ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sumdc GIF version

Theorem sumdc 11855
Description: Decidability of a subset of upper integers. (Contributed by Jim Kingdon, 1-Jan-2022.)
Hypotheses
Ref Expression
sumdc.m (𝜑𝑀 ∈ ℤ)
sumdc.ss (𝜑𝐴 ⊆ (ℤ𝑀))
sumdc.dc (𝜑 → ∀𝑥 ∈ (ℤ𝑀)DECID 𝑥𝐴)
sumdc.n (𝜑𝑁 ∈ ℤ)
Assertion
Ref Expression
sumdc (𝜑DECID 𝑁𝐴)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑀   𝑥,𝑁
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem sumdc
StepHypRef Expression
1 sumdc.dc . . 3 (𝜑 → ∀𝑥 ∈ (ℤ𝑀)DECID 𝑥𝐴)
2 eleq1 2292 . . . . 5 (𝑥 = 𝑁 → (𝑥𝐴𝑁𝐴))
32dcbid 843 . . . 4 (𝑥 = 𝑁 → (DECID 𝑥𝐴DECID 𝑁𝐴))
43rspcv 2903 . . 3 (𝑁 ∈ (ℤ𝑀) → (∀𝑥 ∈ (ℤ𝑀)DECID 𝑥𝐴DECID 𝑁𝐴))
51, 4mpan9 281 . 2 ((𝜑𝑁 ∈ (ℤ𝑀)) → DECID 𝑁𝐴)
6 sumdc.ss . . . . . 6 (𝜑𝐴 ⊆ (ℤ𝑀))
76ssneld 3226 . . . . 5 (𝜑 → (¬ 𝑁 ∈ (ℤ𝑀) → ¬ 𝑁𝐴))
87imp 124 . . . 4 ((𝜑 ∧ ¬ 𝑁 ∈ (ℤ𝑀)) → ¬ 𝑁𝐴)
98olcd 739 . . 3 ((𝜑 ∧ ¬ 𝑁 ∈ (ℤ𝑀)) → (𝑁𝐴 ∨ ¬ 𝑁𝐴))
10 df-dc 840 . . 3 (DECID 𝑁𝐴 ↔ (𝑁𝐴 ∨ ¬ 𝑁𝐴))
119, 10sylibr 134 . 2 ((𝜑 ∧ ¬ 𝑁 ∈ (ℤ𝑀)) → DECID 𝑁𝐴)
12 sumdc.m . . . 4 (𝜑𝑀 ∈ ℤ)
13 sumdc.n . . . 4 (𝜑𝑁 ∈ ℤ)
14 eluzdc 9793 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → DECID 𝑁 ∈ (ℤ𝑀))
1512, 13, 14syl2anc 411 . . 3 (𝜑DECID 𝑁 ∈ (ℤ𝑀))
16 exmiddc 841 . . 3 (DECID 𝑁 ∈ (ℤ𝑀) → (𝑁 ∈ (ℤ𝑀) ∨ ¬ 𝑁 ∈ (ℤ𝑀)))
1715, 16syl 14 . 2 (𝜑 → (𝑁 ∈ (ℤ𝑀) ∨ ¬ 𝑁 ∈ (ℤ𝑀)))
185, 11, 17mpjaodan 803 1 (𝜑DECID 𝑁𝐴)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wo 713  DECID wdc 839   = wceq 1395  wcel 2200  wral 2508  wss 3197  cfv 5314  cz 9434  cuz 9710
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4521  ax-setind 4626  ax-cnex 8078  ax-resscn 8079  ax-1cn 8080  ax-1re 8081  ax-icn 8082  ax-addcl 8083  ax-addrcl 8084  ax-mulcl 8085  ax-addcom 8087  ax-addass 8089  ax-distr 8091  ax-i2m1 8092  ax-0lt1 8093  ax-0id 8095  ax-rnegex 8096  ax-cnre 8098  ax-pre-ltirr 8099  ax-pre-ltwlin 8100  ax-pre-lttrn 8101  ax-pre-ltadd 8103
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4381  df-xp 4722  df-rel 4723  df-cnv 4724  df-co 4725  df-dm 4726  df-iota 5274  df-fun 5316  df-fv 5322  df-riota 5947  df-ov 5997  df-oprab 5998  df-mpo 5999  df-pnf 8171  df-mnf 8172  df-xr 8173  df-ltxr 8174  df-le 8175  df-sub 8307  df-neg 8308  df-inn 9099  df-n0 9358  df-z 9435  df-uz 9711
This theorem is referenced by:  sumeq2  11856  prodeq2  12054
  Copyright terms: Public domain W3C validator