![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sumdc | GIF version |
Description: Decidability of a subset of upper integers. (Contributed by Jim Kingdon, 1-Jan-2022.) |
Ref | Expression |
---|---|
sumdc.m | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
sumdc.ss | ⊢ (𝜑 → 𝐴 ⊆ (ℤ≥‘𝑀)) |
sumdc.dc | ⊢ (𝜑 → ∀𝑥 ∈ (ℤ≥‘𝑀)DECID 𝑥 ∈ 𝐴) |
sumdc.n | ⊢ (𝜑 → 𝑁 ∈ ℤ) |
Ref | Expression |
---|---|
sumdc | ⊢ (𝜑 → DECID 𝑁 ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sumdc.dc | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ (ℤ≥‘𝑀)DECID 𝑥 ∈ 𝐴) | |
2 | eleq1 2240 | . . . . 5 ⊢ (𝑥 = 𝑁 → (𝑥 ∈ 𝐴 ↔ 𝑁 ∈ 𝐴)) | |
3 | 2 | dcbid 838 | . . . 4 ⊢ (𝑥 = 𝑁 → (DECID 𝑥 ∈ 𝐴 ↔ DECID 𝑁 ∈ 𝐴)) |
4 | 3 | rspcv 2839 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (∀𝑥 ∈ (ℤ≥‘𝑀)DECID 𝑥 ∈ 𝐴 → DECID 𝑁 ∈ 𝐴)) |
5 | 1, 4 | mpan9 281 | . 2 ⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → DECID 𝑁 ∈ 𝐴) |
6 | sumdc.ss | . . . . . 6 ⊢ (𝜑 → 𝐴 ⊆ (ℤ≥‘𝑀)) | |
7 | 6 | ssneld 3159 | . . . . 5 ⊢ (𝜑 → (¬ 𝑁 ∈ (ℤ≥‘𝑀) → ¬ 𝑁 ∈ 𝐴)) |
8 | 7 | imp 124 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝑁 ∈ (ℤ≥‘𝑀)) → ¬ 𝑁 ∈ 𝐴) |
9 | 8 | olcd 734 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝑁 ∈ (ℤ≥‘𝑀)) → (𝑁 ∈ 𝐴 ∨ ¬ 𝑁 ∈ 𝐴)) |
10 | df-dc 835 | . . 3 ⊢ (DECID 𝑁 ∈ 𝐴 ↔ (𝑁 ∈ 𝐴 ∨ ¬ 𝑁 ∈ 𝐴)) | |
11 | 9, 10 | sylibr 134 | . 2 ⊢ ((𝜑 ∧ ¬ 𝑁 ∈ (ℤ≥‘𝑀)) → DECID 𝑁 ∈ 𝐴) |
12 | sumdc.m | . . . 4 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
13 | sumdc.n | . . . 4 ⊢ (𝜑 → 𝑁 ∈ ℤ) | |
14 | eluzdc 9612 | . . . 4 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → DECID 𝑁 ∈ (ℤ≥‘𝑀)) | |
15 | 12, 13, 14 | syl2anc 411 | . . 3 ⊢ (𝜑 → DECID 𝑁 ∈ (ℤ≥‘𝑀)) |
16 | exmiddc 836 | . . 3 ⊢ (DECID 𝑁 ∈ (ℤ≥‘𝑀) → (𝑁 ∈ (ℤ≥‘𝑀) ∨ ¬ 𝑁 ∈ (ℤ≥‘𝑀))) | |
17 | 15, 16 | syl 14 | . 2 ⊢ (𝜑 → (𝑁 ∈ (ℤ≥‘𝑀) ∨ ¬ 𝑁 ∈ (ℤ≥‘𝑀))) |
18 | 5, 11, 17 | mpjaodan 798 | 1 ⊢ (𝜑 → DECID 𝑁 ∈ 𝐴) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ∨ wo 708 DECID wdc 834 = wceq 1353 ∈ wcel 2148 ∀wral 2455 ⊆ wss 3131 ‘cfv 5218 ℤcz 9255 ℤ≥cuz 9530 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-setind 4538 ax-cnex 7904 ax-resscn 7905 ax-1cn 7906 ax-1re 7907 ax-icn 7908 ax-addcl 7909 ax-addrcl 7910 ax-mulcl 7911 ax-addcom 7913 ax-addass 7915 ax-distr 7917 ax-i2m1 7918 ax-0lt1 7919 ax-0id 7921 ax-rnegex 7922 ax-cnre 7924 ax-pre-ltirr 7925 ax-pre-ltwlin 7926 ax-pre-lttrn 7927 ax-pre-ltadd 7929 |
This theorem depends on definitions: df-bi 117 df-dc 835 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-reu 2462 df-rab 2464 df-v 2741 df-sbc 2965 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-int 3847 df-br 4006 df-opab 4067 df-mpt 4068 df-id 4295 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-iota 5180 df-fun 5220 df-fv 5226 df-riota 5833 df-ov 5880 df-oprab 5881 df-mpo 5882 df-pnf 7996 df-mnf 7997 df-xr 7998 df-ltxr 7999 df-le 8000 df-sub 8132 df-neg 8133 df-inn 8922 df-n0 9179 df-z 9256 df-uz 9531 |
This theorem is referenced by: sumeq2 11369 prodeq2 11567 |
Copyright terms: Public domain | W3C validator |