ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prodssdc GIF version

Theorem prodssdc 12108
Description: Change the index set to a subset in an upper integer product. (Contributed by Scott Fenton, 11-Dec-2017.) (Revised by Jim Kingdon, 6-Aug-2024.)
Hypotheses
Ref Expression
prodss.1 (𝜑𝐴𝐵)
prodss.2 ((𝜑𝑘𝐴) → 𝐶 ∈ ℂ)
prodssdc.3 (𝜑 → ∃𝑛 ∈ (ℤ𝑀)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , (𝑘 ∈ (ℤ𝑀) ↦ if(𝑘𝐵, 𝐶, 1))) ⇝ 𝑦))
prodssdc.a (𝜑 → ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐴)
prodssdc.m (𝜑𝑀 ∈ ℤ)
prodss.4 ((𝜑𝑘 ∈ (𝐵𝐴)) → 𝐶 = 1)
prodss.5 (𝜑𝐵 ⊆ (ℤ𝑀))
prodssdc.b (𝜑 → ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐵)
Assertion
Ref Expression
prodssdc (𝜑 → ∏𝑘𝐴 𝐶 = ∏𝑘𝐵 𝐶)
Distinct variable groups:   𝐴,𝑗,𝑘,𝑛,𝑦   𝐵,𝑗,𝑘,𝑛,𝑦   𝐶,𝑗,𝑛,𝑦   𝑗,𝑀,𝑘,𝑛,𝑦   𝜑,𝑗,𝑘,𝑛,𝑦
Allowed substitution hint:   𝐶(𝑘)

Proof of Theorem prodssdc
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 eqid 2229 . . . 4 (ℤ𝑀) = (ℤ𝑀)
2 prodssdc.m . . . 4 (𝜑𝑀 ∈ ℤ)
3 prodssdc.3 . . . 4 (𝜑 → ∃𝑛 ∈ (ℤ𝑀)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , (𝑘 ∈ (ℤ𝑀) ↦ if(𝑘𝐵, 𝐶, 1))) ⇝ 𝑦))
4 prodss.1 . . . . 5 (𝜑𝐴𝐵)
5 prodss.5 . . . . 5 (𝜑𝐵 ⊆ (ℤ𝑀))
64, 5sstrd 3234 . . . 4 (𝜑𝐴 ⊆ (ℤ𝑀))
7 prodssdc.a . . . 4 (𝜑 → ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐴)
8 simpr 110 . . . . . 6 ((𝜑𝑚 ∈ (ℤ𝑀)) → 𝑚 ∈ (ℤ𝑀))
9 eleq1w 2290 . . . . . . . . . 10 (𝑗 = 𝑚 → (𝑗𝐵𝑚𝐵))
109dcbid 843 . . . . . . . . 9 (𝑗 = 𝑚 → (DECID 𝑗𝐵DECID 𝑚𝐵))
11 prodssdc.b . . . . . . . . . 10 (𝜑 → ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐵)
1211adantr 276 . . . . . . . . 9 ((𝜑𝑚 ∈ (ℤ𝑀)) → ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐵)
1310, 12, 8rspcdva 2912 . . . . . . . 8 ((𝜑𝑚 ∈ (ℤ𝑀)) → DECID 𝑚𝐵)
14 exmiddc 841 . . . . . . . 8 (DECID 𝑚𝐵 → (𝑚𝐵 ∨ ¬ 𝑚𝐵))
1513, 14syl 14 . . . . . . 7 ((𝜑𝑚 ∈ (ℤ𝑀)) → (𝑚𝐵 ∨ ¬ 𝑚𝐵))
16 iftrue 3607 . . . . . . . . . . . 12 (𝑚𝐵 → if(𝑚𝐵, 𝑚 / 𝑘𝐶, 1) = 𝑚 / 𝑘𝐶)
1716adantl 277 . . . . . . . . . . 11 ((𝜑𝑚𝐵) → if(𝑚𝐵, 𝑚 / 𝑘𝐶, 1) = 𝑚 / 𝑘𝐶)
18 prodss.2 . . . . . . . . . . . . . . . 16 ((𝜑𝑘𝐴) → 𝐶 ∈ ℂ)
1918ex 115 . . . . . . . . . . . . . . 15 (𝜑 → (𝑘𝐴𝐶 ∈ ℂ))
2019adantr 276 . . . . . . . . . . . . . 14 ((𝜑𝑘𝐵) → (𝑘𝐴𝐶 ∈ ℂ))
21 eldif 3206 . . . . . . . . . . . . . . . 16 (𝑘 ∈ (𝐵𝐴) ↔ (𝑘𝐵 ∧ ¬ 𝑘𝐴))
22 prodss.4 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘 ∈ (𝐵𝐴)) → 𝐶 = 1)
23 ax-1cn 8100 . . . . . . . . . . . . . . . . 17 1 ∈ ℂ
2422, 23eqeltrdi 2320 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ (𝐵𝐴)) → 𝐶 ∈ ℂ)
2521, 24sylan2br 288 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑘𝐵 ∧ ¬ 𝑘𝐴)) → 𝐶 ∈ ℂ)
2625expr 375 . . . . . . . . . . . . . 14 ((𝜑𝑘𝐵) → (¬ 𝑘𝐴𝐶 ∈ ℂ))
27 eleq1w 2290 . . . . . . . . . . . . . . . . 17 (𝑗 = 𝑘 → (𝑗𝐴𝑘𝐴))
2827dcbid 843 . . . . . . . . . . . . . . . 16 (𝑗 = 𝑘 → (DECID 𝑗𝐴DECID 𝑘𝐴))
297adantr 276 . . . . . . . . . . . . . . . 16 ((𝜑𝑘𝐵) → ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐴)
305sselda 3224 . . . . . . . . . . . . . . . 16 ((𝜑𝑘𝐵) → 𝑘 ∈ (ℤ𝑀))
3128, 29, 30rspcdva 2912 . . . . . . . . . . . . . . 15 ((𝜑𝑘𝐵) → DECID 𝑘𝐴)
32 exmiddc 841 . . . . . . . . . . . . . . 15 (DECID 𝑘𝐴 → (𝑘𝐴 ∨ ¬ 𝑘𝐴))
3331, 32syl 14 . . . . . . . . . . . . . 14 ((𝜑𝑘𝐵) → (𝑘𝐴 ∨ ¬ 𝑘𝐴))
3420, 26, 33mpjaod 723 . . . . . . . . . . . . 13 ((𝜑𝑘𝐵) → 𝐶 ∈ ℂ)
3534ralrimiva 2603 . . . . . . . . . . . 12 (𝜑 → ∀𝑘𝐵 𝐶 ∈ ℂ)
36 nfcsb1v 3157 . . . . . . . . . . . . . 14 𝑘𝑚 / 𝑘𝐶
3736nfel1 2383 . . . . . . . . . . . . 13 𝑘𝑚 / 𝑘𝐶 ∈ ℂ
38 csbeq1a 3133 . . . . . . . . . . . . . 14 (𝑘 = 𝑚𝐶 = 𝑚 / 𝑘𝐶)
3938eleq1d 2298 . . . . . . . . . . . . 13 (𝑘 = 𝑚 → (𝐶 ∈ ℂ ↔ 𝑚 / 𝑘𝐶 ∈ ℂ))
4037, 39rspc 2901 . . . . . . . . . . . 12 (𝑚𝐵 → (∀𝑘𝐵 𝐶 ∈ ℂ → 𝑚 / 𝑘𝐶 ∈ ℂ))
4135, 40mpan9 281 . . . . . . . . . . 11 ((𝜑𝑚𝐵) → 𝑚 / 𝑘𝐶 ∈ ℂ)
4217, 41eqeltrd 2306 . . . . . . . . . 10 ((𝜑𝑚𝐵) → if(𝑚𝐵, 𝑚 / 𝑘𝐶, 1) ∈ ℂ)
4342ex 115 . . . . . . . . 9 (𝜑 → (𝑚𝐵 → if(𝑚𝐵, 𝑚 / 𝑘𝐶, 1) ∈ ℂ))
44 iffalse 3610 . . . . . . . . . . 11 𝑚𝐵 → if(𝑚𝐵, 𝑚 / 𝑘𝐶, 1) = 1)
4544, 23eqeltrdi 2320 . . . . . . . . . 10 𝑚𝐵 → if(𝑚𝐵, 𝑚 / 𝑘𝐶, 1) ∈ ℂ)
4645a1i 9 . . . . . . . . 9 (𝜑 → (¬ 𝑚𝐵 → if(𝑚𝐵, 𝑚 / 𝑘𝐶, 1) ∈ ℂ))
4743, 46jaod 722 . . . . . . . 8 (𝜑 → ((𝑚𝐵 ∨ ¬ 𝑚𝐵) → if(𝑚𝐵, 𝑚 / 𝑘𝐶, 1) ∈ ℂ))
4847adantr 276 . . . . . . 7 ((𝜑𝑚 ∈ (ℤ𝑀)) → ((𝑚𝐵 ∨ ¬ 𝑚𝐵) → if(𝑚𝐵, 𝑚 / 𝑘𝐶, 1) ∈ ℂ))
4915, 48mpd 13 . . . . . 6 ((𝜑𝑚 ∈ (ℤ𝑀)) → if(𝑚𝐵, 𝑚 / 𝑘𝐶, 1) ∈ ℂ)
50 nfcv 2372 . . . . . . 7 𝑘𝑚
51 nfv 1574 . . . . . . . 8 𝑘 𝑚𝐵
52 nfcv 2372 . . . . . . . 8 𝑘1
5351, 36, 52nfif 3631 . . . . . . 7 𝑘if(𝑚𝐵, 𝑚 / 𝑘𝐶, 1)
54 eleq1w 2290 . . . . . . . 8 (𝑘 = 𝑚 → (𝑘𝐵𝑚𝐵))
5554, 38ifbieq1d 3625 . . . . . . 7 (𝑘 = 𝑚 → if(𝑘𝐵, 𝐶, 1) = if(𝑚𝐵, 𝑚 / 𝑘𝐶, 1))
56 eqid 2229 . . . . . . 7 (𝑘 ∈ (ℤ𝑀) ↦ if(𝑘𝐵, 𝐶, 1)) = (𝑘 ∈ (ℤ𝑀) ↦ if(𝑘𝐵, 𝐶, 1))
5750, 53, 55, 56fvmptf 5729 . . . . . 6 ((𝑚 ∈ (ℤ𝑀) ∧ if(𝑚𝐵, 𝑚 / 𝑘𝐶, 1) ∈ ℂ) → ((𝑘 ∈ (ℤ𝑀) ↦ if(𝑘𝐵, 𝐶, 1))‘𝑚) = if(𝑚𝐵, 𝑚 / 𝑘𝐶, 1))
588, 49, 57syl2anc 411 . . . . 5 ((𝜑𝑚 ∈ (ℤ𝑀)) → ((𝑘 ∈ (ℤ𝑀) ↦ if(𝑘𝐵, 𝐶, 1))‘𝑚) = if(𝑚𝐵, 𝑚 / 𝑘𝐶, 1))
59 iftrue 3607 . . . . . . . . . . . . . . 15 (𝑚𝐴 → if(𝑚𝐴, ((𝑘𝐴𝐶)‘𝑚), 1) = ((𝑘𝐴𝐶)‘𝑚))
6059adantl 277 . . . . . . . . . . . . . 14 ((𝜑𝑚𝐴) → if(𝑚𝐴, ((𝑘𝐴𝐶)‘𝑚), 1) = ((𝑘𝐴𝐶)‘𝑚))
61 simpr 110 . . . . . . . . . . . . . . 15 ((𝜑𝑚𝐴) → 𝑚𝐴)
624sselda 3224 . . . . . . . . . . . . . . . 16 ((𝜑𝑚𝐴) → 𝑚𝐵)
6362, 41syldan 282 . . . . . . . . . . . . . . 15 ((𝜑𝑚𝐴) → 𝑚 / 𝑘𝐶 ∈ ℂ)
64 eqid 2229 . . . . . . . . . . . . . . . 16 (𝑘𝐴𝐶) = (𝑘𝐴𝐶)
6564fvmpts 5714 . . . . . . . . . . . . . . 15 ((𝑚𝐴𝑚 / 𝑘𝐶 ∈ ℂ) → ((𝑘𝐴𝐶)‘𝑚) = 𝑚 / 𝑘𝐶)
6661, 63, 65syl2anc 411 . . . . . . . . . . . . . 14 ((𝜑𝑚𝐴) → ((𝑘𝐴𝐶)‘𝑚) = 𝑚 / 𝑘𝐶)
6760, 66eqtrd 2262 . . . . . . . . . . . . 13 ((𝜑𝑚𝐴) → if(𝑚𝐴, ((𝑘𝐴𝐶)‘𝑚), 1) = 𝑚 / 𝑘𝐶)
6867ex 115 . . . . . . . . . . . 12 (𝜑 → (𝑚𝐴 → if(𝑚𝐴, ((𝑘𝐴𝐶)‘𝑚), 1) = 𝑚 / 𝑘𝐶))
6968adantr 276 . . . . . . . . . . 11 ((𝜑𝑚𝐵) → (𝑚𝐴 → if(𝑚𝐴, ((𝑘𝐴𝐶)‘𝑚), 1) = 𝑚 / 𝑘𝐶))
70 iffalse 3610 . . . . . . . . . . . . . . 15 𝑚𝐴 → if(𝑚𝐴, ((𝑘𝐴𝐶)‘𝑚), 1) = 1)
7170adantl 277 . . . . . . . . . . . . . 14 ((𝑚𝐵 ∧ ¬ 𝑚𝐴) → if(𝑚𝐴, ((𝑘𝐴𝐶)‘𝑚), 1) = 1)
7271adantl 277 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑚𝐵 ∧ ¬ 𝑚𝐴)) → if(𝑚𝐴, ((𝑘𝐴𝐶)‘𝑚), 1) = 1)
73 eldif 3206 . . . . . . . . . . . . . 14 (𝑚 ∈ (𝐵𝐴) ↔ (𝑚𝐵 ∧ ¬ 𝑚𝐴))
7422ralrimiva 2603 . . . . . . . . . . . . . . 15 (𝜑 → ∀𝑘 ∈ (𝐵𝐴)𝐶 = 1)
7536nfeq1 2382 . . . . . . . . . . . . . . . 16 𝑘𝑚 / 𝑘𝐶 = 1
7638eqeq1d 2238 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑚 → (𝐶 = 1 ↔ 𝑚 / 𝑘𝐶 = 1))
7775, 76rspc 2901 . . . . . . . . . . . . . . 15 (𝑚 ∈ (𝐵𝐴) → (∀𝑘 ∈ (𝐵𝐴)𝐶 = 1 → 𝑚 / 𝑘𝐶 = 1))
7874, 77mpan9 281 . . . . . . . . . . . . . 14 ((𝜑𝑚 ∈ (𝐵𝐴)) → 𝑚 / 𝑘𝐶 = 1)
7973, 78sylan2br 288 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑚𝐵 ∧ ¬ 𝑚𝐴)) → 𝑚 / 𝑘𝐶 = 1)
8072, 79eqtr4d 2265 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑚𝐵 ∧ ¬ 𝑚𝐴)) → if(𝑚𝐴, ((𝑘𝐴𝐶)‘𝑚), 1) = 𝑚 / 𝑘𝐶)
8180expr 375 . . . . . . . . . . 11 ((𝜑𝑚𝐵) → (¬ 𝑚𝐴 → if(𝑚𝐴, ((𝑘𝐴𝐶)‘𝑚), 1) = 𝑚 / 𝑘𝐶))
82 eleq1w 2290 . . . . . . . . . . . . . 14 (𝑗 = 𝑚 → (𝑗𝐴𝑚𝐴))
8382dcbid 843 . . . . . . . . . . . . 13 (𝑗 = 𝑚 → (DECID 𝑗𝐴DECID 𝑚𝐴))
847adantr 276 . . . . . . . . . . . . 13 ((𝜑𝑚𝐵) → ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐴)
855sselda 3224 . . . . . . . . . . . . 13 ((𝜑𝑚𝐵) → 𝑚 ∈ (ℤ𝑀))
8683, 84, 85rspcdva 2912 . . . . . . . . . . . 12 ((𝜑𝑚𝐵) → DECID 𝑚𝐴)
87 exmiddc 841 . . . . . . . . . . . 12 (DECID 𝑚𝐴 → (𝑚𝐴 ∨ ¬ 𝑚𝐴))
8886, 87syl 14 . . . . . . . . . . 11 ((𝜑𝑚𝐵) → (𝑚𝐴 ∨ ¬ 𝑚𝐴))
8969, 81, 88mpjaod 723 . . . . . . . . . 10 ((𝜑𝑚𝐵) → if(𝑚𝐴, ((𝑘𝐴𝐶)‘𝑚), 1) = 𝑚 / 𝑘𝐶)
9089, 17eqtr4d 2265 . . . . . . . . 9 ((𝜑𝑚𝐵) → if(𝑚𝐴, ((𝑘𝐴𝐶)‘𝑚), 1) = if(𝑚𝐵, 𝑚 / 𝑘𝐶, 1))
9190ex 115 . . . . . . . 8 (𝜑 → (𝑚𝐵 → if(𝑚𝐴, ((𝑘𝐴𝐶)‘𝑚), 1) = if(𝑚𝐵, 𝑚 / 𝑘𝐶, 1)))
924ssneld 3226 . . . . . . . . . . . 12 (𝜑 → (¬ 𝑚𝐵 → ¬ 𝑚𝐴))
9392imp 124 . . . . . . . . . . 11 ((𝜑 ∧ ¬ 𝑚𝐵) → ¬ 𝑚𝐴)
9493, 70syl 14 . . . . . . . . . 10 ((𝜑 ∧ ¬ 𝑚𝐵) → if(𝑚𝐴, ((𝑘𝐴𝐶)‘𝑚), 1) = 1)
9544adantl 277 . . . . . . . . . 10 ((𝜑 ∧ ¬ 𝑚𝐵) → if(𝑚𝐵, 𝑚 / 𝑘𝐶, 1) = 1)
9694, 95eqtr4d 2265 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝑚𝐵) → if(𝑚𝐴, ((𝑘𝐴𝐶)‘𝑚), 1) = if(𝑚𝐵, 𝑚 / 𝑘𝐶, 1))
9796ex 115 . . . . . . . 8 (𝜑 → (¬ 𝑚𝐵 → if(𝑚𝐴, ((𝑘𝐴𝐶)‘𝑚), 1) = if(𝑚𝐵, 𝑚 / 𝑘𝐶, 1)))
9891, 97jaod 722 . . . . . . 7 (𝜑 → ((𝑚𝐵 ∨ ¬ 𝑚𝐵) → if(𝑚𝐴, ((𝑘𝐴𝐶)‘𝑚), 1) = if(𝑚𝐵, 𝑚 / 𝑘𝐶, 1)))
9998adantr 276 . . . . . 6 ((𝜑𝑚 ∈ (ℤ𝑀)) → ((𝑚𝐵 ∨ ¬ 𝑚𝐵) → if(𝑚𝐴, ((𝑘𝐴𝐶)‘𝑚), 1) = if(𝑚𝐵, 𝑚 / 𝑘𝐶, 1)))
10015, 99mpd 13 . . . . 5 ((𝜑𝑚 ∈ (ℤ𝑀)) → if(𝑚𝐴, ((𝑘𝐴𝐶)‘𝑚), 1) = if(𝑚𝐵, 𝑚 / 𝑘𝐶, 1))
10158, 100eqtr4d 2265 . . . 4 ((𝜑𝑚 ∈ (ℤ𝑀)) → ((𝑘 ∈ (ℤ𝑀) ↦ if(𝑘𝐵, 𝐶, 1))‘𝑚) = if(𝑚𝐴, ((𝑘𝐴𝐶)‘𝑚), 1))
10218fmpttd 5792 . . . . 5 (𝜑 → (𝑘𝐴𝐶):𝐴⟶ℂ)
103102ffvelcdmda 5772 . . . 4 ((𝜑𝑚𝐴) → ((𝑘𝐴𝐶)‘𝑚) ∈ ℂ)
1041, 2, 3, 6, 7, 101, 103zproddc 12098 . . 3 (𝜑 → ∏𝑚𝐴 ((𝑘𝐴𝐶)‘𝑚) = ( ⇝ ‘seq𝑀( · , (𝑘 ∈ (ℤ𝑀) ↦ if(𝑘𝐵, 𝐶, 1)))))
105 simpr 110 . . . . . . . . . . 11 ((𝜑𝑚𝐵) → 𝑚𝐵)
106 eqid 2229 . . . . . . . . . . . 12 (𝑘𝐵𝐶) = (𝑘𝐵𝐶)
107106fvmpts 5714 . . . . . . . . . . 11 ((𝑚𝐵𝑚 / 𝑘𝐶 ∈ ℂ) → ((𝑘𝐵𝐶)‘𝑚) = 𝑚 / 𝑘𝐶)
108105, 41, 107syl2anc 411 . . . . . . . . . 10 ((𝜑𝑚𝐵) → ((𝑘𝐵𝐶)‘𝑚) = 𝑚 / 𝑘𝐶)
109108ifeq1d 3620 . . . . . . . . 9 ((𝜑𝑚𝐵) → if(𝑚𝐵, ((𝑘𝐵𝐶)‘𝑚), 1) = if(𝑚𝐵, 𝑚 / 𝑘𝐶, 1))
110109ex 115 . . . . . . . 8 (𝜑 → (𝑚𝐵 → if(𝑚𝐵, ((𝑘𝐵𝐶)‘𝑚), 1) = if(𝑚𝐵, 𝑚 / 𝑘𝐶, 1)))
111 iffalse 3610 . . . . . . . . . 10 𝑚𝐵 → if(𝑚𝐵, ((𝑘𝐵𝐶)‘𝑚), 1) = 1)
112111, 44eqtr4d 2265 . . . . . . . . 9 𝑚𝐵 → if(𝑚𝐵, ((𝑘𝐵𝐶)‘𝑚), 1) = if(𝑚𝐵, 𝑚 / 𝑘𝐶, 1))
113112a1i 9 . . . . . . . 8 (𝜑 → (¬ 𝑚𝐵 → if(𝑚𝐵, ((𝑘𝐵𝐶)‘𝑚), 1) = if(𝑚𝐵, 𝑚 / 𝑘𝐶, 1)))
114110, 113jaod 722 . . . . . . 7 (𝜑 → ((𝑚𝐵 ∨ ¬ 𝑚𝐵) → if(𝑚𝐵, ((𝑘𝐵𝐶)‘𝑚), 1) = if(𝑚𝐵, 𝑚 / 𝑘𝐶, 1)))
115114adantr 276 . . . . . 6 ((𝜑𝑚 ∈ (ℤ𝑀)) → ((𝑚𝐵 ∨ ¬ 𝑚𝐵) → if(𝑚𝐵, ((𝑘𝐵𝐶)‘𝑚), 1) = if(𝑚𝐵, 𝑚 / 𝑘𝐶, 1)))
11615, 115mpd 13 . . . . 5 ((𝜑𝑚 ∈ (ℤ𝑀)) → if(𝑚𝐵, ((𝑘𝐵𝐶)‘𝑚), 1) = if(𝑚𝐵, 𝑚 / 𝑘𝐶, 1))
11758, 116eqtr4d 2265 . . . 4 ((𝜑𝑚 ∈ (ℤ𝑀)) → ((𝑘 ∈ (ℤ𝑀) ↦ if(𝑘𝐵, 𝐶, 1))‘𝑚) = if(𝑚𝐵, ((𝑘𝐵𝐶)‘𝑚), 1))
11834fmpttd 5792 . . . . 5 (𝜑 → (𝑘𝐵𝐶):𝐵⟶ℂ)
119118ffvelcdmda 5772 . . . 4 ((𝜑𝑚𝐵) → ((𝑘𝐵𝐶)‘𝑚) ∈ ℂ)
1201, 2, 3, 5, 11, 117, 119zproddc 12098 . . 3 (𝜑 → ∏𝑚𝐵 ((𝑘𝐵𝐶)‘𝑚) = ( ⇝ ‘seq𝑀( · , (𝑘 ∈ (ℤ𝑀) ↦ if(𝑘𝐵, 𝐶, 1)))))
121104, 120eqtr4d 2265 . 2 (𝜑 → ∏𝑚𝐴 ((𝑘𝐴𝐶)‘𝑚) = ∏𝑚𝐵 ((𝑘𝐵𝐶)‘𝑚))
12218ralrimiva 2603 . . 3 (𝜑 → ∀𝑘𝐴 𝐶 ∈ ℂ)
123 prodfct 12106 . . 3 (∀𝑘𝐴 𝐶 ∈ ℂ → ∏𝑚𝐴 ((𝑘𝐴𝐶)‘𝑚) = ∏𝑘𝐴 𝐶)
124122, 123syl 14 . 2 (𝜑 → ∏𝑚𝐴 ((𝑘𝐴𝐶)‘𝑚) = ∏𝑘𝐴 𝐶)
125 prodfct 12106 . . 3 (∀𝑘𝐵 𝐶 ∈ ℂ → ∏𝑚𝐵 ((𝑘𝐵𝐶)‘𝑚) = ∏𝑘𝐵 𝐶)
12635, 125syl 14 . 2 (𝜑 → ∏𝑚𝐵 ((𝑘𝐵𝐶)‘𝑚) = ∏𝑘𝐵 𝐶)
127121, 124, 1263eqtr3d 2270 1 (𝜑 → ∏𝑘𝐴 𝐶 = ∏𝑘𝐵 𝐶)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wo 713  DECID wdc 839   = wceq 1395  wex 1538  wcel 2200  wral 2508  wrex 2509  csb 3124  cdif 3194  wss 3197  ifcif 3602   class class class wbr 4083  cmpt 4145  cfv 5318  cc 8005  0cc0 8007  1c1 8008   · cmul 8012   # cap 8736  cz 9454  cuz 9730  seqcseq 10677  cli 11797  cprod 12069
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8098  ax-resscn 8099  ax-1cn 8100  ax-1re 8101  ax-icn 8102  ax-addcl 8103  ax-addrcl 8104  ax-mulcl 8105  ax-mulrcl 8106  ax-addcom 8107  ax-mulcom 8108  ax-addass 8109  ax-mulass 8110  ax-distr 8111  ax-i2m1 8112  ax-0lt1 8113  ax-1rid 8114  ax-0id 8115  ax-rnegex 8116  ax-precex 8117  ax-cnre 8118  ax-pre-ltirr 8119  ax-pre-ltwlin 8120  ax-pre-lttrn 8121  ax-pre-apti 8122  ax-pre-ltadd 8123  ax-pre-mulgt0 8124  ax-pre-mulext 8125
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-po 4387  df-iso 4388  df-iord 4457  df-on 4459  df-ilim 4460  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-isom 5327  df-riota 5960  df-ov 6010  df-oprab 6011  df-mpo 6012  df-1st 6292  df-2nd 6293  df-recs 6457  df-irdg 6522  df-frec 6543  df-1o 6568  df-oadd 6572  df-er 6688  df-en 6896  df-dom 6897  df-fin 6898  df-pnf 8191  df-mnf 8192  df-xr 8193  df-ltxr 8194  df-le 8195  df-sub 8327  df-neg 8328  df-reap 8730  df-ap 8737  df-div 8828  df-inn 9119  df-2 9177  df-n0 9378  df-z 9455  df-uz 9731  df-q 9823  df-rp 9858  df-fz 10213  df-fzo 10347  df-seqfrec 10678  df-exp 10769  df-ihash 11006  df-cj 11361  df-rsqrt 11517  df-abs 11518  df-clim 11798  df-proddc 12070
This theorem is referenced by:  fprodssdc  12109
  Copyright terms: Public domain W3C validator