ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prodssdc GIF version

Theorem prodssdc 11754
Description: Change the index set to a subset in an upper integer product. (Contributed by Scott Fenton, 11-Dec-2017.) (Revised by Jim Kingdon, 6-Aug-2024.)
Hypotheses
Ref Expression
prodss.1 (𝜑𝐴𝐵)
prodss.2 ((𝜑𝑘𝐴) → 𝐶 ∈ ℂ)
prodssdc.3 (𝜑 → ∃𝑛 ∈ (ℤ𝑀)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , (𝑘 ∈ (ℤ𝑀) ↦ if(𝑘𝐵, 𝐶, 1))) ⇝ 𝑦))
prodssdc.a (𝜑 → ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐴)
prodssdc.m (𝜑𝑀 ∈ ℤ)
prodss.4 ((𝜑𝑘 ∈ (𝐵𝐴)) → 𝐶 = 1)
prodss.5 (𝜑𝐵 ⊆ (ℤ𝑀))
prodssdc.b (𝜑 → ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐵)
Assertion
Ref Expression
prodssdc (𝜑 → ∏𝑘𝐴 𝐶 = ∏𝑘𝐵 𝐶)
Distinct variable groups:   𝐴,𝑗,𝑘,𝑛,𝑦   𝐵,𝑗,𝑘,𝑛,𝑦   𝐶,𝑗,𝑛,𝑦   𝑗,𝑀,𝑘,𝑛,𝑦   𝜑,𝑗,𝑘,𝑛,𝑦
Allowed substitution hint:   𝐶(𝑘)

Proof of Theorem prodssdc
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 eqid 2196 . . . 4 (ℤ𝑀) = (ℤ𝑀)
2 prodssdc.m . . . 4 (𝜑𝑀 ∈ ℤ)
3 prodssdc.3 . . . 4 (𝜑 → ∃𝑛 ∈ (ℤ𝑀)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , (𝑘 ∈ (ℤ𝑀) ↦ if(𝑘𝐵, 𝐶, 1))) ⇝ 𝑦))
4 prodss.1 . . . . 5 (𝜑𝐴𝐵)
5 prodss.5 . . . . 5 (𝜑𝐵 ⊆ (ℤ𝑀))
64, 5sstrd 3193 . . . 4 (𝜑𝐴 ⊆ (ℤ𝑀))
7 prodssdc.a . . . 4 (𝜑 → ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐴)
8 simpr 110 . . . . . 6 ((𝜑𝑚 ∈ (ℤ𝑀)) → 𝑚 ∈ (ℤ𝑀))
9 eleq1w 2257 . . . . . . . . . 10 (𝑗 = 𝑚 → (𝑗𝐵𝑚𝐵))
109dcbid 839 . . . . . . . . 9 (𝑗 = 𝑚 → (DECID 𝑗𝐵DECID 𝑚𝐵))
11 prodssdc.b . . . . . . . . . 10 (𝜑 → ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐵)
1211adantr 276 . . . . . . . . 9 ((𝜑𝑚 ∈ (ℤ𝑀)) → ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐵)
1310, 12, 8rspcdva 2873 . . . . . . . 8 ((𝜑𝑚 ∈ (ℤ𝑀)) → DECID 𝑚𝐵)
14 exmiddc 837 . . . . . . . 8 (DECID 𝑚𝐵 → (𝑚𝐵 ∨ ¬ 𝑚𝐵))
1513, 14syl 14 . . . . . . 7 ((𝜑𝑚 ∈ (ℤ𝑀)) → (𝑚𝐵 ∨ ¬ 𝑚𝐵))
16 iftrue 3566 . . . . . . . . . . . 12 (𝑚𝐵 → if(𝑚𝐵, 𝑚 / 𝑘𝐶, 1) = 𝑚 / 𝑘𝐶)
1716adantl 277 . . . . . . . . . . 11 ((𝜑𝑚𝐵) → if(𝑚𝐵, 𝑚 / 𝑘𝐶, 1) = 𝑚 / 𝑘𝐶)
18 prodss.2 . . . . . . . . . . . . . . . 16 ((𝜑𝑘𝐴) → 𝐶 ∈ ℂ)
1918ex 115 . . . . . . . . . . . . . . 15 (𝜑 → (𝑘𝐴𝐶 ∈ ℂ))
2019adantr 276 . . . . . . . . . . . . . 14 ((𝜑𝑘𝐵) → (𝑘𝐴𝐶 ∈ ℂ))
21 eldif 3166 . . . . . . . . . . . . . . . 16 (𝑘 ∈ (𝐵𝐴) ↔ (𝑘𝐵 ∧ ¬ 𝑘𝐴))
22 prodss.4 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘 ∈ (𝐵𝐴)) → 𝐶 = 1)
23 ax-1cn 7972 . . . . . . . . . . . . . . . . 17 1 ∈ ℂ
2422, 23eqeltrdi 2287 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ (𝐵𝐴)) → 𝐶 ∈ ℂ)
2521, 24sylan2br 288 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑘𝐵 ∧ ¬ 𝑘𝐴)) → 𝐶 ∈ ℂ)
2625expr 375 . . . . . . . . . . . . . 14 ((𝜑𝑘𝐵) → (¬ 𝑘𝐴𝐶 ∈ ℂ))
27 eleq1w 2257 . . . . . . . . . . . . . . . . 17 (𝑗 = 𝑘 → (𝑗𝐴𝑘𝐴))
2827dcbid 839 . . . . . . . . . . . . . . . 16 (𝑗 = 𝑘 → (DECID 𝑗𝐴DECID 𝑘𝐴))
297adantr 276 . . . . . . . . . . . . . . . 16 ((𝜑𝑘𝐵) → ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐴)
305sselda 3183 . . . . . . . . . . . . . . . 16 ((𝜑𝑘𝐵) → 𝑘 ∈ (ℤ𝑀))
3128, 29, 30rspcdva 2873 . . . . . . . . . . . . . . 15 ((𝜑𝑘𝐵) → DECID 𝑘𝐴)
32 exmiddc 837 . . . . . . . . . . . . . . 15 (DECID 𝑘𝐴 → (𝑘𝐴 ∨ ¬ 𝑘𝐴))
3331, 32syl 14 . . . . . . . . . . . . . 14 ((𝜑𝑘𝐵) → (𝑘𝐴 ∨ ¬ 𝑘𝐴))
3420, 26, 33mpjaod 719 . . . . . . . . . . . . 13 ((𝜑𝑘𝐵) → 𝐶 ∈ ℂ)
3534ralrimiva 2570 . . . . . . . . . . . 12 (𝜑 → ∀𝑘𝐵 𝐶 ∈ ℂ)
36 nfcsb1v 3117 . . . . . . . . . . . . . 14 𝑘𝑚 / 𝑘𝐶
3736nfel1 2350 . . . . . . . . . . . . 13 𝑘𝑚 / 𝑘𝐶 ∈ ℂ
38 csbeq1a 3093 . . . . . . . . . . . . . 14 (𝑘 = 𝑚𝐶 = 𝑚 / 𝑘𝐶)
3938eleq1d 2265 . . . . . . . . . . . . 13 (𝑘 = 𝑚 → (𝐶 ∈ ℂ ↔ 𝑚 / 𝑘𝐶 ∈ ℂ))
4037, 39rspc 2862 . . . . . . . . . . . 12 (𝑚𝐵 → (∀𝑘𝐵 𝐶 ∈ ℂ → 𝑚 / 𝑘𝐶 ∈ ℂ))
4135, 40mpan9 281 . . . . . . . . . . 11 ((𝜑𝑚𝐵) → 𝑚 / 𝑘𝐶 ∈ ℂ)
4217, 41eqeltrd 2273 . . . . . . . . . 10 ((𝜑𝑚𝐵) → if(𝑚𝐵, 𝑚 / 𝑘𝐶, 1) ∈ ℂ)
4342ex 115 . . . . . . . . 9 (𝜑 → (𝑚𝐵 → if(𝑚𝐵, 𝑚 / 𝑘𝐶, 1) ∈ ℂ))
44 iffalse 3569 . . . . . . . . . . 11 𝑚𝐵 → if(𝑚𝐵, 𝑚 / 𝑘𝐶, 1) = 1)
4544, 23eqeltrdi 2287 . . . . . . . . . 10 𝑚𝐵 → if(𝑚𝐵, 𝑚 / 𝑘𝐶, 1) ∈ ℂ)
4645a1i 9 . . . . . . . . 9 (𝜑 → (¬ 𝑚𝐵 → if(𝑚𝐵, 𝑚 / 𝑘𝐶, 1) ∈ ℂ))
4743, 46jaod 718 . . . . . . . 8 (𝜑 → ((𝑚𝐵 ∨ ¬ 𝑚𝐵) → if(𝑚𝐵, 𝑚 / 𝑘𝐶, 1) ∈ ℂ))
4847adantr 276 . . . . . . 7 ((𝜑𝑚 ∈ (ℤ𝑀)) → ((𝑚𝐵 ∨ ¬ 𝑚𝐵) → if(𝑚𝐵, 𝑚 / 𝑘𝐶, 1) ∈ ℂ))
4915, 48mpd 13 . . . . . 6 ((𝜑𝑚 ∈ (ℤ𝑀)) → if(𝑚𝐵, 𝑚 / 𝑘𝐶, 1) ∈ ℂ)
50 nfcv 2339 . . . . . . 7 𝑘𝑚
51 nfv 1542 . . . . . . . 8 𝑘 𝑚𝐵
52 nfcv 2339 . . . . . . . 8 𝑘1
5351, 36, 52nfif 3589 . . . . . . 7 𝑘if(𝑚𝐵, 𝑚 / 𝑘𝐶, 1)
54 eleq1w 2257 . . . . . . . 8 (𝑘 = 𝑚 → (𝑘𝐵𝑚𝐵))
5554, 38ifbieq1d 3583 . . . . . . 7 (𝑘 = 𝑚 → if(𝑘𝐵, 𝐶, 1) = if(𝑚𝐵, 𝑚 / 𝑘𝐶, 1))
56 eqid 2196 . . . . . . 7 (𝑘 ∈ (ℤ𝑀) ↦ if(𝑘𝐵, 𝐶, 1)) = (𝑘 ∈ (ℤ𝑀) ↦ if(𝑘𝐵, 𝐶, 1))
5750, 53, 55, 56fvmptf 5654 . . . . . 6 ((𝑚 ∈ (ℤ𝑀) ∧ if(𝑚𝐵, 𝑚 / 𝑘𝐶, 1) ∈ ℂ) → ((𝑘 ∈ (ℤ𝑀) ↦ if(𝑘𝐵, 𝐶, 1))‘𝑚) = if(𝑚𝐵, 𝑚 / 𝑘𝐶, 1))
588, 49, 57syl2anc 411 . . . . 5 ((𝜑𝑚 ∈ (ℤ𝑀)) → ((𝑘 ∈ (ℤ𝑀) ↦ if(𝑘𝐵, 𝐶, 1))‘𝑚) = if(𝑚𝐵, 𝑚 / 𝑘𝐶, 1))
59 iftrue 3566 . . . . . . . . . . . . . . 15 (𝑚𝐴 → if(𝑚𝐴, ((𝑘𝐴𝐶)‘𝑚), 1) = ((𝑘𝐴𝐶)‘𝑚))
6059adantl 277 . . . . . . . . . . . . . 14 ((𝜑𝑚𝐴) → if(𝑚𝐴, ((𝑘𝐴𝐶)‘𝑚), 1) = ((𝑘𝐴𝐶)‘𝑚))
61 simpr 110 . . . . . . . . . . . . . . 15 ((𝜑𝑚𝐴) → 𝑚𝐴)
624sselda 3183 . . . . . . . . . . . . . . . 16 ((𝜑𝑚𝐴) → 𝑚𝐵)
6362, 41syldan 282 . . . . . . . . . . . . . . 15 ((𝜑𝑚𝐴) → 𝑚 / 𝑘𝐶 ∈ ℂ)
64 eqid 2196 . . . . . . . . . . . . . . . 16 (𝑘𝐴𝐶) = (𝑘𝐴𝐶)
6564fvmpts 5639 . . . . . . . . . . . . . . 15 ((𝑚𝐴𝑚 / 𝑘𝐶 ∈ ℂ) → ((𝑘𝐴𝐶)‘𝑚) = 𝑚 / 𝑘𝐶)
6661, 63, 65syl2anc 411 . . . . . . . . . . . . . 14 ((𝜑𝑚𝐴) → ((𝑘𝐴𝐶)‘𝑚) = 𝑚 / 𝑘𝐶)
6760, 66eqtrd 2229 . . . . . . . . . . . . 13 ((𝜑𝑚𝐴) → if(𝑚𝐴, ((𝑘𝐴𝐶)‘𝑚), 1) = 𝑚 / 𝑘𝐶)
6867ex 115 . . . . . . . . . . . 12 (𝜑 → (𝑚𝐴 → if(𝑚𝐴, ((𝑘𝐴𝐶)‘𝑚), 1) = 𝑚 / 𝑘𝐶))
6968adantr 276 . . . . . . . . . . 11 ((𝜑𝑚𝐵) → (𝑚𝐴 → if(𝑚𝐴, ((𝑘𝐴𝐶)‘𝑚), 1) = 𝑚 / 𝑘𝐶))
70 iffalse 3569 . . . . . . . . . . . . . . 15 𝑚𝐴 → if(𝑚𝐴, ((𝑘𝐴𝐶)‘𝑚), 1) = 1)
7170adantl 277 . . . . . . . . . . . . . 14 ((𝑚𝐵 ∧ ¬ 𝑚𝐴) → if(𝑚𝐴, ((𝑘𝐴𝐶)‘𝑚), 1) = 1)
7271adantl 277 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑚𝐵 ∧ ¬ 𝑚𝐴)) → if(𝑚𝐴, ((𝑘𝐴𝐶)‘𝑚), 1) = 1)
73 eldif 3166 . . . . . . . . . . . . . 14 (𝑚 ∈ (𝐵𝐴) ↔ (𝑚𝐵 ∧ ¬ 𝑚𝐴))
7422ralrimiva 2570 . . . . . . . . . . . . . . 15 (𝜑 → ∀𝑘 ∈ (𝐵𝐴)𝐶 = 1)
7536nfeq1 2349 . . . . . . . . . . . . . . . 16 𝑘𝑚 / 𝑘𝐶 = 1
7638eqeq1d 2205 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑚 → (𝐶 = 1 ↔ 𝑚 / 𝑘𝐶 = 1))
7775, 76rspc 2862 . . . . . . . . . . . . . . 15 (𝑚 ∈ (𝐵𝐴) → (∀𝑘 ∈ (𝐵𝐴)𝐶 = 1 → 𝑚 / 𝑘𝐶 = 1))
7874, 77mpan9 281 . . . . . . . . . . . . . 14 ((𝜑𝑚 ∈ (𝐵𝐴)) → 𝑚 / 𝑘𝐶 = 1)
7973, 78sylan2br 288 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑚𝐵 ∧ ¬ 𝑚𝐴)) → 𝑚 / 𝑘𝐶 = 1)
8072, 79eqtr4d 2232 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑚𝐵 ∧ ¬ 𝑚𝐴)) → if(𝑚𝐴, ((𝑘𝐴𝐶)‘𝑚), 1) = 𝑚 / 𝑘𝐶)
8180expr 375 . . . . . . . . . . 11 ((𝜑𝑚𝐵) → (¬ 𝑚𝐴 → if(𝑚𝐴, ((𝑘𝐴𝐶)‘𝑚), 1) = 𝑚 / 𝑘𝐶))
82 eleq1w 2257 . . . . . . . . . . . . . 14 (𝑗 = 𝑚 → (𝑗𝐴𝑚𝐴))
8382dcbid 839 . . . . . . . . . . . . 13 (𝑗 = 𝑚 → (DECID 𝑗𝐴DECID 𝑚𝐴))
847adantr 276 . . . . . . . . . . . . 13 ((𝜑𝑚𝐵) → ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐴)
855sselda 3183 . . . . . . . . . . . . 13 ((𝜑𝑚𝐵) → 𝑚 ∈ (ℤ𝑀))
8683, 84, 85rspcdva 2873 . . . . . . . . . . . 12 ((𝜑𝑚𝐵) → DECID 𝑚𝐴)
87 exmiddc 837 . . . . . . . . . . . 12 (DECID 𝑚𝐴 → (𝑚𝐴 ∨ ¬ 𝑚𝐴))
8886, 87syl 14 . . . . . . . . . . 11 ((𝜑𝑚𝐵) → (𝑚𝐴 ∨ ¬ 𝑚𝐴))
8969, 81, 88mpjaod 719 . . . . . . . . . 10 ((𝜑𝑚𝐵) → if(𝑚𝐴, ((𝑘𝐴𝐶)‘𝑚), 1) = 𝑚 / 𝑘𝐶)
9089, 17eqtr4d 2232 . . . . . . . . 9 ((𝜑𝑚𝐵) → if(𝑚𝐴, ((𝑘𝐴𝐶)‘𝑚), 1) = if(𝑚𝐵, 𝑚 / 𝑘𝐶, 1))
9190ex 115 . . . . . . . 8 (𝜑 → (𝑚𝐵 → if(𝑚𝐴, ((𝑘𝐴𝐶)‘𝑚), 1) = if(𝑚𝐵, 𝑚 / 𝑘𝐶, 1)))
924ssneld 3185 . . . . . . . . . . . 12 (𝜑 → (¬ 𝑚𝐵 → ¬ 𝑚𝐴))
9392imp 124 . . . . . . . . . . 11 ((𝜑 ∧ ¬ 𝑚𝐵) → ¬ 𝑚𝐴)
9493, 70syl 14 . . . . . . . . . 10 ((𝜑 ∧ ¬ 𝑚𝐵) → if(𝑚𝐴, ((𝑘𝐴𝐶)‘𝑚), 1) = 1)
9544adantl 277 . . . . . . . . . 10 ((𝜑 ∧ ¬ 𝑚𝐵) → if(𝑚𝐵, 𝑚 / 𝑘𝐶, 1) = 1)
9694, 95eqtr4d 2232 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝑚𝐵) → if(𝑚𝐴, ((𝑘𝐴𝐶)‘𝑚), 1) = if(𝑚𝐵, 𝑚 / 𝑘𝐶, 1))
9796ex 115 . . . . . . . 8 (𝜑 → (¬ 𝑚𝐵 → if(𝑚𝐴, ((𝑘𝐴𝐶)‘𝑚), 1) = if(𝑚𝐵, 𝑚 / 𝑘𝐶, 1)))
9891, 97jaod 718 . . . . . . 7 (𝜑 → ((𝑚𝐵 ∨ ¬ 𝑚𝐵) → if(𝑚𝐴, ((𝑘𝐴𝐶)‘𝑚), 1) = if(𝑚𝐵, 𝑚 / 𝑘𝐶, 1)))
9998adantr 276 . . . . . 6 ((𝜑𝑚 ∈ (ℤ𝑀)) → ((𝑚𝐵 ∨ ¬ 𝑚𝐵) → if(𝑚𝐴, ((𝑘𝐴𝐶)‘𝑚), 1) = if(𝑚𝐵, 𝑚 / 𝑘𝐶, 1)))
10015, 99mpd 13 . . . . 5 ((𝜑𝑚 ∈ (ℤ𝑀)) → if(𝑚𝐴, ((𝑘𝐴𝐶)‘𝑚), 1) = if(𝑚𝐵, 𝑚 / 𝑘𝐶, 1))
10158, 100eqtr4d 2232 . . . 4 ((𝜑𝑚 ∈ (ℤ𝑀)) → ((𝑘 ∈ (ℤ𝑀) ↦ if(𝑘𝐵, 𝐶, 1))‘𝑚) = if(𝑚𝐴, ((𝑘𝐴𝐶)‘𝑚), 1))
10218fmpttd 5717 . . . . 5 (𝜑 → (𝑘𝐴𝐶):𝐴⟶ℂ)
103102ffvelcdmda 5697 . . . 4 ((𝜑𝑚𝐴) → ((𝑘𝐴𝐶)‘𝑚) ∈ ℂ)
1041, 2, 3, 6, 7, 101, 103zproddc 11744 . . 3 (𝜑 → ∏𝑚𝐴 ((𝑘𝐴𝐶)‘𝑚) = ( ⇝ ‘seq𝑀( · , (𝑘 ∈ (ℤ𝑀) ↦ if(𝑘𝐵, 𝐶, 1)))))
105 simpr 110 . . . . . . . . . . 11 ((𝜑𝑚𝐵) → 𝑚𝐵)
106 eqid 2196 . . . . . . . . . . . 12 (𝑘𝐵𝐶) = (𝑘𝐵𝐶)
107106fvmpts 5639 . . . . . . . . . . 11 ((𝑚𝐵𝑚 / 𝑘𝐶 ∈ ℂ) → ((𝑘𝐵𝐶)‘𝑚) = 𝑚 / 𝑘𝐶)
108105, 41, 107syl2anc 411 . . . . . . . . . 10 ((𝜑𝑚𝐵) → ((𝑘𝐵𝐶)‘𝑚) = 𝑚 / 𝑘𝐶)
109108ifeq1d 3578 . . . . . . . . 9 ((𝜑𝑚𝐵) → if(𝑚𝐵, ((𝑘𝐵𝐶)‘𝑚), 1) = if(𝑚𝐵, 𝑚 / 𝑘𝐶, 1))
110109ex 115 . . . . . . . 8 (𝜑 → (𝑚𝐵 → if(𝑚𝐵, ((𝑘𝐵𝐶)‘𝑚), 1) = if(𝑚𝐵, 𝑚 / 𝑘𝐶, 1)))
111 iffalse 3569 . . . . . . . . . 10 𝑚𝐵 → if(𝑚𝐵, ((𝑘𝐵𝐶)‘𝑚), 1) = 1)
112111, 44eqtr4d 2232 . . . . . . . . 9 𝑚𝐵 → if(𝑚𝐵, ((𝑘𝐵𝐶)‘𝑚), 1) = if(𝑚𝐵, 𝑚 / 𝑘𝐶, 1))
113112a1i 9 . . . . . . . 8 (𝜑 → (¬ 𝑚𝐵 → if(𝑚𝐵, ((𝑘𝐵𝐶)‘𝑚), 1) = if(𝑚𝐵, 𝑚 / 𝑘𝐶, 1)))
114110, 113jaod 718 . . . . . . 7 (𝜑 → ((𝑚𝐵 ∨ ¬ 𝑚𝐵) → if(𝑚𝐵, ((𝑘𝐵𝐶)‘𝑚), 1) = if(𝑚𝐵, 𝑚 / 𝑘𝐶, 1)))
115114adantr 276 . . . . . 6 ((𝜑𝑚 ∈ (ℤ𝑀)) → ((𝑚𝐵 ∨ ¬ 𝑚𝐵) → if(𝑚𝐵, ((𝑘𝐵𝐶)‘𝑚), 1) = if(𝑚𝐵, 𝑚 / 𝑘𝐶, 1)))
11615, 115mpd 13 . . . . 5 ((𝜑𝑚 ∈ (ℤ𝑀)) → if(𝑚𝐵, ((𝑘𝐵𝐶)‘𝑚), 1) = if(𝑚𝐵, 𝑚 / 𝑘𝐶, 1))
11758, 116eqtr4d 2232 . . . 4 ((𝜑𝑚 ∈ (ℤ𝑀)) → ((𝑘 ∈ (ℤ𝑀) ↦ if(𝑘𝐵, 𝐶, 1))‘𝑚) = if(𝑚𝐵, ((𝑘𝐵𝐶)‘𝑚), 1))
11834fmpttd 5717 . . . . 5 (𝜑 → (𝑘𝐵𝐶):𝐵⟶ℂ)
119118ffvelcdmda 5697 . . . 4 ((𝜑𝑚𝐵) → ((𝑘𝐵𝐶)‘𝑚) ∈ ℂ)
1201, 2, 3, 5, 11, 117, 119zproddc 11744 . . 3 (𝜑 → ∏𝑚𝐵 ((𝑘𝐵𝐶)‘𝑚) = ( ⇝ ‘seq𝑀( · , (𝑘 ∈ (ℤ𝑀) ↦ if(𝑘𝐵, 𝐶, 1)))))
121104, 120eqtr4d 2232 . 2 (𝜑 → ∏𝑚𝐴 ((𝑘𝐴𝐶)‘𝑚) = ∏𝑚𝐵 ((𝑘𝐵𝐶)‘𝑚))
12218ralrimiva 2570 . . 3 (𝜑 → ∀𝑘𝐴 𝐶 ∈ ℂ)
123 prodfct 11752 . . 3 (∀𝑘𝐴 𝐶 ∈ ℂ → ∏𝑚𝐴 ((𝑘𝐴𝐶)‘𝑚) = ∏𝑘𝐴 𝐶)
124122, 123syl 14 . 2 (𝜑 → ∏𝑚𝐴 ((𝑘𝐴𝐶)‘𝑚) = ∏𝑘𝐴 𝐶)
125 prodfct 11752 . . 3 (∀𝑘𝐵 𝐶 ∈ ℂ → ∏𝑚𝐵 ((𝑘𝐵𝐶)‘𝑚) = ∏𝑘𝐵 𝐶)
12635, 125syl 14 . 2 (𝜑 → ∏𝑚𝐵 ((𝑘𝐵𝐶)‘𝑚) = ∏𝑘𝐵 𝐶)
127121, 124, 1263eqtr3d 2237 1 (𝜑 → ∏𝑘𝐴 𝐶 = ∏𝑘𝐵 𝐶)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wo 709  DECID wdc 835   = wceq 1364  wex 1506  wcel 2167  wral 2475  wrex 2476  csb 3084  cdif 3154  wss 3157  ifcif 3561   class class class wbr 4033  cmpt 4094  cfv 5258  cc 7877  0cc0 7879  1c1 7880   · cmul 7884   # cap 8608  cz 9326  cuz 9601  seqcseq 10539  cli 11443  cprod 11715
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-isom 5267  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-irdg 6428  df-frec 6449  df-1o 6474  df-oadd 6478  df-er 6592  df-en 6800  df-dom 6801  df-fin 6802  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609  df-div 8700  df-inn 8991  df-2 9049  df-n0 9250  df-z 9327  df-uz 9602  df-q 9694  df-rp 9729  df-fz 10084  df-fzo 10218  df-seqfrec 10540  df-exp 10631  df-ihash 10868  df-cj 11007  df-rsqrt 11163  df-abs 11164  df-clim 11444  df-proddc 11716
This theorem is referenced by:  fprodssdc  11755
  Copyright terms: Public domain W3C validator