ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prodssdc GIF version

Theorem prodssdc 11732
Description: Change the index set to a subset in an upper integer product. (Contributed by Scott Fenton, 11-Dec-2017.) (Revised by Jim Kingdon, 6-Aug-2024.)
Hypotheses
Ref Expression
prodss.1 (𝜑𝐴𝐵)
prodss.2 ((𝜑𝑘𝐴) → 𝐶 ∈ ℂ)
prodssdc.3 (𝜑 → ∃𝑛 ∈ (ℤ𝑀)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , (𝑘 ∈ (ℤ𝑀) ↦ if(𝑘𝐵, 𝐶, 1))) ⇝ 𝑦))
prodssdc.a (𝜑 → ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐴)
prodssdc.m (𝜑𝑀 ∈ ℤ)
prodss.4 ((𝜑𝑘 ∈ (𝐵𝐴)) → 𝐶 = 1)
prodss.5 (𝜑𝐵 ⊆ (ℤ𝑀))
prodssdc.b (𝜑 → ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐵)
Assertion
Ref Expression
prodssdc (𝜑 → ∏𝑘𝐴 𝐶 = ∏𝑘𝐵 𝐶)
Distinct variable groups:   𝐴,𝑗,𝑘,𝑛,𝑦   𝐵,𝑗,𝑘,𝑛,𝑦   𝐶,𝑗,𝑛,𝑦   𝑗,𝑀,𝑘,𝑛,𝑦   𝜑,𝑗,𝑘,𝑛,𝑦
Allowed substitution hint:   𝐶(𝑘)

Proof of Theorem prodssdc
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 eqid 2193 . . . 4 (ℤ𝑀) = (ℤ𝑀)
2 prodssdc.m . . . 4 (𝜑𝑀 ∈ ℤ)
3 prodssdc.3 . . . 4 (𝜑 → ∃𝑛 ∈ (ℤ𝑀)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , (𝑘 ∈ (ℤ𝑀) ↦ if(𝑘𝐵, 𝐶, 1))) ⇝ 𝑦))
4 prodss.1 . . . . 5 (𝜑𝐴𝐵)
5 prodss.5 . . . . 5 (𝜑𝐵 ⊆ (ℤ𝑀))
64, 5sstrd 3189 . . . 4 (𝜑𝐴 ⊆ (ℤ𝑀))
7 prodssdc.a . . . 4 (𝜑 → ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐴)
8 simpr 110 . . . . . 6 ((𝜑𝑚 ∈ (ℤ𝑀)) → 𝑚 ∈ (ℤ𝑀))
9 eleq1w 2254 . . . . . . . . . 10 (𝑗 = 𝑚 → (𝑗𝐵𝑚𝐵))
109dcbid 839 . . . . . . . . 9 (𝑗 = 𝑚 → (DECID 𝑗𝐵DECID 𝑚𝐵))
11 prodssdc.b . . . . . . . . . 10 (𝜑 → ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐵)
1211adantr 276 . . . . . . . . 9 ((𝜑𝑚 ∈ (ℤ𝑀)) → ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐵)
1310, 12, 8rspcdva 2869 . . . . . . . 8 ((𝜑𝑚 ∈ (ℤ𝑀)) → DECID 𝑚𝐵)
14 exmiddc 837 . . . . . . . 8 (DECID 𝑚𝐵 → (𝑚𝐵 ∨ ¬ 𝑚𝐵))
1513, 14syl 14 . . . . . . 7 ((𝜑𝑚 ∈ (ℤ𝑀)) → (𝑚𝐵 ∨ ¬ 𝑚𝐵))
16 iftrue 3562 . . . . . . . . . . . 12 (𝑚𝐵 → if(𝑚𝐵, 𝑚 / 𝑘𝐶, 1) = 𝑚 / 𝑘𝐶)
1716adantl 277 . . . . . . . . . . 11 ((𝜑𝑚𝐵) → if(𝑚𝐵, 𝑚 / 𝑘𝐶, 1) = 𝑚 / 𝑘𝐶)
18 prodss.2 . . . . . . . . . . . . . . . 16 ((𝜑𝑘𝐴) → 𝐶 ∈ ℂ)
1918ex 115 . . . . . . . . . . . . . . 15 (𝜑 → (𝑘𝐴𝐶 ∈ ℂ))
2019adantr 276 . . . . . . . . . . . . . 14 ((𝜑𝑘𝐵) → (𝑘𝐴𝐶 ∈ ℂ))
21 eldif 3162 . . . . . . . . . . . . . . . 16 (𝑘 ∈ (𝐵𝐴) ↔ (𝑘𝐵 ∧ ¬ 𝑘𝐴))
22 prodss.4 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘 ∈ (𝐵𝐴)) → 𝐶 = 1)
23 ax-1cn 7965 . . . . . . . . . . . . . . . . 17 1 ∈ ℂ
2422, 23eqeltrdi 2284 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ (𝐵𝐴)) → 𝐶 ∈ ℂ)
2521, 24sylan2br 288 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑘𝐵 ∧ ¬ 𝑘𝐴)) → 𝐶 ∈ ℂ)
2625expr 375 . . . . . . . . . . . . . 14 ((𝜑𝑘𝐵) → (¬ 𝑘𝐴𝐶 ∈ ℂ))
27 eleq1w 2254 . . . . . . . . . . . . . . . . 17 (𝑗 = 𝑘 → (𝑗𝐴𝑘𝐴))
2827dcbid 839 . . . . . . . . . . . . . . . 16 (𝑗 = 𝑘 → (DECID 𝑗𝐴DECID 𝑘𝐴))
297adantr 276 . . . . . . . . . . . . . . . 16 ((𝜑𝑘𝐵) → ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐴)
305sselda 3179 . . . . . . . . . . . . . . . 16 ((𝜑𝑘𝐵) → 𝑘 ∈ (ℤ𝑀))
3128, 29, 30rspcdva 2869 . . . . . . . . . . . . . . 15 ((𝜑𝑘𝐵) → DECID 𝑘𝐴)
32 exmiddc 837 . . . . . . . . . . . . . . 15 (DECID 𝑘𝐴 → (𝑘𝐴 ∨ ¬ 𝑘𝐴))
3331, 32syl 14 . . . . . . . . . . . . . 14 ((𝜑𝑘𝐵) → (𝑘𝐴 ∨ ¬ 𝑘𝐴))
3420, 26, 33mpjaod 719 . . . . . . . . . . . . 13 ((𝜑𝑘𝐵) → 𝐶 ∈ ℂ)
3534ralrimiva 2567 . . . . . . . . . . . 12 (𝜑 → ∀𝑘𝐵 𝐶 ∈ ℂ)
36 nfcsb1v 3113 . . . . . . . . . . . . . 14 𝑘𝑚 / 𝑘𝐶
3736nfel1 2347 . . . . . . . . . . . . 13 𝑘𝑚 / 𝑘𝐶 ∈ ℂ
38 csbeq1a 3089 . . . . . . . . . . . . . 14 (𝑘 = 𝑚𝐶 = 𝑚 / 𝑘𝐶)
3938eleq1d 2262 . . . . . . . . . . . . 13 (𝑘 = 𝑚 → (𝐶 ∈ ℂ ↔ 𝑚 / 𝑘𝐶 ∈ ℂ))
4037, 39rspc 2858 . . . . . . . . . . . 12 (𝑚𝐵 → (∀𝑘𝐵 𝐶 ∈ ℂ → 𝑚 / 𝑘𝐶 ∈ ℂ))
4135, 40mpan9 281 . . . . . . . . . . 11 ((𝜑𝑚𝐵) → 𝑚 / 𝑘𝐶 ∈ ℂ)
4217, 41eqeltrd 2270 . . . . . . . . . 10 ((𝜑𝑚𝐵) → if(𝑚𝐵, 𝑚 / 𝑘𝐶, 1) ∈ ℂ)
4342ex 115 . . . . . . . . 9 (𝜑 → (𝑚𝐵 → if(𝑚𝐵, 𝑚 / 𝑘𝐶, 1) ∈ ℂ))
44 iffalse 3565 . . . . . . . . . . 11 𝑚𝐵 → if(𝑚𝐵, 𝑚 / 𝑘𝐶, 1) = 1)
4544, 23eqeltrdi 2284 . . . . . . . . . 10 𝑚𝐵 → if(𝑚𝐵, 𝑚 / 𝑘𝐶, 1) ∈ ℂ)
4645a1i 9 . . . . . . . . 9 (𝜑 → (¬ 𝑚𝐵 → if(𝑚𝐵, 𝑚 / 𝑘𝐶, 1) ∈ ℂ))
4743, 46jaod 718 . . . . . . . 8 (𝜑 → ((𝑚𝐵 ∨ ¬ 𝑚𝐵) → if(𝑚𝐵, 𝑚 / 𝑘𝐶, 1) ∈ ℂ))
4847adantr 276 . . . . . . 7 ((𝜑𝑚 ∈ (ℤ𝑀)) → ((𝑚𝐵 ∨ ¬ 𝑚𝐵) → if(𝑚𝐵, 𝑚 / 𝑘𝐶, 1) ∈ ℂ))
4915, 48mpd 13 . . . . . 6 ((𝜑𝑚 ∈ (ℤ𝑀)) → if(𝑚𝐵, 𝑚 / 𝑘𝐶, 1) ∈ ℂ)
50 nfcv 2336 . . . . . . 7 𝑘𝑚
51 nfv 1539 . . . . . . . 8 𝑘 𝑚𝐵
52 nfcv 2336 . . . . . . . 8 𝑘1
5351, 36, 52nfif 3585 . . . . . . 7 𝑘if(𝑚𝐵, 𝑚 / 𝑘𝐶, 1)
54 eleq1w 2254 . . . . . . . 8 (𝑘 = 𝑚 → (𝑘𝐵𝑚𝐵))
5554, 38ifbieq1d 3579 . . . . . . 7 (𝑘 = 𝑚 → if(𝑘𝐵, 𝐶, 1) = if(𝑚𝐵, 𝑚 / 𝑘𝐶, 1))
56 eqid 2193 . . . . . . 7 (𝑘 ∈ (ℤ𝑀) ↦ if(𝑘𝐵, 𝐶, 1)) = (𝑘 ∈ (ℤ𝑀) ↦ if(𝑘𝐵, 𝐶, 1))
5750, 53, 55, 56fvmptf 5650 . . . . . 6 ((𝑚 ∈ (ℤ𝑀) ∧ if(𝑚𝐵, 𝑚 / 𝑘𝐶, 1) ∈ ℂ) → ((𝑘 ∈ (ℤ𝑀) ↦ if(𝑘𝐵, 𝐶, 1))‘𝑚) = if(𝑚𝐵, 𝑚 / 𝑘𝐶, 1))
588, 49, 57syl2anc 411 . . . . 5 ((𝜑𝑚 ∈ (ℤ𝑀)) → ((𝑘 ∈ (ℤ𝑀) ↦ if(𝑘𝐵, 𝐶, 1))‘𝑚) = if(𝑚𝐵, 𝑚 / 𝑘𝐶, 1))
59 iftrue 3562 . . . . . . . . . . . . . . 15 (𝑚𝐴 → if(𝑚𝐴, ((𝑘𝐴𝐶)‘𝑚), 1) = ((𝑘𝐴𝐶)‘𝑚))
6059adantl 277 . . . . . . . . . . . . . 14 ((𝜑𝑚𝐴) → if(𝑚𝐴, ((𝑘𝐴𝐶)‘𝑚), 1) = ((𝑘𝐴𝐶)‘𝑚))
61 simpr 110 . . . . . . . . . . . . . . 15 ((𝜑𝑚𝐴) → 𝑚𝐴)
624sselda 3179 . . . . . . . . . . . . . . . 16 ((𝜑𝑚𝐴) → 𝑚𝐵)
6362, 41syldan 282 . . . . . . . . . . . . . . 15 ((𝜑𝑚𝐴) → 𝑚 / 𝑘𝐶 ∈ ℂ)
64 eqid 2193 . . . . . . . . . . . . . . . 16 (𝑘𝐴𝐶) = (𝑘𝐴𝐶)
6564fvmpts 5635 . . . . . . . . . . . . . . 15 ((𝑚𝐴𝑚 / 𝑘𝐶 ∈ ℂ) → ((𝑘𝐴𝐶)‘𝑚) = 𝑚 / 𝑘𝐶)
6661, 63, 65syl2anc 411 . . . . . . . . . . . . . 14 ((𝜑𝑚𝐴) → ((𝑘𝐴𝐶)‘𝑚) = 𝑚 / 𝑘𝐶)
6760, 66eqtrd 2226 . . . . . . . . . . . . 13 ((𝜑𝑚𝐴) → if(𝑚𝐴, ((𝑘𝐴𝐶)‘𝑚), 1) = 𝑚 / 𝑘𝐶)
6867ex 115 . . . . . . . . . . . 12 (𝜑 → (𝑚𝐴 → if(𝑚𝐴, ((𝑘𝐴𝐶)‘𝑚), 1) = 𝑚 / 𝑘𝐶))
6968adantr 276 . . . . . . . . . . 11 ((𝜑𝑚𝐵) → (𝑚𝐴 → if(𝑚𝐴, ((𝑘𝐴𝐶)‘𝑚), 1) = 𝑚 / 𝑘𝐶))
70 iffalse 3565 . . . . . . . . . . . . . . 15 𝑚𝐴 → if(𝑚𝐴, ((𝑘𝐴𝐶)‘𝑚), 1) = 1)
7170adantl 277 . . . . . . . . . . . . . 14 ((𝑚𝐵 ∧ ¬ 𝑚𝐴) → if(𝑚𝐴, ((𝑘𝐴𝐶)‘𝑚), 1) = 1)
7271adantl 277 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑚𝐵 ∧ ¬ 𝑚𝐴)) → if(𝑚𝐴, ((𝑘𝐴𝐶)‘𝑚), 1) = 1)
73 eldif 3162 . . . . . . . . . . . . . 14 (𝑚 ∈ (𝐵𝐴) ↔ (𝑚𝐵 ∧ ¬ 𝑚𝐴))
7422ralrimiva 2567 . . . . . . . . . . . . . . 15 (𝜑 → ∀𝑘 ∈ (𝐵𝐴)𝐶 = 1)
7536nfeq1 2346 . . . . . . . . . . . . . . . 16 𝑘𝑚 / 𝑘𝐶 = 1
7638eqeq1d 2202 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑚 → (𝐶 = 1 ↔ 𝑚 / 𝑘𝐶 = 1))
7775, 76rspc 2858 . . . . . . . . . . . . . . 15 (𝑚 ∈ (𝐵𝐴) → (∀𝑘 ∈ (𝐵𝐴)𝐶 = 1 → 𝑚 / 𝑘𝐶 = 1))
7874, 77mpan9 281 . . . . . . . . . . . . . 14 ((𝜑𝑚 ∈ (𝐵𝐴)) → 𝑚 / 𝑘𝐶 = 1)
7973, 78sylan2br 288 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑚𝐵 ∧ ¬ 𝑚𝐴)) → 𝑚 / 𝑘𝐶 = 1)
8072, 79eqtr4d 2229 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑚𝐵 ∧ ¬ 𝑚𝐴)) → if(𝑚𝐴, ((𝑘𝐴𝐶)‘𝑚), 1) = 𝑚 / 𝑘𝐶)
8180expr 375 . . . . . . . . . . 11 ((𝜑𝑚𝐵) → (¬ 𝑚𝐴 → if(𝑚𝐴, ((𝑘𝐴𝐶)‘𝑚), 1) = 𝑚 / 𝑘𝐶))
82 eleq1w 2254 . . . . . . . . . . . . . 14 (𝑗 = 𝑚 → (𝑗𝐴𝑚𝐴))
8382dcbid 839 . . . . . . . . . . . . 13 (𝑗 = 𝑚 → (DECID 𝑗𝐴DECID 𝑚𝐴))
847adantr 276 . . . . . . . . . . . . 13 ((𝜑𝑚𝐵) → ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐴)
855sselda 3179 . . . . . . . . . . . . 13 ((𝜑𝑚𝐵) → 𝑚 ∈ (ℤ𝑀))
8683, 84, 85rspcdva 2869 . . . . . . . . . . . 12 ((𝜑𝑚𝐵) → DECID 𝑚𝐴)
87 exmiddc 837 . . . . . . . . . . . 12 (DECID 𝑚𝐴 → (𝑚𝐴 ∨ ¬ 𝑚𝐴))
8886, 87syl 14 . . . . . . . . . . 11 ((𝜑𝑚𝐵) → (𝑚𝐴 ∨ ¬ 𝑚𝐴))
8969, 81, 88mpjaod 719 . . . . . . . . . 10 ((𝜑𝑚𝐵) → if(𝑚𝐴, ((𝑘𝐴𝐶)‘𝑚), 1) = 𝑚 / 𝑘𝐶)
9089, 17eqtr4d 2229 . . . . . . . . 9 ((𝜑𝑚𝐵) → if(𝑚𝐴, ((𝑘𝐴𝐶)‘𝑚), 1) = if(𝑚𝐵, 𝑚 / 𝑘𝐶, 1))
9190ex 115 . . . . . . . 8 (𝜑 → (𝑚𝐵 → if(𝑚𝐴, ((𝑘𝐴𝐶)‘𝑚), 1) = if(𝑚𝐵, 𝑚 / 𝑘𝐶, 1)))
924ssneld 3181 . . . . . . . . . . . 12 (𝜑 → (¬ 𝑚𝐵 → ¬ 𝑚𝐴))
9392imp 124 . . . . . . . . . . 11 ((𝜑 ∧ ¬ 𝑚𝐵) → ¬ 𝑚𝐴)
9493, 70syl 14 . . . . . . . . . 10 ((𝜑 ∧ ¬ 𝑚𝐵) → if(𝑚𝐴, ((𝑘𝐴𝐶)‘𝑚), 1) = 1)
9544adantl 277 . . . . . . . . . 10 ((𝜑 ∧ ¬ 𝑚𝐵) → if(𝑚𝐵, 𝑚 / 𝑘𝐶, 1) = 1)
9694, 95eqtr4d 2229 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝑚𝐵) → if(𝑚𝐴, ((𝑘𝐴𝐶)‘𝑚), 1) = if(𝑚𝐵, 𝑚 / 𝑘𝐶, 1))
9796ex 115 . . . . . . . 8 (𝜑 → (¬ 𝑚𝐵 → if(𝑚𝐴, ((𝑘𝐴𝐶)‘𝑚), 1) = if(𝑚𝐵, 𝑚 / 𝑘𝐶, 1)))
9891, 97jaod 718 . . . . . . 7 (𝜑 → ((𝑚𝐵 ∨ ¬ 𝑚𝐵) → if(𝑚𝐴, ((𝑘𝐴𝐶)‘𝑚), 1) = if(𝑚𝐵, 𝑚 / 𝑘𝐶, 1)))
9998adantr 276 . . . . . 6 ((𝜑𝑚 ∈ (ℤ𝑀)) → ((𝑚𝐵 ∨ ¬ 𝑚𝐵) → if(𝑚𝐴, ((𝑘𝐴𝐶)‘𝑚), 1) = if(𝑚𝐵, 𝑚 / 𝑘𝐶, 1)))
10015, 99mpd 13 . . . . 5 ((𝜑𝑚 ∈ (ℤ𝑀)) → if(𝑚𝐴, ((𝑘𝐴𝐶)‘𝑚), 1) = if(𝑚𝐵, 𝑚 / 𝑘𝐶, 1))
10158, 100eqtr4d 2229 . . . 4 ((𝜑𝑚 ∈ (ℤ𝑀)) → ((𝑘 ∈ (ℤ𝑀) ↦ if(𝑘𝐵, 𝐶, 1))‘𝑚) = if(𝑚𝐴, ((𝑘𝐴𝐶)‘𝑚), 1))
10218fmpttd 5713 . . . . 5 (𝜑 → (𝑘𝐴𝐶):𝐴⟶ℂ)
103102ffvelcdmda 5693 . . . 4 ((𝜑𝑚𝐴) → ((𝑘𝐴𝐶)‘𝑚) ∈ ℂ)
1041, 2, 3, 6, 7, 101, 103zproddc 11722 . . 3 (𝜑 → ∏𝑚𝐴 ((𝑘𝐴𝐶)‘𝑚) = ( ⇝ ‘seq𝑀( · , (𝑘 ∈ (ℤ𝑀) ↦ if(𝑘𝐵, 𝐶, 1)))))
105 simpr 110 . . . . . . . . . . 11 ((𝜑𝑚𝐵) → 𝑚𝐵)
106 eqid 2193 . . . . . . . . . . . 12 (𝑘𝐵𝐶) = (𝑘𝐵𝐶)
107106fvmpts 5635 . . . . . . . . . . 11 ((𝑚𝐵𝑚 / 𝑘𝐶 ∈ ℂ) → ((𝑘𝐵𝐶)‘𝑚) = 𝑚 / 𝑘𝐶)
108105, 41, 107syl2anc 411 . . . . . . . . . 10 ((𝜑𝑚𝐵) → ((𝑘𝐵𝐶)‘𝑚) = 𝑚 / 𝑘𝐶)
109108ifeq1d 3574 . . . . . . . . 9 ((𝜑𝑚𝐵) → if(𝑚𝐵, ((𝑘𝐵𝐶)‘𝑚), 1) = if(𝑚𝐵, 𝑚 / 𝑘𝐶, 1))
110109ex 115 . . . . . . . 8 (𝜑 → (𝑚𝐵 → if(𝑚𝐵, ((𝑘𝐵𝐶)‘𝑚), 1) = if(𝑚𝐵, 𝑚 / 𝑘𝐶, 1)))
111 iffalse 3565 . . . . . . . . . 10 𝑚𝐵 → if(𝑚𝐵, ((𝑘𝐵𝐶)‘𝑚), 1) = 1)
112111, 44eqtr4d 2229 . . . . . . . . 9 𝑚𝐵 → if(𝑚𝐵, ((𝑘𝐵𝐶)‘𝑚), 1) = if(𝑚𝐵, 𝑚 / 𝑘𝐶, 1))
113112a1i 9 . . . . . . . 8 (𝜑 → (¬ 𝑚𝐵 → if(𝑚𝐵, ((𝑘𝐵𝐶)‘𝑚), 1) = if(𝑚𝐵, 𝑚 / 𝑘𝐶, 1)))
114110, 113jaod 718 . . . . . . 7 (𝜑 → ((𝑚𝐵 ∨ ¬ 𝑚𝐵) → if(𝑚𝐵, ((𝑘𝐵𝐶)‘𝑚), 1) = if(𝑚𝐵, 𝑚 / 𝑘𝐶, 1)))
115114adantr 276 . . . . . 6 ((𝜑𝑚 ∈ (ℤ𝑀)) → ((𝑚𝐵 ∨ ¬ 𝑚𝐵) → if(𝑚𝐵, ((𝑘𝐵𝐶)‘𝑚), 1) = if(𝑚𝐵, 𝑚 / 𝑘𝐶, 1)))
11615, 115mpd 13 . . . . 5 ((𝜑𝑚 ∈ (ℤ𝑀)) → if(𝑚𝐵, ((𝑘𝐵𝐶)‘𝑚), 1) = if(𝑚𝐵, 𝑚 / 𝑘𝐶, 1))
11758, 116eqtr4d 2229 . . . 4 ((𝜑𝑚 ∈ (ℤ𝑀)) → ((𝑘 ∈ (ℤ𝑀) ↦ if(𝑘𝐵, 𝐶, 1))‘𝑚) = if(𝑚𝐵, ((𝑘𝐵𝐶)‘𝑚), 1))
11834fmpttd 5713 . . . . 5 (𝜑 → (𝑘𝐵𝐶):𝐵⟶ℂ)
119118ffvelcdmda 5693 . . . 4 ((𝜑𝑚𝐵) → ((𝑘𝐵𝐶)‘𝑚) ∈ ℂ)
1201, 2, 3, 5, 11, 117, 119zproddc 11722 . . 3 (𝜑 → ∏𝑚𝐵 ((𝑘𝐵𝐶)‘𝑚) = ( ⇝ ‘seq𝑀( · , (𝑘 ∈ (ℤ𝑀) ↦ if(𝑘𝐵, 𝐶, 1)))))
121104, 120eqtr4d 2229 . 2 (𝜑 → ∏𝑚𝐴 ((𝑘𝐴𝐶)‘𝑚) = ∏𝑚𝐵 ((𝑘𝐵𝐶)‘𝑚))
12218ralrimiva 2567 . . 3 (𝜑 → ∀𝑘𝐴 𝐶 ∈ ℂ)
123 prodfct 11730 . . 3 (∀𝑘𝐴 𝐶 ∈ ℂ → ∏𝑚𝐴 ((𝑘𝐴𝐶)‘𝑚) = ∏𝑘𝐴 𝐶)
124122, 123syl 14 . 2 (𝜑 → ∏𝑚𝐴 ((𝑘𝐴𝐶)‘𝑚) = ∏𝑘𝐴 𝐶)
125 prodfct 11730 . . 3 (∀𝑘𝐵 𝐶 ∈ ℂ → ∏𝑚𝐵 ((𝑘𝐵𝐶)‘𝑚) = ∏𝑘𝐵 𝐶)
12635, 125syl 14 . 2 (𝜑 → ∏𝑚𝐵 ((𝑘𝐵𝐶)‘𝑚) = ∏𝑘𝐵 𝐶)
127121, 124, 1263eqtr3d 2234 1 (𝜑 → ∏𝑘𝐴 𝐶 = ∏𝑘𝐵 𝐶)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wo 709  DECID wdc 835   = wceq 1364  wex 1503  wcel 2164  wral 2472  wrex 2473  csb 3080  cdif 3150  wss 3153  ifcif 3557   class class class wbr 4029  cmpt 4090  cfv 5254  cc 7870  0cc0 7872  1c1 7873   · cmul 7877   # cap 8600  cz 9317  cuz 9592  seqcseq 10518  cli 11421  cprod 11693
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-mulrcl 7971  ax-addcom 7972  ax-mulcom 7973  ax-addass 7974  ax-mulass 7975  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-1rid 7979  ax-0id 7980  ax-rnegex 7981  ax-precex 7982  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988  ax-pre-mulgt0 7989  ax-pre-mulext 7990
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-po 4327  df-iso 4328  df-iord 4397  df-on 4399  df-ilim 4400  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-isom 5263  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-irdg 6423  df-frec 6444  df-1o 6469  df-oadd 6473  df-er 6587  df-en 6795  df-dom 6796  df-fin 6797  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-reap 8594  df-ap 8601  df-div 8692  df-inn 8983  df-2 9041  df-n0 9241  df-z 9318  df-uz 9593  df-q 9685  df-rp 9720  df-fz 10075  df-fzo 10209  df-seqfrec 10519  df-exp 10610  df-ihash 10847  df-cj 10986  df-rsqrt 11142  df-abs 11143  df-clim 11422  df-proddc 11694
This theorem is referenced by:  fprodssdc  11733
  Copyright terms: Public domain W3C validator