| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sumdc | GIF version | ||
| Description: Decidability of a subset of upper integers. (Contributed by Jim Kingdon, 1-Jan-2022.) |
| Ref | Expression |
|---|---|
| sumdc.m | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| sumdc.ss | ⊢ (𝜑 → 𝐴 ⊆ (ℤ≥‘𝑀)) |
| sumdc.dc | ⊢ (𝜑 → ∀𝑥 ∈ (ℤ≥‘𝑀)DECID 𝑥 ∈ 𝐴) |
| sumdc.n | ⊢ (𝜑 → 𝑁 ∈ ℤ) |
| Ref | Expression |
|---|---|
| sumdc | ⊢ (𝜑 → DECID 𝑁 ∈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sumdc.dc | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ (ℤ≥‘𝑀)DECID 𝑥 ∈ 𝐴) | |
| 2 | eleq1 2269 | . . . . 5 ⊢ (𝑥 = 𝑁 → (𝑥 ∈ 𝐴 ↔ 𝑁 ∈ 𝐴)) | |
| 3 | 2 | dcbid 840 | . . . 4 ⊢ (𝑥 = 𝑁 → (DECID 𝑥 ∈ 𝐴 ↔ DECID 𝑁 ∈ 𝐴)) |
| 4 | 3 | rspcv 2877 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (∀𝑥 ∈ (ℤ≥‘𝑀)DECID 𝑥 ∈ 𝐴 → DECID 𝑁 ∈ 𝐴)) |
| 5 | 1, 4 | mpan9 281 | . 2 ⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → DECID 𝑁 ∈ 𝐴) |
| 6 | sumdc.ss | . . . . . 6 ⊢ (𝜑 → 𝐴 ⊆ (ℤ≥‘𝑀)) | |
| 7 | 6 | ssneld 3199 | . . . . 5 ⊢ (𝜑 → (¬ 𝑁 ∈ (ℤ≥‘𝑀) → ¬ 𝑁 ∈ 𝐴)) |
| 8 | 7 | imp 124 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝑁 ∈ (ℤ≥‘𝑀)) → ¬ 𝑁 ∈ 𝐴) |
| 9 | 8 | olcd 736 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝑁 ∈ (ℤ≥‘𝑀)) → (𝑁 ∈ 𝐴 ∨ ¬ 𝑁 ∈ 𝐴)) |
| 10 | df-dc 837 | . . 3 ⊢ (DECID 𝑁 ∈ 𝐴 ↔ (𝑁 ∈ 𝐴 ∨ ¬ 𝑁 ∈ 𝐴)) | |
| 11 | 9, 10 | sylibr 134 | . 2 ⊢ ((𝜑 ∧ ¬ 𝑁 ∈ (ℤ≥‘𝑀)) → DECID 𝑁 ∈ 𝐴) |
| 12 | sumdc.m | . . . 4 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
| 13 | sumdc.n | . . . 4 ⊢ (𝜑 → 𝑁 ∈ ℤ) | |
| 14 | eluzdc 9746 | . . . 4 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → DECID 𝑁 ∈ (ℤ≥‘𝑀)) | |
| 15 | 12, 13, 14 | syl2anc 411 | . . 3 ⊢ (𝜑 → DECID 𝑁 ∈ (ℤ≥‘𝑀)) |
| 16 | exmiddc 838 | . . 3 ⊢ (DECID 𝑁 ∈ (ℤ≥‘𝑀) → (𝑁 ∈ (ℤ≥‘𝑀) ∨ ¬ 𝑁 ∈ (ℤ≥‘𝑀))) | |
| 17 | 15, 16 | syl 14 | . 2 ⊢ (𝜑 → (𝑁 ∈ (ℤ≥‘𝑀) ∨ ¬ 𝑁 ∈ (ℤ≥‘𝑀))) |
| 18 | 5, 11, 17 | mpjaodan 800 | 1 ⊢ (𝜑 → DECID 𝑁 ∈ 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ∨ wo 710 DECID wdc 836 = wceq 1373 ∈ wcel 2177 ∀wral 2485 ⊆ wss 3170 ‘cfv 5279 ℤcz 9387 ℤ≥cuz 9663 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4169 ax-pow 4225 ax-pr 4260 ax-un 4487 ax-setind 4592 ax-cnex 8031 ax-resscn 8032 ax-1cn 8033 ax-1re 8034 ax-icn 8035 ax-addcl 8036 ax-addrcl 8037 ax-mulcl 8038 ax-addcom 8040 ax-addass 8042 ax-distr 8044 ax-i2m1 8045 ax-0lt1 8046 ax-0id 8048 ax-rnegex 8049 ax-cnre 8051 ax-pre-ltirr 8052 ax-pre-ltwlin 8053 ax-pre-lttrn 8054 ax-pre-ltadd 8056 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3003 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-pw 3622 df-sn 3643 df-pr 3644 df-op 3646 df-uni 3856 df-int 3891 df-br 4051 df-opab 4113 df-mpt 4114 df-id 4347 df-xp 4688 df-rel 4689 df-cnv 4690 df-co 4691 df-dm 4692 df-iota 5240 df-fun 5281 df-fv 5287 df-riota 5911 df-ov 5959 df-oprab 5960 df-mpo 5961 df-pnf 8124 df-mnf 8125 df-xr 8126 df-ltxr 8127 df-le 8128 df-sub 8260 df-neg 8261 df-inn 9052 df-n0 9311 df-z 9388 df-uz 9664 |
| This theorem is referenced by: sumeq2 11740 prodeq2 11938 |
| Copyright terms: Public domain | W3C validator |