ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addnqprlemfu GIF version

Theorem addnqprlemfu 7522
Description: Lemma for addnqpr 7523. The forward subset relationship for the upper cut. (Contributed by Jim Kingdon, 19-Aug-2020.)
Assertion
Ref Expression
addnqprlemfu ((𝐴Q𝐵Q) → (2nd ‘⟨{𝑙𝑙 <Q (𝐴 +Q 𝐵)}, {𝑢 ∣ (𝐴 +Q 𝐵) <Q 𝑢}⟩) ⊆ (2nd ‘(⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ +P ⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩)))
Distinct variable groups:   𝐴,𝑙,𝑢   𝐵,𝑙,𝑢

Proof of Theorem addnqprlemfu
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 addnqprlemrl 7519 . . . . . 6 ((𝐴Q𝐵Q) → (1st ‘(⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ +P ⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩)) ⊆ (1st ‘⟨{𝑙𝑙 <Q (𝐴 +Q 𝐵)}, {𝑢 ∣ (𝐴 +Q 𝐵) <Q 𝑢}⟩))
2 ltsonq 7360 . . . . . . . . 9 <Q Or Q
3 addclnq 7337 . . . . . . . . 9 ((𝐴Q𝐵Q) → (𝐴 +Q 𝐵) ∈ Q)
4 sonr 4302 . . . . . . . . 9 (( <Q Or Q ∧ (𝐴 +Q 𝐵) ∈ Q) → ¬ (𝐴 +Q 𝐵) <Q (𝐴 +Q 𝐵))
52, 3, 4sylancr 412 . . . . . . . 8 ((𝐴Q𝐵Q) → ¬ (𝐴 +Q 𝐵) <Q (𝐴 +Q 𝐵))
6 ltrelnq 7327 . . . . . . . . . . . 12 <Q ⊆ (Q × Q)
76brel 4663 . . . . . . . . . . 11 ((𝐴 +Q 𝐵) <Q (𝐴 +Q 𝐵) → ((𝐴 +Q 𝐵) ∈ Q ∧ (𝐴 +Q 𝐵) ∈ Q))
87simpld 111 . . . . . . . . . 10 ((𝐴 +Q 𝐵) <Q (𝐴 +Q 𝐵) → (𝐴 +Q 𝐵) ∈ Q)
9 elex 2741 . . . . . . . . . 10 ((𝐴 +Q 𝐵) ∈ Q → (𝐴 +Q 𝐵) ∈ V)
108, 9syl 14 . . . . . . . . 9 ((𝐴 +Q 𝐵) <Q (𝐴 +Q 𝐵) → (𝐴 +Q 𝐵) ∈ V)
11 breq1 3992 . . . . . . . . 9 (𝑙 = (𝐴 +Q 𝐵) → (𝑙 <Q (𝐴 +Q 𝐵) ↔ (𝐴 +Q 𝐵) <Q (𝐴 +Q 𝐵)))
1210, 11elab3 2882 . . . . . . . 8 ((𝐴 +Q 𝐵) ∈ {𝑙𝑙 <Q (𝐴 +Q 𝐵)} ↔ (𝐴 +Q 𝐵) <Q (𝐴 +Q 𝐵))
135, 12sylnibr 672 . . . . . . 7 ((𝐴Q𝐵Q) → ¬ (𝐴 +Q 𝐵) ∈ {𝑙𝑙 <Q (𝐴 +Q 𝐵)})
14 ltnqex 7511 . . . . . . . . 9 {𝑙𝑙 <Q (𝐴 +Q 𝐵)} ∈ V
15 gtnqex 7512 . . . . . . . . 9 {𝑢 ∣ (𝐴 +Q 𝐵) <Q 𝑢} ∈ V
1614, 15op1st 6125 . . . . . . . 8 (1st ‘⟨{𝑙𝑙 <Q (𝐴 +Q 𝐵)}, {𝑢 ∣ (𝐴 +Q 𝐵) <Q 𝑢}⟩) = {𝑙𝑙 <Q (𝐴 +Q 𝐵)}
1716eleq2i 2237 . . . . . . 7 ((𝐴 +Q 𝐵) ∈ (1st ‘⟨{𝑙𝑙 <Q (𝐴 +Q 𝐵)}, {𝑢 ∣ (𝐴 +Q 𝐵) <Q 𝑢}⟩) ↔ (𝐴 +Q 𝐵) ∈ {𝑙𝑙 <Q (𝐴 +Q 𝐵)})
1813, 17sylnibr 672 . . . . . 6 ((𝐴Q𝐵Q) → ¬ (𝐴 +Q 𝐵) ∈ (1st ‘⟨{𝑙𝑙 <Q (𝐴 +Q 𝐵)}, {𝑢 ∣ (𝐴 +Q 𝐵) <Q 𝑢}⟩))
191, 18ssneldd 3150 . . . . 5 ((𝐴Q𝐵Q) → ¬ (𝐴 +Q 𝐵) ∈ (1st ‘(⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ +P ⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩)))
2019adantr 274 . . . 4 (((𝐴Q𝐵Q) ∧ 𝑟 ∈ (2nd ‘⟨{𝑙𝑙 <Q (𝐴 +Q 𝐵)}, {𝑢 ∣ (𝐴 +Q 𝐵) <Q 𝑢}⟩)) → ¬ (𝐴 +Q 𝐵) ∈ (1st ‘(⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ +P ⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩)))
21 nqprlu 7509 . . . . . . . 8 (𝐴Q → ⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ ∈ P)
22 nqprlu 7509 . . . . . . . 8 (𝐵Q → ⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩ ∈ P)
23 addclpr 7499 . . . . . . . 8 ((⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ ∈ P ∧ ⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩ ∈ P) → (⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ +P ⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩) ∈ P)
2421, 22, 23syl2an 287 . . . . . . 7 ((𝐴Q𝐵Q) → (⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ +P ⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩) ∈ P)
25 prop 7437 . . . . . . 7 ((⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ +P ⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩) ∈ P → ⟨(1st ‘(⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ +P ⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩)), (2nd ‘(⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ +P ⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩))⟩ ∈ P)
2624, 25syl 14 . . . . . 6 ((𝐴Q𝐵Q) → ⟨(1st ‘(⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ +P ⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩)), (2nd ‘(⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ +P ⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩))⟩ ∈ P)
27 vex 2733 . . . . . . . 8 𝑟 ∈ V
28 breq2 3993 . . . . . . . 8 (𝑢 = 𝑟 → ((𝐴 +Q 𝐵) <Q 𝑢 ↔ (𝐴 +Q 𝐵) <Q 𝑟))
2914, 15op2nd 6126 . . . . . . . 8 (2nd ‘⟨{𝑙𝑙 <Q (𝐴 +Q 𝐵)}, {𝑢 ∣ (𝐴 +Q 𝐵) <Q 𝑢}⟩) = {𝑢 ∣ (𝐴 +Q 𝐵) <Q 𝑢}
3027, 28, 29elab2 2878 . . . . . . 7 (𝑟 ∈ (2nd ‘⟨{𝑙𝑙 <Q (𝐴 +Q 𝐵)}, {𝑢 ∣ (𝐴 +Q 𝐵) <Q 𝑢}⟩) ↔ (𝐴 +Q 𝐵) <Q 𝑟)
3130biimpi 119 . . . . . 6 (𝑟 ∈ (2nd ‘⟨{𝑙𝑙 <Q (𝐴 +Q 𝐵)}, {𝑢 ∣ (𝐴 +Q 𝐵) <Q 𝑢}⟩) → (𝐴 +Q 𝐵) <Q 𝑟)
32 prloc 7453 . . . . . 6 ((⟨(1st ‘(⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ +P ⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩)), (2nd ‘(⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ +P ⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩))⟩ ∈ P ∧ (𝐴 +Q 𝐵) <Q 𝑟) → ((𝐴 +Q 𝐵) ∈ (1st ‘(⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ +P ⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩)) ∨ 𝑟 ∈ (2nd ‘(⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ +P ⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩))))
3326, 31, 32syl2an 287 . . . . 5 (((𝐴Q𝐵Q) ∧ 𝑟 ∈ (2nd ‘⟨{𝑙𝑙 <Q (𝐴 +Q 𝐵)}, {𝑢 ∣ (𝐴 +Q 𝐵) <Q 𝑢}⟩)) → ((𝐴 +Q 𝐵) ∈ (1st ‘(⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ +P ⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩)) ∨ 𝑟 ∈ (2nd ‘(⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ +P ⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩))))
3433orcomd 724 . . . 4 (((𝐴Q𝐵Q) ∧ 𝑟 ∈ (2nd ‘⟨{𝑙𝑙 <Q (𝐴 +Q 𝐵)}, {𝑢 ∣ (𝐴 +Q 𝐵) <Q 𝑢}⟩)) → (𝑟 ∈ (2nd ‘(⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ +P ⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩)) ∨ (𝐴 +Q 𝐵) ∈ (1st ‘(⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ +P ⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩))))
3520, 34ecased 1344 . . 3 (((𝐴Q𝐵Q) ∧ 𝑟 ∈ (2nd ‘⟨{𝑙𝑙 <Q (𝐴 +Q 𝐵)}, {𝑢 ∣ (𝐴 +Q 𝐵) <Q 𝑢}⟩)) → 𝑟 ∈ (2nd ‘(⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ +P ⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩)))
3635ex 114 . 2 ((𝐴Q𝐵Q) → (𝑟 ∈ (2nd ‘⟨{𝑙𝑙 <Q (𝐴 +Q 𝐵)}, {𝑢 ∣ (𝐴 +Q 𝐵) <Q 𝑢}⟩) → 𝑟 ∈ (2nd ‘(⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ +P ⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩))))
3736ssrdv 3153 1 ((𝐴Q𝐵Q) → (2nd ‘⟨{𝑙𝑙 <Q (𝐴 +Q 𝐵)}, {𝑢 ∣ (𝐴 +Q 𝐵) <Q 𝑢}⟩) ⊆ (2nd ‘(⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ +P ⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wo 703  wcel 2141  {cab 2156  Vcvv 2730  wss 3121  cop 3586   class class class wbr 3989   Or wor 4280  cfv 5198  (class class class)co 5853  1st c1st 6117  2nd c2nd 6118  Qcnq 7242   +Q cplq 7244   <Q cltq 7247  Pcnp 7253   +P cpp 7255
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-eprel 4274  df-id 4278  df-po 4281  df-iso 4282  df-iord 4351  df-on 4353  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-irdg 6349  df-1o 6395  df-2o 6396  df-oadd 6399  df-omul 6400  df-er 6513  df-ec 6515  df-qs 6519  df-ni 7266  df-pli 7267  df-mi 7268  df-lti 7269  df-plpq 7306  df-mpq 7307  df-enq 7309  df-nqqs 7310  df-plqqs 7311  df-mqqs 7312  df-1nqqs 7313  df-rq 7314  df-ltnqqs 7315  df-enq0 7386  df-nq0 7387  df-0nq0 7388  df-plq0 7389  df-mq0 7390  df-inp 7428  df-iplp 7430
This theorem is referenced by:  addnqpr  7523
  Copyright terms: Public domain W3C validator