ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prodssdc GIF version

Theorem prodssdc 11581
Description: Change the index set to a subset in an upper integer product. (Contributed by Scott Fenton, 11-Dec-2017.) (Revised by Jim Kingdon, 6-Aug-2024.)
Hypotheses
Ref Expression
prodss.1 (𝜑𝐴𝐵)
prodss.2 ((𝜑𝑘𝐴) → 𝐶 ∈ ℂ)
prodssdc.3 (𝜑 → ∃𝑛 ∈ (ℤ𝑀)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , (𝑘 ∈ (ℤ𝑀) ↦ if(𝑘𝐵, 𝐶, 1))) ⇝ 𝑦))
prodssdc.a (𝜑 → ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐴)
prodssdc.m (𝜑𝑀 ∈ ℤ)
prodss.4 ((𝜑𝑘 ∈ (𝐵𝐴)) → 𝐶 = 1)
prodss.5 (𝜑𝐵 ⊆ (ℤ𝑀))
prodssdc.b (𝜑 → ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐵)
Assertion
Ref Expression
prodssdc (𝜑 → ∏𝑘𝐴 𝐶 = ∏𝑘𝐵 𝐶)
Distinct variable groups:   𝐴,𝑗,𝑘,𝑛,𝑦   𝐵,𝑗,𝑘,𝑛,𝑦   𝐶,𝑗,𝑛,𝑦   𝑗,𝑀,𝑘,𝑛,𝑦   𝜑,𝑗,𝑘,𝑛,𝑦
Allowed substitution hint:   𝐶(𝑘)

Proof of Theorem prodssdc
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 eqid 2177 . . . 4 (ℤ𝑀) = (ℤ𝑀)
2 prodssdc.m . . . 4 (𝜑𝑀 ∈ ℤ)
3 prodssdc.3 . . . 4 (𝜑 → ∃𝑛 ∈ (ℤ𝑀)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , (𝑘 ∈ (ℤ𝑀) ↦ if(𝑘𝐵, 𝐶, 1))) ⇝ 𝑦))
4 prodss.1 . . . . 5 (𝜑𝐴𝐵)
5 prodss.5 . . . . 5 (𝜑𝐵 ⊆ (ℤ𝑀))
64, 5sstrd 3165 . . . 4 (𝜑𝐴 ⊆ (ℤ𝑀))
7 prodssdc.a . . . 4 (𝜑 → ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐴)
8 simpr 110 . . . . . 6 ((𝜑𝑚 ∈ (ℤ𝑀)) → 𝑚 ∈ (ℤ𝑀))
9 eleq1w 2238 . . . . . . . . . 10 (𝑗 = 𝑚 → (𝑗𝐵𝑚𝐵))
109dcbid 838 . . . . . . . . 9 (𝑗 = 𝑚 → (DECID 𝑗𝐵DECID 𝑚𝐵))
11 prodssdc.b . . . . . . . . . 10 (𝜑 → ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐵)
1211adantr 276 . . . . . . . . 9 ((𝜑𝑚 ∈ (ℤ𝑀)) → ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐵)
1310, 12, 8rspcdva 2846 . . . . . . . 8 ((𝜑𝑚 ∈ (ℤ𝑀)) → DECID 𝑚𝐵)
14 exmiddc 836 . . . . . . . 8 (DECID 𝑚𝐵 → (𝑚𝐵 ∨ ¬ 𝑚𝐵))
1513, 14syl 14 . . . . . . 7 ((𝜑𝑚 ∈ (ℤ𝑀)) → (𝑚𝐵 ∨ ¬ 𝑚𝐵))
16 iftrue 3539 . . . . . . . . . . . 12 (𝑚𝐵 → if(𝑚𝐵, 𝑚 / 𝑘𝐶, 1) = 𝑚 / 𝑘𝐶)
1716adantl 277 . . . . . . . . . . 11 ((𝜑𝑚𝐵) → if(𝑚𝐵, 𝑚 / 𝑘𝐶, 1) = 𝑚 / 𝑘𝐶)
18 prodss.2 . . . . . . . . . . . . . . . 16 ((𝜑𝑘𝐴) → 𝐶 ∈ ℂ)
1918ex 115 . . . . . . . . . . . . . . 15 (𝜑 → (𝑘𝐴𝐶 ∈ ℂ))
2019adantr 276 . . . . . . . . . . . . . 14 ((𝜑𝑘𝐵) → (𝑘𝐴𝐶 ∈ ℂ))
21 eldif 3138 . . . . . . . . . . . . . . . 16 (𝑘 ∈ (𝐵𝐴) ↔ (𝑘𝐵 ∧ ¬ 𝑘𝐴))
22 prodss.4 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘 ∈ (𝐵𝐴)) → 𝐶 = 1)
23 ax-1cn 7895 . . . . . . . . . . . . . . . . 17 1 ∈ ℂ
2422, 23eqeltrdi 2268 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ (𝐵𝐴)) → 𝐶 ∈ ℂ)
2521, 24sylan2br 288 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑘𝐵 ∧ ¬ 𝑘𝐴)) → 𝐶 ∈ ℂ)
2625expr 375 . . . . . . . . . . . . . 14 ((𝜑𝑘𝐵) → (¬ 𝑘𝐴𝐶 ∈ ℂ))
27 eleq1w 2238 . . . . . . . . . . . . . . . . 17 (𝑗 = 𝑘 → (𝑗𝐴𝑘𝐴))
2827dcbid 838 . . . . . . . . . . . . . . . 16 (𝑗 = 𝑘 → (DECID 𝑗𝐴DECID 𝑘𝐴))
297adantr 276 . . . . . . . . . . . . . . . 16 ((𝜑𝑘𝐵) → ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐴)
305sselda 3155 . . . . . . . . . . . . . . . 16 ((𝜑𝑘𝐵) → 𝑘 ∈ (ℤ𝑀))
3128, 29, 30rspcdva 2846 . . . . . . . . . . . . . . 15 ((𝜑𝑘𝐵) → DECID 𝑘𝐴)
32 exmiddc 836 . . . . . . . . . . . . . . 15 (DECID 𝑘𝐴 → (𝑘𝐴 ∨ ¬ 𝑘𝐴))
3331, 32syl 14 . . . . . . . . . . . . . 14 ((𝜑𝑘𝐵) → (𝑘𝐴 ∨ ¬ 𝑘𝐴))
3420, 26, 33mpjaod 718 . . . . . . . . . . . . 13 ((𝜑𝑘𝐵) → 𝐶 ∈ ℂ)
3534ralrimiva 2550 . . . . . . . . . . . 12 (𝜑 → ∀𝑘𝐵 𝐶 ∈ ℂ)
36 nfcsb1v 3090 . . . . . . . . . . . . . 14 𝑘𝑚 / 𝑘𝐶
3736nfel1 2330 . . . . . . . . . . . . 13 𝑘𝑚 / 𝑘𝐶 ∈ ℂ
38 csbeq1a 3066 . . . . . . . . . . . . . 14 (𝑘 = 𝑚𝐶 = 𝑚 / 𝑘𝐶)
3938eleq1d 2246 . . . . . . . . . . . . 13 (𝑘 = 𝑚 → (𝐶 ∈ ℂ ↔ 𝑚 / 𝑘𝐶 ∈ ℂ))
4037, 39rspc 2835 . . . . . . . . . . . 12 (𝑚𝐵 → (∀𝑘𝐵 𝐶 ∈ ℂ → 𝑚 / 𝑘𝐶 ∈ ℂ))
4135, 40mpan9 281 . . . . . . . . . . 11 ((𝜑𝑚𝐵) → 𝑚 / 𝑘𝐶 ∈ ℂ)
4217, 41eqeltrd 2254 . . . . . . . . . 10 ((𝜑𝑚𝐵) → if(𝑚𝐵, 𝑚 / 𝑘𝐶, 1) ∈ ℂ)
4342ex 115 . . . . . . . . 9 (𝜑 → (𝑚𝐵 → if(𝑚𝐵, 𝑚 / 𝑘𝐶, 1) ∈ ℂ))
44 iffalse 3542 . . . . . . . . . . 11 𝑚𝐵 → if(𝑚𝐵, 𝑚 / 𝑘𝐶, 1) = 1)
4544, 23eqeltrdi 2268 . . . . . . . . . 10 𝑚𝐵 → if(𝑚𝐵, 𝑚 / 𝑘𝐶, 1) ∈ ℂ)
4645a1i 9 . . . . . . . . 9 (𝜑 → (¬ 𝑚𝐵 → if(𝑚𝐵, 𝑚 / 𝑘𝐶, 1) ∈ ℂ))
4743, 46jaod 717 . . . . . . . 8 (𝜑 → ((𝑚𝐵 ∨ ¬ 𝑚𝐵) → if(𝑚𝐵, 𝑚 / 𝑘𝐶, 1) ∈ ℂ))
4847adantr 276 . . . . . . 7 ((𝜑𝑚 ∈ (ℤ𝑀)) → ((𝑚𝐵 ∨ ¬ 𝑚𝐵) → if(𝑚𝐵, 𝑚 / 𝑘𝐶, 1) ∈ ℂ))
4915, 48mpd 13 . . . . . 6 ((𝜑𝑚 ∈ (ℤ𝑀)) → if(𝑚𝐵, 𝑚 / 𝑘𝐶, 1) ∈ ℂ)
50 nfcv 2319 . . . . . . 7 𝑘𝑚
51 nfv 1528 . . . . . . . 8 𝑘 𝑚𝐵
52 nfcv 2319 . . . . . . . 8 𝑘1
5351, 36, 52nfif 3562 . . . . . . 7 𝑘if(𝑚𝐵, 𝑚 / 𝑘𝐶, 1)
54 eleq1w 2238 . . . . . . . 8 (𝑘 = 𝑚 → (𝑘𝐵𝑚𝐵))
5554, 38ifbieq1d 3556 . . . . . . 7 (𝑘 = 𝑚 → if(𝑘𝐵, 𝐶, 1) = if(𝑚𝐵, 𝑚 / 𝑘𝐶, 1))
56 eqid 2177 . . . . . . 7 (𝑘 ∈ (ℤ𝑀) ↦ if(𝑘𝐵, 𝐶, 1)) = (𝑘 ∈ (ℤ𝑀) ↦ if(𝑘𝐵, 𝐶, 1))
5750, 53, 55, 56fvmptf 5604 . . . . . 6 ((𝑚 ∈ (ℤ𝑀) ∧ if(𝑚𝐵, 𝑚 / 𝑘𝐶, 1) ∈ ℂ) → ((𝑘 ∈ (ℤ𝑀) ↦ if(𝑘𝐵, 𝐶, 1))‘𝑚) = if(𝑚𝐵, 𝑚 / 𝑘𝐶, 1))
588, 49, 57syl2anc 411 . . . . 5 ((𝜑𝑚 ∈ (ℤ𝑀)) → ((𝑘 ∈ (ℤ𝑀) ↦ if(𝑘𝐵, 𝐶, 1))‘𝑚) = if(𝑚𝐵, 𝑚 / 𝑘𝐶, 1))
59 iftrue 3539 . . . . . . . . . . . . . . 15 (𝑚𝐴 → if(𝑚𝐴, ((𝑘𝐴𝐶)‘𝑚), 1) = ((𝑘𝐴𝐶)‘𝑚))
6059adantl 277 . . . . . . . . . . . . . 14 ((𝜑𝑚𝐴) → if(𝑚𝐴, ((𝑘𝐴𝐶)‘𝑚), 1) = ((𝑘𝐴𝐶)‘𝑚))
61 simpr 110 . . . . . . . . . . . . . . 15 ((𝜑𝑚𝐴) → 𝑚𝐴)
624sselda 3155 . . . . . . . . . . . . . . . 16 ((𝜑𝑚𝐴) → 𝑚𝐵)
6362, 41syldan 282 . . . . . . . . . . . . . . 15 ((𝜑𝑚𝐴) → 𝑚 / 𝑘𝐶 ∈ ℂ)
64 eqid 2177 . . . . . . . . . . . . . . . 16 (𝑘𝐴𝐶) = (𝑘𝐴𝐶)
6564fvmpts 5590 . . . . . . . . . . . . . . 15 ((𝑚𝐴𝑚 / 𝑘𝐶 ∈ ℂ) → ((𝑘𝐴𝐶)‘𝑚) = 𝑚 / 𝑘𝐶)
6661, 63, 65syl2anc 411 . . . . . . . . . . . . . 14 ((𝜑𝑚𝐴) → ((𝑘𝐴𝐶)‘𝑚) = 𝑚 / 𝑘𝐶)
6760, 66eqtrd 2210 . . . . . . . . . . . . 13 ((𝜑𝑚𝐴) → if(𝑚𝐴, ((𝑘𝐴𝐶)‘𝑚), 1) = 𝑚 / 𝑘𝐶)
6867ex 115 . . . . . . . . . . . 12 (𝜑 → (𝑚𝐴 → if(𝑚𝐴, ((𝑘𝐴𝐶)‘𝑚), 1) = 𝑚 / 𝑘𝐶))
6968adantr 276 . . . . . . . . . . 11 ((𝜑𝑚𝐵) → (𝑚𝐴 → if(𝑚𝐴, ((𝑘𝐴𝐶)‘𝑚), 1) = 𝑚 / 𝑘𝐶))
70 iffalse 3542 . . . . . . . . . . . . . . 15 𝑚𝐴 → if(𝑚𝐴, ((𝑘𝐴𝐶)‘𝑚), 1) = 1)
7170adantl 277 . . . . . . . . . . . . . 14 ((𝑚𝐵 ∧ ¬ 𝑚𝐴) → if(𝑚𝐴, ((𝑘𝐴𝐶)‘𝑚), 1) = 1)
7271adantl 277 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑚𝐵 ∧ ¬ 𝑚𝐴)) → if(𝑚𝐴, ((𝑘𝐴𝐶)‘𝑚), 1) = 1)
73 eldif 3138 . . . . . . . . . . . . . 14 (𝑚 ∈ (𝐵𝐴) ↔ (𝑚𝐵 ∧ ¬ 𝑚𝐴))
7422ralrimiva 2550 . . . . . . . . . . . . . . 15 (𝜑 → ∀𝑘 ∈ (𝐵𝐴)𝐶 = 1)
7536nfeq1 2329 . . . . . . . . . . . . . . . 16 𝑘𝑚 / 𝑘𝐶 = 1
7638eqeq1d 2186 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑚 → (𝐶 = 1 ↔ 𝑚 / 𝑘𝐶 = 1))
7775, 76rspc 2835 . . . . . . . . . . . . . . 15 (𝑚 ∈ (𝐵𝐴) → (∀𝑘 ∈ (𝐵𝐴)𝐶 = 1 → 𝑚 / 𝑘𝐶 = 1))
7874, 77mpan9 281 . . . . . . . . . . . . . 14 ((𝜑𝑚 ∈ (𝐵𝐴)) → 𝑚 / 𝑘𝐶 = 1)
7973, 78sylan2br 288 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑚𝐵 ∧ ¬ 𝑚𝐴)) → 𝑚 / 𝑘𝐶 = 1)
8072, 79eqtr4d 2213 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑚𝐵 ∧ ¬ 𝑚𝐴)) → if(𝑚𝐴, ((𝑘𝐴𝐶)‘𝑚), 1) = 𝑚 / 𝑘𝐶)
8180expr 375 . . . . . . . . . . 11 ((𝜑𝑚𝐵) → (¬ 𝑚𝐴 → if(𝑚𝐴, ((𝑘𝐴𝐶)‘𝑚), 1) = 𝑚 / 𝑘𝐶))
82 eleq1w 2238 . . . . . . . . . . . . . 14 (𝑗 = 𝑚 → (𝑗𝐴𝑚𝐴))
8382dcbid 838 . . . . . . . . . . . . 13 (𝑗 = 𝑚 → (DECID 𝑗𝐴DECID 𝑚𝐴))
847adantr 276 . . . . . . . . . . . . 13 ((𝜑𝑚𝐵) → ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐴)
855sselda 3155 . . . . . . . . . . . . 13 ((𝜑𝑚𝐵) → 𝑚 ∈ (ℤ𝑀))
8683, 84, 85rspcdva 2846 . . . . . . . . . . . 12 ((𝜑𝑚𝐵) → DECID 𝑚𝐴)
87 exmiddc 836 . . . . . . . . . . . 12 (DECID 𝑚𝐴 → (𝑚𝐴 ∨ ¬ 𝑚𝐴))
8886, 87syl 14 . . . . . . . . . . 11 ((𝜑𝑚𝐵) → (𝑚𝐴 ∨ ¬ 𝑚𝐴))
8969, 81, 88mpjaod 718 . . . . . . . . . 10 ((𝜑𝑚𝐵) → if(𝑚𝐴, ((𝑘𝐴𝐶)‘𝑚), 1) = 𝑚 / 𝑘𝐶)
9089, 17eqtr4d 2213 . . . . . . . . 9 ((𝜑𝑚𝐵) → if(𝑚𝐴, ((𝑘𝐴𝐶)‘𝑚), 1) = if(𝑚𝐵, 𝑚 / 𝑘𝐶, 1))
9190ex 115 . . . . . . . 8 (𝜑 → (𝑚𝐵 → if(𝑚𝐴, ((𝑘𝐴𝐶)‘𝑚), 1) = if(𝑚𝐵, 𝑚 / 𝑘𝐶, 1)))
924ssneld 3157 . . . . . . . . . . . 12 (𝜑 → (¬ 𝑚𝐵 → ¬ 𝑚𝐴))
9392imp 124 . . . . . . . . . . 11 ((𝜑 ∧ ¬ 𝑚𝐵) → ¬ 𝑚𝐴)
9493, 70syl 14 . . . . . . . . . 10 ((𝜑 ∧ ¬ 𝑚𝐵) → if(𝑚𝐴, ((𝑘𝐴𝐶)‘𝑚), 1) = 1)
9544adantl 277 . . . . . . . . . 10 ((𝜑 ∧ ¬ 𝑚𝐵) → if(𝑚𝐵, 𝑚 / 𝑘𝐶, 1) = 1)
9694, 95eqtr4d 2213 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝑚𝐵) → if(𝑚𝐴, ((𝑘𝐴𝐶)‘𝑚), 1) = if(𝑚𝐵, 𝑚 / 𝑘𝐶, 1))
9796ex 115 . . . . . . . 8 (𝜑 → (¬ 𝑚𝐵 → if(𝑚𝐴, ((𝑘𝐴𝐶)‘𝑚), 1) = if(𝑚𝐵, 𝑚 / 𝑘𝐶, 1)))
9891, 97jaod 717 . . . . . . 7 (𝜑 → ((𝑚𝐵 ∨ ¬ 𝑚𝐵) → if(𝑚𝐴, ((𝑘𝐴𝐶)‘𝑚), 1) = if(𝑚𝐵, 𝑚 / 𝑘𝐶, 1)))
9998adantr 276 . . . . . 6 ((𝜑𝑚 ∈ (ℤ𝑀)) → ((𝑚𝐵 ∨ ¬ 𝑚𝐵) → if(𝑚𝐴, ((𝑘𝐴𝐶)‘𝑚), 1) = if(𝑚𝐵, 𝑚 / 𝑘𝐶, 1)))
10015, 99mpd 13 . . . . 5 ((𝜑𝑚 ∈ (ℤ𝑀)) → if(𝑚𝐴, ((𝑘𝐴𝐶)‘𝑚), 1) = if(𝑚𝐵, 𝑚 / 𝑘𝐶, 1))
10158, 100eqtr4d 2213 . . . 4 ((𝜑𝑚 ∈ (ℤ𝑀)) → ((𝑘 ∈ (ℤ𝑀) ↦ if(𝑘𝐵, 𝐶, 1))‘𝑚) = if(𝑚𝐴, ((𝑘𝐴𝐶)‘𝑚), 1))
10218fmpttd 5667 . . . . 5 (𝜑 → (𝑘𝐴𝐶):𝐴⟶ℂ)
103102ffvelcdmda 5647 . . . 4 ((𝜑𝑚𝐴) → ((𝑘𝐴𝐶)‘𝑚) ∈ ℂ)
1041, 2, 3, 6, 7, 101, 103zproddc 11571 . . 3 (𝜑 → ∏𝑚𝐴 ((𝑘𝐴𝐶)‘𝑚) = ( ⇝ ‘seq𝑀( · , (𝑘 ∈ (ℤ𝑀) ↦ if(𝑘𝐵, 𝐶, 1)))))
105 simpr 110 . . . . . . . . . . 11 ((𝜑𝑚𝐵) → 𝑚𝐵)
106 eqid 2177 . . . . . . . . . . . 12 (𝑘𝐵𝐶) = (𝑘𝐵𝐶)
107106fvmpts 5590 . . . . . . . . . . 11 ((𝑚𝐵𝑚 / 𝑘𝐶 ∈ ℂ) → ((𝑘𝐵𝐶)‘𝑚) = 𝑚 / 𝑘𝐶)
108105, 41, 107syl2anc 411 . . . . . . . . . 10 ((𝜑𝑚𝐵) → ((𝑘𝐵𝐶)‘𝑚) = 𝑚 / 𝑘𝐶)
109108ifeq1d 3551 . . . . . . . . 9 ((𝜑𝑚𝐵) → if(𝑚𝐵, ((𝑘𝐵𝐶)‘𝑚), 1) = if(𝑚𝐵, 𝑚 / 𝑘𝐶, 1))
110109ex 115 . . . . . . . 8 (𝜑 → (𝑚𝐵 → if(𝑚𝐵, ((𝑘𝐵𝐶)‘𝑚), 1) = if(𝑚𝐵, 𝑚 / 𝑘𝐶, 1)))
111 iffalse 3542 . . . . . . . . . 10 𝑚𝐵 → if(𝑚𝐵, ((𝑘𝐵𝐶)‘𝑚), 1) = 1)
112111, 44eqtr4d 2213 . . . . . . . . 9 𝑚𝐵 → if(𝑚𝐵, ((𝑘𝐵𝐶)‘𝑚), 1) = if(𝑚𝐵, 𝑚 / 𝑘𝐶, 1))
113112a1i 9 . . . . . . . 8 (𝜑 → (¬ 𝑚𝐵 → if(𝑚𝐵, ((𝑘𝐵𝐶)‘𝑚), 1) = if(𝑚𝐵, 𝑚 / 𝑘𝐶, 1)))
114110, 113jaod 717 . . . . . . 7 (𝜑 → ((𝑚𝐵 ∨ ¬ 𝑚𝐵) → if(𝑚𝐵, ((𝑘𝐵𝐶)‘𝑚), 1) = if(𝑚𝐵, 𝑚 / 𝑘𝐶, 1)))
115114adantr 276 . . . . . 6 ((𝜑𝑚 ∈ (ℤ𝑀)) → ((𝑚𝐵 ∨ ¬ 𝑚𝐵) → if(𝑚𝐵, ((𝑘𝐵𝐶)‘𝑚), 1) = if(𝑚𝐵, 𝑚 / 𝑘𝐶, 1)))
11615, 115mpd 13 . . . . 5 ((𝜑𝑚 ∈ (ℤ𝑀)) → if(𝑚𝐵, ((𝑘𝐵𝐶)‘𝑚), 1) = if(𝑚𝐵, 𝑚 / 𝑘𝐶, 1))
11758, 116eqtr4d 2213 . . . 4 ((𝜑𝑚 ∈ (ℤ𝑀)) → ((𝑘 ∈ (ℤ𝑀) ↦ if(𝑘𝐵, 𝐶, 1))‘𝑚) = if(𝑚𝐵, ((𝑘𝐵𝐶)‘𝑚), 1))
11834fmpttd 5667 . . . . 5 (𝜑 → (𝑘𝐵𝐶):𝐵⟶ℂ)
119118ffvelcdmda 5647 . . . 4 ((𝜑𝑚𝐵) → ((𝑘𝐵𝐶)‘𝑚) ∈ ℂ)
1201, 2, 3, 5, 11, 117, 119zproddc 11571 . . 3 (𝜑 → ∏𝑚𝐵 ((𝑘𝐵𝐶)‘𝑚) = ( ⇝ ‘seq𝑀( · , (𝑘 ∈ (ℤ𝑀) ↦ if(𝑘𝐵, 𝐶, 1)))))
121104, 120eqtr4d 2213 . 2 (𝜑 → ∏𝑚𝐴 ((𝑘𝐴𝐶)‘𝑚) = ∏𝑚𝐵 ((𝑘𝐵𝐶)‘𝑚))
12218ralrimiva 2550 . . 3 (𝜑 → ∀𝑘𝐴 𝐶 ∈ ℂ)
123 prodfct 11579 . . 3 (∀𝑘𝐴 𝐶 ∈ ℂ → ∏𝑚𝐴 ((𝑘𝐴𝐶)‘𝑚) = ∏𝑘𝐴 𝐶)
124122, 123syl 14 . 2 (𝜑 → ∏𝑚𝐴 ((𝑘𝐴𝐶)‘𝑚) = ∏𝑘𝐴 𝐶)
125 prodfct 11579 . . 3 (∀𝑘𝐵 𝐶 ∈ ℂ → ∏𝑚𝐵 ((𝑘𝐵𝐶)‘𝑚) = ∏𝑘𝐵 𝐶)
12635, 125syl 14 . 2 (𝜑 → ∏𝑚𝐵 ((𝑘𝐵𝐶)‘𝑚) = ∏𝑘𝐵 𝐶)
127121, 124, 1263eqtr3d 2218 1 (𝜑 → ∏𝑘𝐴 𝐶 = ∏𝑘𝐵 𝐶)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wo 708  DECID wdc 834   = wceq 1353  wex 1492  wcel 2148  wral 2455  wrex 2456  csb 3057  cdif 3126  wss 3129  ifcif 3534   class class class wbr 4000  cmpt 4061  cfv 5212  cc 7800  0cc0 7802  1c1 7803   · cmul 7807   # cap 8528  cz 9242  cuz 9517  seqcseq 10431  cli 11270  cprod 11542
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4115  ax-sep 4118  ax-nul 4126  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-iinf 4584  ax-cnex 7893  ax-resscn 7894  ax-1cn 7895  ax-1re 7896  ax-icn 7897  ax-addcl 7898  ax-addrcl 7899  ax-mulcl 7900  ax-mulrcl 7901  ax-addcom 7902  ax-mulcom 7903  ax-addass 7904  ax-mulass 7905  ax-distr 7906  ax-i2m1 7907  ax-0lt1 7908  ax-1rid 7909  ax-0id 7910  ax-rnegex 7911  ax-precex 7912  ax-cnre 7913  ax-pre-ltirr 7914  ax-pre-ltwlin 7915  ax-pre-lttrn 7916  ax-pre-apti 7917  ax-pre-ltadd 7918  ax-pre-mulgt0 7919  ax-pre-mulext 7920
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-if 3535  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-iun 3886  df-br 4001  df-opab 4062  df-mpt 4063  df-tr 4099  df-id 4290  df-po 4293  df-iso 4294  df-iord 4363  df-on 4365  df-ilim 4366  df-suc 4368  df-iom 4587  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-f1 5217  df-fo 5218  df-f1o 5219  df-fv 5220  df-isom 5221  df-riota 5825  df-ov 5872  df-oprab 5873  df-mpo 5874  df-1st 6135  df-2nd 6136  df-recs 6300  df-irdg 6365  df-frec 6386  df-1o 6411  df-oadd 6415  df-er 6529  df-en 6735  df-dom 6736  df-fin 6737  df-pnf 7984  df-mnf 7985  df-xr 7986  df-ltxr 7987  df-le 7988  df-sub 8120  df-neg 8121  df-reap 8522  df-ap 8529  df-div 8619  df-inn 8909  df-2 8967  df-n0 9166  df-z 9243  df-uz 9518  df-q 9609  df-rp 9641  df-fz 9996  df-fzo 10129  df-seqfrec 10432  df-exp 10506  df-ihash 10740  df-cj 10835  df-rsqrt 10991  df-abs 10992  df-clim 11271  df-proddc 11543
This theorem is referenced by:  fprodssdc  11582
  Copyright terms: Public domain W3C validator