ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sumdc GIF version

Theorem sumdc 10711
Description: Decidability of a subset of upper integers. (Contributed by Jim Kingdon, 1-Jan-2022.)
Hypotheses
Ref Expression
sumdc.m (𝜑𝑀 ∈ ℤ)
sumdc.ss (𝜑𝐴 ⊆ (ℤ𝑀))
sumdc.dc (𝜑 → ∀𝑥 ∈ (ℤ𝑀)DECID 𝑥𝐴)
sumdc.n (𝜑𝑁 ∈ ℤ)
Assertion
Ref Expression
sumdc (𝜑DECID 𝑁𝐴)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑀   𝑥,𝑁
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem sumdc
StepHypRef Expression
1 sumdc.dc . . 3 (𝜑 → ∀𝑥 ∈ (ℤ𝑀)DECID 𝑥𝐴)
2 eleq1 2150 . . . . 5 (𝑥 = 𝑁 → (𝑥𝐴𝑁𝐴))
32dcbid 786 . . . 4 (𝑥 = 𝑁 → (DECID 𝑥𝐴DECID 𝑁𝐴))
43rspcv 2718 . . 3 (𝑁 ∈ (ℤ𝑀) → (∀𝑥 ∈ (ℤ𝑀)DECID 𝑥𝐴DECID 𝑁𝐴))
51, 4mpan9 275 . 2 ((𝜑𝑁 ∈ (ℤ𝑀)) → DECID 𝑁𝐴)
6 sumdc.ss . . . . . 6 (𝜑𝐴 ⊆ (ℤ𝑀))
76ssneld 3025 . . . . 5 (𝜑 → (¬ 𝑁 ∈ (ℤ𝑀) → ¬ 𝑁𝐴))
87imp 122 . . . 4 ((𝜑 ∧ ¬ 𝑁 ∈ (ℤ𝑀)) → ¬ 𝑁𝐴)
98olcd 688 . . 3 ((𝜑 ∧ ¬ 𝑁 ∈ (ℤ𝑀)) → (𝑁𝐴 ∨ ¬ 𝑁𝐴))
10 df-dc 781 . . 3 (DECID 𝑁𝐴 ↔ (𝑁𝐴 ∨ ¬ 𝑁𝐴))
119, 10sylibr 132 . 2 ((𝜑 ∧ ¬ 𝑁 ∈ (ℤ𝑀)) → DECID 𝑁𝐴)
12 sumdc.m . . . 4 (𝜑𝑀 ∈ ℤ)
13 sumdc.n . . . 4 (𝜑𝑁 ∈ ℤ)
14 eluzdc 9066 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → DECID 𝑁 ∈ (ℤ𝑀))
1512, 13, 14syl2anc 403 . . 3 (𝜑DECID 𝑁 ∈ (ℤ𝑀))
16 exmiddc 782 . . 3 (DECID 𝑁 ∈ (ℤ𝑀) → (𝑁 ∈ (ℤ𝑀) ∨ ¬ 𝑁 ∈ (ℤ𝑀)))
1715, 16syl 14 . 2 (𝜑 → (𝑁 ∈ (ℤ𝑀) ∨ ¬ 𝑁 ∈ (ℤ𝑀)))
185, 11, 17mpjaodan 747 1 (𝜑DECID 𝑁𝐴)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 102  wo 664  DECID wdc 780   = wceq 1289  wcel 1438  wral 2359  wss 2997  cfv 5002  cz 8720  cuz 8988
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-13 1449  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-sep 3949  ax-pow 4001  ax-pr 4027  ax-un 4251  ax-setind 4343  ax-cnex 7415  ax-resscn 7416  ax-1cn 7417  ax-1re 7418  ax-icn 7419  ax-addcl 7420  ax-addrcl 7421  ax-mulcl 7422  ax-addcom 7424  ax-addass 7426  ax-distr 7428  ax-i2m1 7429  ax-0lt1 7430  ax-0id 7432  ax-rnegex 7433  ax-cnre 7435  ax-pre-ltirr 7436  ax-pre-ltwlin 7437  ax-pre-lttrn 7438  ax-pre-ltadd 7440
This theorem depends on definitions:  df-bi 115  df-dc 781  df-3or 925  df-3an 926  df-tru 1292  df-fal 1295  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ne 2256  df-nel 2351  df-ral 2364  df-rex 2365  df-reu 2366  df-rab 2368  df-v 2621  df-sbc 2839  df-dif 2999  df-un 3001  df-in 3003  df-ss 3010  df-pw 3427  df-sn 3447  df-pr 3448  df-op 3450  df-uni 3649  df-int 3684  df-br 3838  df-opab 3892  df-mpt 3893  df-id 4111  df-xp 4434  df-rel 4435  df-cnv 4436  df-co 4437  df-dm 4438  df-iota 4967  df-fun 5004  df-fv 5010  df-riota 5590  df-ov 5637  df-oprab 5638  df-mpt2 5639  df-pnf 7503  df-mnf 7504  df-xr 7505  df-ltxr 7506  df-le 7507  df-sub 7634  df-neg 7635  df-inn 8395  df-n0 8644  df-z 8721  df-uz 8989
This theorem is referenced by:  sumeq2  10712
  Copyright terms: Public domain W3C validator