Step | Hyp | Ref
| Expression |
1 | | eqid 2170 |
. . . 4
⊢
(ℤ≥‘𝑀) = (ℤ≥‘𝑀) |
2 | | prodssdc.m |
. . . 4
⊢ (𝜑 → 𝑀 ∈ ℤ) |
3 | | prodssdc.3 |
. . . 4
⊢ (𝜑 → ∃𝑛 ∈ (ℤ≥‘𝑀)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , (𝑘 ∈ (ℤ≥‘𝑀) ↦ if(𝑘 ∈ 𝐵, 𝐶, 1))) ⇝ 𝑦)) |
4 | | prodss.1 |
. . . . 5
⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
5 | | prodss.5 |
. . . . 5
⊢ (𝜑 → 𝐵 ⊆ (ℤ≥‘𝑀)) |
6 | 4, 5 | sstrd 3157 |
. . . 4
⊢ (𝜑 → 𝐴 ⊆ (ℤ≥‘𝑀)) |
7 | | prodssdc.a |
. . . 4
⊢ (𝜑 → ∀𝑗 ∈ (ℤ≥‘𝑀)DECID 𝑗 ∈ 𝐴) |
8 | | simpr 109 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘𝑀)) → 𝑚 ∈ (ℤ≥‘𝑀)) |
9 | | eleq1w 2231 |
. . . . . . . . . 10
⊢ (𝑗 = 𝑚 → (𝑗 ∈ 𝐵 ↔ 𝑚 ∈ 𝐵)) |
10 | 9 | dcbid 833 |
. . . . . . . . 9
⊢ (𝑗 = 𝑚 → (DECID 𝑗 ∈ 𝐵 ↔ DECID 𝑚 ∈ 𝐵)) |
11 | | prodssdc.b |
. . . . . . . . . 10
⊢ (𝜑 → ∀𝑗 ∈ (ℤ≥‘𝑀)DECID 𝑗 ∈ 𝐵) |
12 | 11 | adantr 274 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘𝑀)) → ∀𝑗 ∈
(ℤ≥‘𝑀)DECID 𝑗 ∈ 𝐵) |
13 | 10, 12, 8 | rspcdva 2839 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘𝑀)) → DECID
𝑚 ∈ 𝐵) |
14 | | exmiddc 831 |
. . . . . . . 8
⊢
(DECID 𝑚 ∈ 𝐵 → (𝑚 ∈ 𝐵 ∨ ¬ 𝑚 ∈ 𝐵)) |
15 | 13, 14 | syl 14 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘𝑀)) → (𝑚 ∈ 𝐵 ∨ ¬ 𝑚 ∈ 𝐵)) |
16 | | iftrue 3531 |
. . . . . . . . . . . 12
⊢ (𝑚 ∈ 𝐵 → if(𝑚 ∈ 𝐵, ⦋𝑚 / 𝑘⦌𝐶, 1) = ⦋𝑚 / 𝑘⦌𝐶) |
17 | 16 | adantl 275 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑚 ∈ 𝐵) → if(𝑚 ∈ 𝐵, ⦋𝑚 / 𝑘⦌𝐶, 1) = ⦋𝑚 / 𝑘⦌𝐶) |
18 | | prodss.2 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ ℂ) |
19 | 18 | ex 114 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝑘 ∈ 𝐴 → 𝐶 ∈ ℂ)) |
20 | 19 | adantr 274 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → (𝑘 ∈ 𝐴 → 𝐶 ∈ ℂ)) |
21 | | eldif 3130 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 ∈ (𝐵 ∖ 𝐴) ↔ (𝑘 ∈ 𝐵 ∧ ¬ 𝑘 ∈ 𝐴)) |
22 | | prodss.4 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐵 ∖ 𝐴)) → 𝐶 = 1) |
23 | | ax-1cn 7867 |
. . . . . . . . . . . . . . . . 17
⊢ 1 ∈
ℂ |
24 | 22, 23 | eqeltrdi 2261 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐵 ∖ 𝐴)) → 𝐶 ∈ ℂ) |
25 | 21, 24 | sylan2br 286 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑘 ∈ 𝐵 ∧ ¬ 𝑘 ∈ 𝐴)) → 𝐶 ∈ ℂ) |
26 | 25 | expr 373 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → (¬ 𝑘 ∈ 𝐴 → 𝐶 ∈ ℂ)) |
27 | | eleq1w 2231 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑗 = 𝑘 → (𝑗 ∈ 𝐴 ↔ 𝑘 ∈ 𝐴)) |
28 | 27 | dcbid 833 |
. . . . . . . . . . . . . . . 16
⊢ (𝑗 = 𝑘 → (DECID 𝑗 ∈ 𝐴 ↔ DECID 𝑘 ∈ 𝐴)) |
29 | 7 | adantr 274 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → ∀𝑗 ∈ (ℤ≥‘𝑀)DECID 𝑗 ∈ 𝐴) |
30 | 5 | sselda 3147 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → 𝑘 ∈ (ℤ≥‘𝑀)) |
31 | 28, 29, 30 | rspcdva 2839 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → DECID 𝑘 ∈ 𝐴) |
32 | | exmiddc 831 |
. . . . . . . . . . . . . . 15
⊢
(DECID 𝑘 ∈ 𝐴 → (𝑘 ∈ 𝐴 ∨ ¬ 𝑘 ∈ 𝐴)) |
33 | 31, 32 | syl 14 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → (𝑘 ∈ 𝐴 ∨ ¬ 𝑘 ∈ 𝐴)) |
34 | 20, 26, 33 | mpjaod 713 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → 𝐶 ∈ ℂ) |
35 | 34 | ralrimiva 2543 |
. . . . . . . . . . . 12
⊢ (𝜑 → ∀𝑘 ∈ 𝐵 𝐶 ∈ ℂ) |
36 | | nfcsb1v 3082 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑘⦋𝑚 / 𝑘⦌𝐶 |
37 | 36 | nfel1 2323 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑘⦋𝑚 / 𝑘⦌𝐶 ∈ ℂ |
38 | | csbeq1a 3058 |
. . . . . . . . . . . . . 14
⊢ (𝑘 = 𝑚 → 𝐶 = ⦋𝑚 / 𝑘⦌𝐶) |
39 | 38 | eleq1d 2239 |
. . . . . . . . . . . . 13
⊢ (𝑘 = 𝑚 → (𝐶 ∈ ℂ ↔ ⦋𝑚 / 𝑘⦌𝐶 ∈ ℂ)) |
40 | 37, 39 | rspc 2828 |
. . . . . . . . . . . 12
⊢ (𝑚 ∈ 𝐵 → (∀𝑘 ∈ 𝐵 𝐶 ∈ ℂ → ⦋𝑚 / 𝑘⦌𝐶 ∈ ℂ)) |
41 | 35, 40 | mpan9 279 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑚 ∈ 𝐵) → ⦋𝑚 / 𝑘⦌𝐶 ∈ ℂ) |
42 | 17, 41 | eqeltrd 2247 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑚 ∈ 𝐵) → if(𝑚 ∈ 𝐵, ⦋𝑚 / 𝑘⦌𝐶, 1) ∈ ℂ) |
43 | 42 | ex 114 |
. . . . . . . . 9
⊢ (𝜑 → (𝑚 ∈ 𝐵 → if(𝑚 ∈ 𝐵, ⦋𝑚 / 𝑘⦌𝐶, 1) ∈ ℂ)) |
44 | | iffalse 3534 |
. . . . . . . . . . 11
⊢ (¬
𝑚 ∈ 𝐵 → if(𝑚 ∈ 𝐵, ⦋𝑚 / 𝑘⦌𝐶, 1) = 1) |
45 | 44, 23 | eqeltrdi 2261 |
. . . . . . . . . 10
⊢ (¬
𝑚 ∈ 𝐵 → if(𝑚 ∈ 𝐵, ⦋𝑚 / 𝑘⦌𝐶, 1) ∈ ℂ) |
46 | 45 | a1i 9 |
. . . . . . . . 9
⊢ (𝜑 → (¬ 𝑚 ∈ 𝐵 → if(𝑚 ∈ 𝐵, ⦋𝑚 / 𝑘⦌𝐶, 1) ∈ ℂ)) |
47 | 43, 46 | jaod 712 |
. . . . . . . 8
⊢ (𝜑 → ((𝑚 ∈ 𝐵 ∨ ¬ 𝑚 ∈ 𝐵) → if(𝑚 ∈ 𝐵, ⦋𝑚 / 𝑘⦌𝐶, 1) ∈ ℂ)) |
48 | 47 | adantr 274 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘𝑀)) → ((𝑚 ∈ 𝐵 ∨ ¬ 𝑚 ∈ 𝐵) → if(𝑚 ∈ 𝐵, ⦋𝑚 / 𝑘⦌𝐶, 1) ∈ ℂ)) |
49 | 15, 48 | mpd 13 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘𝑀)) → if(𝑚 ∈ 𝐵, ⦋𝑚 / 𝑘⦌𝐶, 1) ∈ ℂ) |
50 | | nfcv 2312 |
. . . . . . 7
⊢
Ⅎ𝑘𝑚 |
51 | | nfv 1521 |
. . . . . . . 8
⊢
Ⅎ𝑘 𝑚 ∈ 𝐵 |
52 | | nfcv 2312 |
. . . . . . . 8
⊢
Ⅎ𝑘1 |
53 | 51, 36, 52 | nfif 3554 |
. . . . . . 7
⊢
Ⅎ𝑘if(𝑚 ∈ 𝐵, ⦋𝑚 / 𝑘⦌𝐶, 1) |
54 | | eleq1w 2231 |
. . . . . . . 8
⊢ (𝑘 = 𝑚 → (𝑘 ∈ 𝐵 ↔ 𝑚 ∈ 𝐵)) |
55 | 54, 38 | ifbieq1d 3548 |
. . . . . . 7
⊢ (𝑘 = 𝑚 → if(𝑘 ∈ 𝐵, 𝐶, 1) = if(𝑚 ∈ 𝐵, ⦋𝑚 / 𝑘⦌𝐶, 1)) |
56 | | eqid 2170 |
. . . . . . 7
⊢ (𝑘 ∈
(ℤ≥‘𝑀) ↦ if(𝑘 ∈ 𝐵, 𝐶, 1)) = (𝑘 ∈ (ℤ≥‘𝑀) ↦ if(𝑘 ∈ 𝐵, 𝐶, 1)) |
57 | 50, 53, 55, 56 | fvmptf 5588 |
. . . . . 6
⊢ ((𝑚 ∈
(ℤ≥‘𝑀) ∧ if(𝑚 ∈ 𝐵, ⦋𝑚 / 𝑘⦌𝐶, 1) ∈ ℂ) → ((𝑘 ∈
(ℤ≥‘𝑀) ↦ if(𝑘 ∈ 𝐵, 𝐶, 1))‘𝑚) = if(𝑚 ∈ 𝐵, ⦋𝑚 / 𝑘⦌𝐶, 1)) |
58 | 8, 49, 57 | syl2anc 409 |
. . . . 5
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘𝑀)) → ((𝑘 ∈ (ℤ≥‘𝑀) ↦ if(𝑘 ∈ 𝐵, 𝐶, 1))‘𝑚) = if(𝑚 ∈ 𝐵, ⦋𝑚 / 𝑘⦌𝐶, 1)) |
59 | | iftrue 3531 |
. . . . . . . . . . . . . . 15
⊢ (𝑚 ∈ 𝐴 → if(𝑚 ∈ 𝐴, ((𝑘 ∈ 𝐴 ↦ 𝐶)‘𝑚), 1) = ((𝑘 ∈ 𝐴 ↦ 𝐶)‘𝑚)) |
60 | 59 | adantl 275 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑚 ∈ 𝐴) → if(𝑚 ∈ 𝐴, ((𝑘 ∈ 𝐴 ↦ 𝐶)‘𝑚), 1) = ((𝑘 ∈ 𝐴 ↦ 𝐶)‘𝑚)) |
61 | | simpr 109 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑚 ∈ 𝐴) → 𝑚 ∈ 𝐴) |
62 | 4 | sselda 3147 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑚 ∈ 𝐴) → 𝑚 ∈ 𝐵) |
63 | 62, 41 | syldan 280 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑚 ∈ 𝐴) → ⦋𝑚 / 𝑘⦌𝐶 ∈ ℂ) |
64 | | eqid 2170 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 ∈ 𝐴 ↦ 𝐶) = (𝑘 ∈ 𝐴 ↦ 𝐶) |
65 | 64 | fvmpts 5574 |
. . . . . . . . . . . . . . 15
⊢ ((𝑚 ∈ 𝐴 ∧ ⦋𝑚 / 𝑘⦌𝐶 ∈ ℂ) → ((𝑘 ∈ 𝐴 ↦ 𝐶)‘𝑚) = ⦋𝑚 / 𝑘⦌𝐶) |
66 | 61, 63, 65 | syl2anc 409 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑚 ∈ 𝐴) → ((𝑘 ∈ 𝐴 ↦ 𝐶)‘𝑚) = ⦋𝑚 / 𝑘⦌𝐶) |
67 | 60, 66 | eqtrd 2203 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑚 ∈ 𝐴) → if(𝑚 ∈ 𝐴, ((𝑘 ∈ 𝐴 ↦ 𝐶)‘𝑚), 1) = ⦋𝑚 / 𝑘⦌𝐶) |
68 | 67 | ex 114 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑚 ∈ 𝐴 → if(𝑚 ∈ 𝐴, ((𝑘 ∈ 𝐴 ↦ 𝐶)‘𝑚), 1) = ⦋𝑚 / 𝑘⦌𝐶)) |
69 | 68 | adantr 274 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑚 ∈ 𝐵) → (𝑚 ∈ 𝐴 → if(𝑚 ∈ 𝐴, ((𝑘 ∈ 𝐴 ↦ 𝐶)‘𝑚), 1) = ⦋𝑚 / 𝑘⦌𝐶)) |
70 | | iffalse 3534 |
. . . . . . . . . . . . . . 15
⊢ (¬
𝑚 ∈ 𝐴 → if(𝑚 ∈ 𝐴, ((𝑘 ∈ 𝐴 ↦ 𝐶)‘𝑚), 1) = 1) |
71 | 70 | adantl 275 |
. . . . . . . . . . . . . 14
⊢ ((𝑚 ∈ 𝐵 ∧ ¬ 𝑚 ∈ 𝐴) → if(𝑚 ∈ 𝐴, ((𝑘 ∈ 𝐴 ↦ 𝐶)‘𝑚), 1) = 1) |
72 | 71 | adantl 275 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑚 ∈ 𝐵 ∧ ¬ 𝑚 ∈ 𝐴)) → if(𝑚 ∈ 𝐴, ((𝑘 ∈ 𝐴 ↦ 𝐶)‘𝑚), 1) = 1) |
73 | | eldif 3130 |
. . . . . . . . . . . . . 14
⊢ (𝑚 ∈ (𝐵 ∖ 𝐴) ↔ (𝑚 ∈ 𝐵 ∧ ¬ 𝑚 ∈ 𝐴)) |
74 | 22 | ralrimiva 2543 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ∀𝑘 ∈ (𝐵 ∖ 𝐴)𝐶 = 1) |
75 | 36 | nfeq1 2322 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑘⦋𝑚 / 𝑘⦌𝐶 = 1 |
76 | 38 | eqeq1d 2179 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 = 𝑚 → (𝐶 = 1 ↔ ⦋𝑚 / 𝑘⦌𝐶 = 1)) |
77 | 75, 76 | rspc 2828 |
. . . . . . . . . . . . . . 15
⊢ (𝑚 ∈ (𝐵 ∖ 𝐴) → (∀𝑘 ∈ (𝐵 ∖ 𝐴)𝐶 = 1 → ⦋𝑚 / 𝑘⦌𝐶 = 1)) |
78 | 74, 77 | mpan9 279 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑚 ∈ (𝐵 ∖ 𝐴)) → ⦋𝑚 / 𝑘⦌𝐶 = 1) |
79 | 73, 78 | sylan2br 286 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑚 ∈ 𝐵 ∧ ¬ 𝑚 ∈ 𝐴)) → ⦋𝑚 / 𝑘⦌𝐶 = 1) |
80 | 72, 79 | eqtr4d 2206 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑚 ∈ 𝐵 ∧ ¬ 𝑚 ∈ 𝐴)) → if(𝑚 ∈ 𝐴, ((𝑘 ∈ 𝐴 ↦ 𝐶)‘𝑚), 1) = ⦋𝑚 / 𝑘⦌𝐶) |
81 | 80 | expr 373 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑚 ∈ 𝐵) → (¬ 𝑚 ∈ 𝐴 → if(𝑚 ∈ 𝐴, ((𝑘 ∈ 𝐴 ↦ 𝐶)‘𝑚), 1) = ⦋𝑚 / 𝑘⦌𝐶)) |
82 | | eleq1w 2231 |
. . . . . . . . . . . . . 14
⊢ (𝑗 = 𝑚 → (𝑗 ∈ 𝐴 ↔ 𝑚 ∈ 𝐴)) |
83 | 82 | dcbid 833 |
. . . . . . . . . . . . 13
⊢ (𝑗 = 𝑚 → (DECID 𝑗 ∈ 𝐴 ↔ DECID 𝑚 ∈ 𝐴)) |
84 | 7 | adantr 274 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑚 ∈ 𝐵) → ∀𝑗 ∈ (ℤ≥‘𝑀)DECID 𝑗 ∈ 𝐴) |
85 | 5 | sselda 3147 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑚 ∈ 𝐵) → 𝑚 ∈ (ℤ≥‘𝑀)) |
86 | 83, 84, 85 | rspcdva 2839 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑚 ∈ 𝐵) → DECID 𝑚 ∈ 𝐴) |
87 | | exmiddc 831 |
. . . . . . . . . . . 12
⊢
(DECID 𝑚 ∈ 𝐴 → (𝑚 ∈ 𝐴 ∨ ¬ 𝑚 ∈ 𝐴)) |
88 | 86, 87 | syl 14 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑚 ∈ 𝐵) → (𝑚 ∈ 𝐴 ∨ ¬ 𝑚 ∈ 𝐴)) |
89 | 69, 81, 88 | mpjaod 713 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑚 ∈ 𝐵) → if(𝑚 ∈ 𝐴, ((𝑘 ∈ 𝐴 ↦ 𝐶)‘𝑚), 1) = ⦋𝑚 / 𝑘⦌𝐶) |
90 | 89, 17 | eqtr4d 2206 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑚 ∈ 𝐵) → if(𝑚 ∈ 𝐴, ((𝑘 ∈ 𝐴 ↦ 𝐶)‘𝑚), 1) = if(𝑚 ∈ 𝐵, ⦋𝑚 / 𝑘⦌𝐶, 1)) |
91 | 90 | ex 114 |
. . . . . . . 8
⊢ (𝜑 → (𝑚 ∈ 𝐵 → if(𝑚 ∈ 𝐴, ((𝑘 ∈ 𝐴 ↦ 𝐶)‘𝑚), 1) = if(𝑚 ∈ 𝐵, ⦋𝑚 / 𝑘⦌𝐶, 1))) |
92 | 4 | ssneld 3149 |
. . . . . . . . . . . 12
⊢ (𝜑 → (¬ 𝑚 ∈ 𝐵 → ¬ 𝑚 ∈ 𝐴)) |
93 | 92 | imp 123 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ¬ 𝑚 ∈ 𝐵) → ¬ 𝑚 ∈ 𝐴) |
94 | 93, 70 | syl 14 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ¬ 𝑚 ∈ 𝐵) → if(𝑚 ∈ 𝐴, ((𝑘 ∈ 𝐴 ↦ 𝐶)‘𝑚), 1) = 1) |
95 | 44 | adantl 275 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ¬ 𝑚 ∈ 𝐵) → if(𝑚 ∈ 𝐵, ⦋𝑚 / 𝑘⦌𝐶, 1) = 1) |
96 | 94, 95 | eqtr4d 2206 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ¬ 𝑚 ∈ 𝐵) → if(𝑚 ∈ 𝐴, ((𝑘 ∈ 𝐴 ↦ 𝐶)‘𝑚), 1) = if(𝑚 ∈ 𝐵, ⦋𝑚 / 𝑘⦌𝐶, 1)) |
97 | 96 | ex 114 |
. . . . . . . 8
⊢ (𝜑 → (¬ 𝑚 ∈ 𝐵 → if(𝑚 ∈ 𝐴, ((𝑘 ∈ 𝐴 ↦ 𝐶)‘𝑚), 1) = if(𝑚 ∈ 𝐵, ⦋𝑚 / 𝑘⦌𝐶, 1))) |
98 | 91, 97 | jaod 712 |
. . . . . . 7
⊢ (𝜑 → ((𝑚 ∈ 𝐵 ∨ ¬ 𝑚 ∈ 𝐵) → if(𝑚 ∈ 𝐴, ((𝑘 ∈ 𝐴 ↦ 𝐶)‘𝑚), 1) = if(𝑚 ∈ 𝐵, ⦋𝑚 / 𝑘⦌𝐶, 1))) |
99 | 98 | adantr 274 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘𝑀)) → ((𝑚 ∈ 𝐵 ∨ ¬ 𝑚 ∈ 𝐵) → if(𝑚 ∈ 𝐴, ((𝑘 ∈ 𝐴 ↦ 𝐶)‘𝑚), 1) = if(𝑚 ∈ 𝐵, ⦋𝑚 / 𝑘⦌𝐶, 1))) |
100 | 15, 99 | mpd 13 |
. . . . 5
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘𝑀)) → if(𝑚 ∈ 𝐴, ((𝑘 ∈ 𝐴 ↦ 𝐶)‘𝑚), 1) = if(𝑚 ∈ 𝐵, ⦋𝑚 / 𝑘⦌𝐶, 1)) |
101 | 58, 100 | eqtr4d 2206 |
. . . 4
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘𝑀)) → ((𝑘 ∈ (ℤ≥‘𝑀) ↦ if(𝑘 ∈ 𝐵, 𝐶, 1))‘𝑚) = if(𝑚 ∈ 𝐴, ((𝑘 ∈ 𝐴 ↦ 𝐶)‘𝑚), 1)) |
102 | 18 | fmpttd 5651 |
. . . . 5
⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝐶):𝐴⟶ℂ) |
103 | 102 | ffvelrnda 5631 |
. . . 4
⊢ ((𝜑 ∧ 𝑚 ∈ 𝐴) → ((𝑘 ∈ 𝐴 ↦ 𝐶)‘𝑚) ∈ ℂ) |
104 | 1, 2, 3, 6, 7, 101, 103 | zproddc 11542 |
. . 3
⊢ (𝜑 → ∏𝑚 ∈ 𝐴 ((𝑘 ∈ 𝐴 ↦ 𝐶)‘𝑚) = ( ⇝ ‘seq𝑀( · , (𝑘 ∈ (ℤ≥‘𝑀) ↦ if(𝑘 ∈ 𝐵, 𝐶, 1))))) |
105 | | simpr 109 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑚 ∈ 𝐵) → 𝑚 ∈ 𝐵) |
106 | | eqid 2170 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ 𝐵 ↦ 𝐶) = (𝑘 ∈ 𝐵 ↦ 𝐶) |
107 | 106 | fvmpts 5574 |
. . . . . . . . . . 11
⊢ ((𝑚 ∈ 𝐵 ∧ ⦋𝑚 / 𝑘⦌𝐶 ∈ ℂ) → ((𝑘 ∈ 𝐵 ↦ 𝐶)‘𝑚) = ⦋𝑚 / 𝑘⦌𝐶) |
108 | 105, 41, 107 | syl2anc 409 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑚 ∈ 𝐵) → ((𝑘 ∈ 𝐵 ↦ 𝐶)‘𝑚) = ⦋𝑚 / 𝑘⦌𝐶) |
109 | 108 | ifeq1d 3543 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑚 ∈ 𝐵) → if(𝑚 ∈ 𝐵, ((𝑘 ∈ 𝐵 ↦ 𝐶)‘𝑚), 1) = if(𝑚 ∈ 𝐵, ⦋𝑚 / 𝑘⦌𝐶, 1)) |
110 | 109 | ex 114 |
. . . . . . . 8
⊢ (𝜑 → (𝑚 ∈ 𝐵 → if(𝑚 ∈ 𝐵, ((𝑘 ∈ 𝐵 ↦ 𝐶)‘𝑚), 1) = if(𝑚 ∈ 𝐵, ⦋𝑚 / 𝑘⦌𝐶, 1))) |
111 | | iffalse 3534 |
. . . . . . . . . 10
⊢ (¬
𝑚 ∈ 𝐵 → if(𝑚 ∈ 𝐵, ((𝑘 ∈ 𝐵 ↦ 𝐶)‘𝑚), 1) = 1) |
112 | 111, 44 | eqtr4d 2206 |
. . . . . . . . 9
⊢ (¬
𝑚 ∈ 𝐵 → if(𝑚 ∈ 𝐵, ((𝑘 ∈ 𝐵 ↦ 𝐶)‘𝑚), 1) = if(𝑚 ∈ 𝐵, ⦋𝑚 / 𝑘⦌𝐶, 1)) |
113 | 112 | a1i 9 |
. . . . . . . 8
⊢ (𝜑 → (¬ 𝑚 ∈ 𝐵 → if(𝑚 ∈ 𝐵, ((𝑘 ∈ 𝐵 ↦ 𝐶)‘𝑚), 1) = if(𝑚 ∈ 𝐵, ⦋𝑚 / 𝑘⦌𝐶, 1))) |
114 | 110, 113 | jaod 712 |
. . . . . . 7
⊢ (𝜑 → ((𝑚 ∈ 𝐵 ∨ ¬ 𝑚 ∈ 𝐵) → if(𝑚 ∈ 𝐵, ((𝑘 ∈ 𝐵 ↦ 𝐶)‘𝑚), 1) = if(𝑚 ∈ 𝐵, ⦋𝑚 / 𝑘⦌𝐶, 1))) |
115 | 114 | adantr 274 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘𝑀)) → ((𝑚 ∈ 𝐵 ∨ ¬ 𝑚 ∈ 𝐵) → if(𝑚 ∈ 𝐵, ((𝑘 ∈ 𝐵 ↦ 𝐶)‘𝑚), 1) = if(𝑚 ∈ 𝐵, ⦋𝑚 / 𝑘⦌𝐶, 1))) |
116 | 15, 115 | mpd 13 |
. . . . 5
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘𝑀)) → if(𝑚 ∈ 𝐵, ((𝑘 ∈ 𝐵 ↦ 𝐶)‘𝑚), 1) = if(𝑚 ∈ 𝐵, ⦋𝑚 / 𝑘⦌𝐶, 1)) |
117 | 58, 116 | eqtr4d 2206 |
. . . 4
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘𝑀)) → ((𝑘 ∈ (ℤ≥‘𝑀) ↦ if(𝑘 ∈ 𝐵, 𝐶, 1))‘𝑚) = if(𝑚 ∈ 𝐵, ((𝑘 ∈ 𝐵 ↦ 𝐶)‘𝑚), 1)) |
118 | 34 | fmpttd 5651 |
. . . . 5
⊢ (𝜑 → (𝑘 ∈ 𝐵 ↦ 𝐶):𝐵⟶ℂ) |
119 | 118 | ffvelrnda 5631 |
. . . 4
⊢ ((𝜑 ∧ 𝑚 ∈ 𝐵) → ((𝑘 ∈ 𝐵 ↦ 𝐶)‘𝑚) ∈ ℂ) |
120 | 1, 2, 3, 5, 11, 117, 119 | zproddc 11542 |
. . 3
⊢ (𝜑 → ∏𝑚 ∈ 𝐵 ((𝑘 ∈ 𝐵 ↦ 𝐶)‘𝑚) = ( ⇝ ‘seq𝑀( · , (𝑘 ∈ (ℤ≥‘𝑀) ↦ if(𝑘 ∈ 𝐵, 𝐶, 1))))) |
121 | 104, 120 | eqtr4d 2206 |
. 2
⊢ (𝜑 → ∏𝑚 ∈ 𝐴 ((𝑘 ∈ 𝐴 ↦ 𝐶)‘𝑚) = ∏𝑚 ∈ 𝐵 ((𝑘 ∈ 𝐵 ↦ 𝐶)‘𝑚)) |
122 | 18 | ralrimiva 2543 |
. . 3
⊢ (𝜑 → ∀𝑘 ∈ 𝐴 𝐶 ∈ ℂ) |
123 | | prodfct 11550 |
. . 3
⊢
(∀𝑘 ∈
𝐴 𝐶 ∈ ℂ → ∏𝑚 ∈ 𝐴 ((𝑘 ∈ 𝐴 ↦ 𝐶)‘𝑚) = ∏𝑘 ∈ 𝐴 𝐶) |
124 | 122, 123 | syl 14 |
. 2
⊢ (𝜑 → ∏𝑚 ∈ 𝐴 ((𝑘 ∈ 𝐴 ↦ 𝐶)‘𝑚) = ∏𝑘 ∈ 𝐴 𝐶) |
125 | | prodfct 11550 |
. . 3
⊢
(∀𝑘 ∈
𝐵 𝐶 ∈ ℂ → ∏𝑚 ∈ 𝐵 ((𝑘 ∈ 𝐵 ↦ 𝐶)‘𝑚) = ∏𝑘 ∈ 𝐵 𝐶) |
126 | 35, 125 | syl 14 |
. 2
⊢ (𝜑 → ∏𝑚 ∈ 𝐵 ((𝑘 ∈ 𝐵 ↦ 𝐶)‘𝑚) = ∏𝑘 ∈ 𝐵 𝐶) |
127 | 121, 124,
126 | 3eqtr3d 2211 |
1
⊢ (𝜑 → ∏𝑘 ∈ 𝐴 𝐶 = ∏𝑘 ∈ 𝐵 𝐶) |