| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sumdc | GIF version | ||
| Description: Decidability of a subset of upper integers. (Contributed by Jim Kingdon, 1-Jan-2022.) |
| Ref | Expression |
|---|---|
| sumdc.m | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| sumdc.ss | ⊢ (𝜑 → 𝐴 ⊆ (ℤ≥‘𝑀)) |
| sumdc.dc | ⊢ (𝜑 → ∀𝑥 ∈ (ℤ≥‘𝑀)DECID 𝑥 ∈ 𝐴) |
| sumdc.n | ⊢ (𝜑 → 𝑁 ∈ ℤ) |
| Ref | Expression |
|---|---|
| sumdc | ⊢ (𝜑 → DECID 𝑁 ∈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sumdc.dc | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ (ℤ≥‘𝑀)DECID 𝑥 ∈ 𝐴) | |
| 2 | eleq1 2292 | . . . . 5 ⊢ (𝑥 = 𝑁 → (𝑥 ∈ 𝐴 ↔ 𝑁 ∈ 𝐴)) | |
| 3 | 2 | dcbid 843 | . . . 4 ⊢ (𝑥 = 𝑁 → (DECID 𝑥 ∈ 𝐴 ↔ DECID 𝑁 ∈ 𝐴)) |
| 4 | 3 | rspcv 2903 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (∀𝑥 ∈ (ℤ≥‘𝑀)DECID 𝑥 ∈ 𝐴 → DECID 𝑁 ∈ 𝐴)) |
| 5 | 1, 4 | mpan9 281 | . 2 ⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → DECID 𝑁 ∈ 𝐴) |
| 6 | sumdc.ss | . . . . . 6 ⊢ (𝜑 → 𝐴 ⊆ (ℤ≥‘𝑀)) | |
| 7 | 6 | ssneld 3226 | . . . . 5 ⊢ (𝜑 → (¬ 𝑁 ∈ (ℤ≥‘𝑀) → ¬ 𝑁 ∈ 𝐴)) |
| 8 | 7 | imp 124 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝑁 ∈ (ℤ≥‘𝑀)) → ¬ 𝑁 ∈ 𝐴) |
| 9 | 8 | olcd 739 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝑁 ∈ (ℤ≥‘𝑀)) → (𝑁 ∈ 𝐴 ∨ ¬ 𝑁 ∈ 𝐴)) |
| 10 | df-dc 840 | . . 3 ⊢ (DECID 𝑁 ∈ 𝐴 ↔ (𝑁 ∈ 𝐴 ∨ ¬ 𝑁 ∈ 𝐴)) | |
| 11 | 9, 10 | sylibr 134 | . 2 ⊢ ((𝜑 ∧ ¬ 𝑁 ∈ (ℤ≥‘𝑀)) → DECID 𝑁 ∈ 𝐴) |
| 12 | sumdc.m | . . . 4 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
| 13 | sumdc.n | . . . 4 ⊢ (𝜑 → 𝑁 ∈ ℤ) | |
| 14 | eluzdc 9793 | . . . 4 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → DECID 𝑁 ∈ (ℤ≥‘𝑀)) | |
| 15 | 12, 13, 14 | syl2anc 411 | . . 3 ⊢ (𝜑 → DECID 𝑁 ∈ (ℤ≥‘𝑀)) |
| 16 | exmiddc 841 | . . 3 ⊢ (DECID 𝑁 ∈ (ℤ≥‘𝑀) → (𝑁 ∈ (ℤ≥‘𝑀) ∨ ¬ 𝑁 ∈ (ℤ≥‘𝑀))) | |
| 17 | 15, 16 | syl 14 | . 2 ⊢ (𝜑 → (𝑁 ∈ (ℤ≥‘𝑀) ∨ ¬ 𝑁 ∈ (ℤ≥‘𝑀))) |
| 18 | 5, 11, 17 | mpjaodan 803 | 1 ⊢ (𝜑 → DECID 𝑁 ∈ 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ∨ wo 713 DECID wdc 839 = wceq 1395 ∈ wcel 2200 ∀wral 2508 ⊆ wss 3197 ‘cfv 5314 ℤcz 9434 ℤ≥cuz 9710 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4521 ax-setind 4626 ax-cnex 8078 ax-resscn 8079 ax-1cn 8080 ax-1re 8081 ax-icn 8082 ax-addcl 8083 ax-addrcl 8084 ax-mulcl 8085 ax-addcom 8087 ax-addass 8089 ax-distr 8091 ax-i2m1 8092 ax-0lt1 8093 ax-0id 8095 ax-rnegex 8096 ax-cnre 8098 ax-pre-ltirr 8099 ax-pre-ltwlin 8100 ax-pre-lttrn 8101 ax-pre-ltadd 8103 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4381 df-xp 4722 df-rel 4723 df-cnv 4724 df-co 4725 df-dm 4726 df-iota 5274 df-fun 5316 df-fv 5322 df-riota 5947 df-ov 5997 df-oprab 5998 df-mpo 5999 df-pnf 8171 df-mnf 8172 df-xr 8173 df-ltxr 8174 df-le 8175 df-sub 8307 df-neg 8308 df-inn 9099 df-n0 9358 df-z 9435 df-uz 9711 |
| This theorem is referenced by: sumeq2 11856 prodeq2 12054 |
| Copyright terms: Public domain | W3C validator |