ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sumdc GIF version

Theorem sumdc 11159
Description: Decidability of a subset of upper integers. (Contributed by Jim Kingdon, 1-Jan-2022.)
Hypotheses
Ref Expression
sumdc.m (𝜑𝑀 ∈ ℤ)
sumdc.ss (𝜑𝐴 ⊆ (ℤ𝑀))
sumdc.dc (𝜑 → ∀𝑥 ∈ (ℤ𝑀)DECID 𝑥𝐴)
sumdc.n (𝜑𝑁 ∈ ℤ)
Assertion
Ref Expression
sumdc (𝜑DECID 𝑁𝐴)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑀   𝑥,𝑁
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem sumdc
StepHypRef Expression
1 sumdc.dc . . 3 (𝜑 → ∀𝑥 ∈ (ℤ𝑀)DECID 𝑥𝐴)
2 eleq1 2203 . . . . 5 (𝑥 = 𝑁 → (𝑥𝐴𝑁𝐴))
32dcbid 824 . . . 4 (𝑥 = 𝑁 → (DECID 𝑥𝐴DECID 𝑁𝐴))
43rspcv 2789 . . 3 (𝑁 ∈ (ℤ𝑀) → (∀𝑥 ∈ (ℤ𝑀)DECID 𝑥𝐴DECID 𝑁𝐴))
51, 4mpan9 279 . 2 ((𝜑𝑁 ∈ (ℤ𝑀)) → DECID 𝑁𝐴)
6 sumdc.ss . . . . . 6 (𝜑𝐴 ⊆ (ℤ𝑀))
76ssneld 3104 . . . . 5 (𝜑 → (¬ 𝑁 ∈ (ℤ𝑀) → ¬ 𝑁𝐴))
87imp 123 . . . 4 ((𝜑 ∧ ¬ 𝑁 ∈ (ℤ𝑀)) → ¬ 𝑁𝐴)
98olcd 724 . . 3 ((𝜑 ∧ ¬ 𝑁 ∈ (ℤ𝑀)) → (𝑁𝐴 ∨ ¬ 𝑁𝐴))
10 df-dc 821 . . 3 (DECID 𝑁𝐴 ↔ (𝑁𝐴 ∨ ¬ 𝑁𝐴))
119, 10sylibr 133 . 2 ((𝜑 ∧ ¬ 𝑁 ∈ (ℤ𝑀)) → DECID 𝑁𝐴)
12 sumdc.m . . . 4 (𝜑𝑀 ∈ ℤ)
13 sumdc.n . . . 4 (𝜑𝑁 ∈ ℤ)
14 eluzdc 9431 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → DECID 𝑁 ∈ (ℤ𝑀))
1512, 13, 14syl2anc 409 . . 3 (𝜑DECID 𝑁 ∈ (ℤ𝑀))
16 exmiddc 822 . . 3 (DECID 𝑁 ∈ (ℤ𝑀) → (𝑁 ∈ (ℤ𝑀) ∨ ¬ 𝑁 ∈ (ℤ𝑀)))
1715, 16syl 14 . 2 (𝜑 → (𝑁 ∈ (ℤ𝑀) ∨ ¬ 𝑁 ∈ (ℤ𝑀)))
185, 11, 17mpjaodan 788 1 (𝜑DECID 𝑁𝐴)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wo 698  DECID wdc 820   = wceq 1332  wcel 1481  wral 2417  wss 3076  cfv 5131  cz 9078  cuz 9350
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-cnex 7735  ax-resscn 7736  ax-1cn 7737  ax-1re 7738  ax-icn 7739  ax-addcl 7740  ax-addrcl 7741  ax-mulcl 7742  ax-addcom 7744  ax-addass 7746  ax-distr 7748  ax-i2m1 7749  ax-0lt1 7750  ax-0id 7752  ax-rnegex 7753  ax-cnre 7755  ax-pre-ltirr 7756  ax-pre-ltwlin 7757  ax-pre-lttrn 7758  ax-pre-ltadd 7760
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2691  df-sbc 2914  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-br 3938  df-opab 3998  df-mpt 3999  df-id 4223  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-iota 5096  df-fun 5133  df-fv 5139  df-riota 5738  df-ov 5785  df-oprab 5786  df-mpo 5787  df-pnf 7826  df-mnf 7827  df-xr 7828  df-ltxr 7829  df-le 7830  df-sub 7959  df-neg 7960  df-inn 8745  df-n0 9002  df-z 9079  df-uz 9351
This theorem is referenced by:  sumeq2  11160  prodeq2  11358
  Copyright terms: Public domain W3C validator