𝐵𝐶)‘𝑚), 1))
11834fmpttd 5742 . . . . 5 (𝜑 → (𝑘𝐵𝐶):𝐵⟶ℂ)
119118ffvelcdmda 5722 . . . 4 ((𝜑𝑚𝐵) → ((𝑘𝐵𝐶)‘𝑚) ∈ ℂ)
1201, 2, 3, 5, 11, 117, 119zproddc 11934 . . 3 (𝜑 → ∏𝑚𝐵 ((𝑘𝐵𝐶)‘𝑚) = ( ⇝ ‘seq𝑀( · , (𝑘 ∈ (ℤ𝑀) ↦ if(𝑘𝐵, 𝐶, 1)))))
121104, 120eqtr4d 2242 . 2 (𝜑 → ∏𝑚𝐴 ((𝑘𝐴𝐶)‘𝑚) = ∏𝑚𝐵 ((𝑘𝐵𝐶)‘𝑚))
12218ralrimiva 2580 . . 3 (𝜑 → ∀𝑘𝐴 𝐶 ∈ ℂ)
123 prodfct 11942 . . 3 (∀𝑘𝐴 𝐶 ∈ ℂ → ∏𝑚𝐴 ((𝑘𝐴𝐶)‘𝑚) = ∏𝑘𝐴 𝐶)
124122, 123syl 14 . 2 (𝜑 → ∏𝑚𝐴 ((𝑘𝐴𝐶)‘𝑚) = ∏𝑘𝐴 𝐶)
125 prodfct 11942 . . 3 (∀𝑘𝐵 𝐶 ∈ ℂ → ∏𝑚𝐵 ((𝑘𝐵𝐶)‘𝑚) = ∏𝑘𝐵 𝐶)
12635, 125syl 14 . 2 (𝜑 → ∏𝑚𝐵 ((𝑘𝐵𝐶)‘𝑚) = ∏𝑘𝐵 𝐶)
127121, 124, 1263eqtr3d 2247 1 (𝜑 → ∏𝑘𝐴 𝐶 = ∏𝑘𝐵 𝐶)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wo 710  DECID wdc 836   = wceq 1373  wex 1516  wcel 2177  wral 2485  wrex 2486  csb 3094  cdif 3164  wss 3167  ifcif 3572   class class class wbr 4047  cmpt 4109  cfv 5276  cc 7930  0cc0 7932  1c1 7933   · cmul 7937   # cap 8661  cz 9379  cuz 9655  seqcseq 10599  cli 11633  cprod 11905
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4163  ax-sep 4166  ax-nul 4174  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-setind 4589  ax-iinf 4640  ax-cnex 8023  ax-resscn 8024  ax-1cn 8025  ax-1re 8026  ax-icn 8027  ax-addcl 8028  ax-addrcl 8029  ax-mulcl 8030  ax-mulrcl 8031  ax-addcom 8032  ax-mulcom 8033  ax-addass 8034  ax-mulass 8035  ax-distr 8036  ax-i2m1 8037  ax-0lt1 8038  ax-1rid 8039  ax-0id 8040  ax-rnegex 8041  ax-precex 8042  ax-cnre 8043  ax-pre-ltirr 8044  ax-pre-ltwlin 8045  ax-pre-lttrn 8046  ax-pre-apti 8047  ax-pre-ltadd 8048  ax-pre-mulgt0 8049  ax-pre-mulext 8050
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3000  df-csb 3095  df-dif 3169  df-un 3171  df-in 3173  df-ss 3180  df-nul 3462  df-if 3573  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-int 3888  df-iun 3931  df-br 4048  df-opab 4110  df-mpt 4111  df-tr 4147  df-id 4344  df-po 4347  df-iso 4348  df-iord 4417  df-on 4419  df-ilim 4420  df-suc 4422  df-iom 4643  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-ima 4692  df-iota 5237  df-fun 5278  df-fn 5279  df-f 5280  df-f1 5281  df-fo 5282  df-f1o 5283  df-fv 5284  df-isom 5285  df-riota 5906  df-ov 5954  df-oprab 5955  df-mpo 5956  df-1st 6233  df-2nd 6234  df-recs 6398  df-irdg 6463  df-frec 6484  df-1o 6509  df-oadd 6513  df-er 6627  df-en 6835  df-dom 6836  df-fin 6837  df-pnf 8116  df-mnf 8117  df-xr 8118  df-ltxr 8119  df-le 8120  df-sub 8252  df-neg 8253  df-reap 8655  df-ap 8662  df-div 8753  df-inn 9044  df-2 9102  df-n0 9303  df-z 9380  df-uz 9656  df-q 9748  df-rp 9783  df-fz 10138  df-fzo 10272  df-seqfrec 10600  df-exp 10691  df-ihash 10928  df-cj 11197  df-rsqrt 11353  df-abs 11354  df-clim 11634  df-proddc 11906
This theorem is referenced by:  fprodssdc  11945
  Copyright terms: Public domain W3C validator