ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fprodntrivap GIF version

Theorem fprodntrivap 11547
Description: A non-triviality lemma for finite sequences. (Contributed by Scott Fenton, 16-Dec-2017.)
Hypotheses
Ref Expression
fprodntriv.1 𝑍 = (ℤ𝑀)
fprodntriv.2 (𝜑𝑁𝑍)
fprodntriv.3 (𝜑𝐴 ⊆ (𝑀...𝑁))
Assertion
Ref Expression
fprodntrivap (𝜑 → ∃𝑛𝑍𝑦(𝑦 # 0 ∧ seq𝑛( · , (𝑘𝑍 ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦))
Distinct variable groups:   𝐴,𝑘,𝑛,𝑦   𝐵,𝑛,𝑦   𝑛,𝑁,𝑦   𝑘,𝑍,𝑛,𝑦   𝜑,𝑛
Allowed substitution hints:   𝜑(𝑦,𝑘)   𝐵(𝑘)   𝑀(𝑦,𝑘,𝑛)   𝑁(𝑘)

Proof of Theorem fprodntrivap
Dummy variables 𝑚 𝑝 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fprodntriv.2 . . . . 5 (𝜑𝑁𝑍)
2 fprodntriv.1 . . . . 5 𝑍 = (ℤ𝑀)
31, 2eleqtrdi 2263 . . . 4 (𝜑𝑁 ∈ (ℤ𝑀))
4 peano2uz 9542 . . . 4 (𝑁 ∈ (ℤ𝑀) → (𝑁 + 1) ∈ (ℤ𝑀))
53, 4syl 14 . . 3 (𝜑 → (𝑁 + 1) ∈ (ℤ𝑀))
65, 2eleqtrrdi 2264 . 2 (𝜑 → (𝑁 + 1) ∈ 𝑍)
7 1ap0 8509 . . 3 1 # 0
8 eqid 2170 . . . 4 (ℤ‘(𝑁 + 1)) = (ℤ‘(𝑁 + 1))
9 eluzelz 9496 . . . . . . 7 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
109, 2eleq2s 2265 . . . . . 6 (𝑁𝑍𝑁 ∈ ℤ)
111, 10syl 14 . . . . 5 (𝜑𝑁 ∈ ℤ)
1211peano2zd 9337 . . . 4 (𝜑 → (𝑁 + 1) ∈ ℤ)
13 seqex 10403 . . . . 5 seq(𝑁 + 1)( · , (𝑘𝑍 ↦ if(𝑘𝐴, 𝐵, 1))) ∈ V
1413a1i 9 . . . 4 (𝜑 → seq(𝑁 + 1)( · , (𝑘𝑍 ↦ if(𝑘𝐴, 𝐵, 1))) ∈ V)
15 1cnd 7936 . . . 4 (𝜑 → 1 ∈ ℂ)
16 simpr 109 . . . . . 6 ((𝜑𝑛 ∈ (ℤ‘(𝑁 + 1))) → 𝑛 ∈ (ℤ‘(𝑁 + 1)))
17 fprodntriv.3 . . . . . . . . . 10 (𝜑𝐴 ⊆ (𝑀...𝑁))
1817ad2antrr 485 . . . . . . . . 9 (((𝜑𝑛 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑚 ∈ ((𝑁 + 1)...𝑛)) → 𝐴 ⊆ (𝑀...𝑁))
1911ad2antrr 485 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑚 ∈ ((𝑁 + 1)...𝑛)) → 𝑁 ∈ ℤ)
2019zred 9334 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑚 ∈ ((𝑁 + 1)...𝑛)) → 𝑁 ∈ ℝ)
2119peano2zd 9337 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑚 ∈ ((𝑁 + 1)...𝑛)) → (𝑁 + 1) ∈ ℤ)
2221zred 9334 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑚 ∈ ((𝑁 + 1)...𝑛)) → (𝑁 + 1) ∈ ℝ)
23 elfzelz 9981 . . . . . . . . . . . . . . . 16 (𝑚 ∈ ((𝑁 + 1)...𝑛) → 𝑚 ∈ ℤ)
2423adantl 275 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑚 ∈ ((𝑁 + 1)...𝑛)) → 𝑚 ∈ ℤ)
2524zred 9334 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑚 ∈ ((𝑁 + 1)...𝑛)) → 𝑚 ∈ ℝ)
2620ltp1d 8846 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑚 ∈ ((𝑁 + 1)...𝑛)) → 𝑁 < (𝑁 + 1))
27 elfzle1 9983 . . . . . . . . . . . . . . 15 (𝑚 ∈ ((𝑁 + 1)...𝑛) → (𝑁 + 1) ≤ 𝑚)
2827adantl 275 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑚 ∈ ((𝑁 + 1)...𝑛)) → (𝑁 + 1) ≤ 𝑚)
2920, 22, 25, 26, 28ltletrd 8342 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑚 ∈ ((𝑁 + 1)...𝑛)) → 𝑁 < 𝑚)
30 zltnle 9258 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℤ) → (𝑁 < 𝑚 ↔ ¬ 𝑚𝑁))
3119, 24, 30syl2anc 409 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑚 ∈ ((𝑁 + 1)...𝑛)) → (𝑁 < 𝑚 ↔ ¬ 𝑚𝑁))
3229, 31mpbid 146 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑚 ∈ ((𝑁 + 1)...𝑛)) → ¬ 𝑚𝑁)
3332intnand 926 . . . . . . . . . . 11 (((𝜑𝑛 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑚 ∈ ((𝑁 + 1)...𝑛)) → ¬ (𝑀𝑚𝑚𝑁))
3433intnand 926 . . . . . . . . . 10 (((𝜑𝑛 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑚 ∈ ((𝑁 + 1)...𝑛)) → ¬ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑚 ∈ ℤ) ∧ (𝑀𝑚𝑚𝑁)))
35 elfz2 9972 . . . . . . . . . 10 (𝑚 ∈ (𝑀...𝑁) ↔ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑚 ∈ ℤ) ∧ (𝑀𝑚𝑚𝑁)))
3634, 35sylnibr 672 . . . . . . . . 9 (((𝜑𝑛 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑚 ∈ ((𝑁 + 1)...𝑛)) → ¬ 𝑚 ∈ (𝑀...𝑁))
3718, 36ssneldd 3150 . . . . . . . 8 (((𝜑𝑛 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑚 ∈ ((𝑁 + 1)...𝑛)) → ¬ 𝑚𝐴)
3837iffalsed 3536 . . . . . . 7 (((𝜑𝑛 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑚 ∈ ((𝑁 + 1)...𝑛)) → if(𝑚𝐴, 𝑚 / 𝑘𝐵, 1) = 1)
396ad2antrr 485 . . . . . . . . 9 (((𝜑𝑛 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑚 ∈ ((𝑁 + 1)...𝑛)) → (𝑁 + 1) ∈ 𝑍)
40 elfzuz 9977 . . . . . . . . . 10 (𝑚 ∈ ((𝑁 + 1)...𝑛) → 𝑚 ∈ (ℤ‘(𝑁 + 1)))
4140adantl 275 . . . . . . . . 9 (((𝜑𝑛 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑚 ∈ ((𝑁 + 1)...𝑛)) → 𝑚 ∈ (ℤ‘(𝑁 + 1)))
422uztrn2 9504 . . . . . . . . 9 (((𝑁 + 1) ∈ 𝑍𝑚 ∈ (ℤ‘(𝑁 + 1))) → 𝑚𝑍)
4339, 41, 42syl2anc 409 . . . . . . . 8 (((𝜑𝑛 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑚 ∈ ((𝑁 + 1)...𝑛)) → 𝑚𝑍)
44 ax-1cn 7867 . . . . . . . . 9 1 ∈ ℂ
4538, 44eqeltrdi 2261 . . . . . . . 8 (((𝜑𝑛 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑚 ∈ ((𝑁 + 1)...𝑛)) → if(𝑚𝐴, 𝑚 / 𝑘𝐵, 1) ∈ ℂ)
46 nfcv 2312 . . . . . . . . 9 𝑘𝑚
47 nfv 1521 . . . . . . . . . 10 𝑘 𝑚𝐴
48 nfcsb1v 3082 . . . . . . . . . 10 𝑘𝑚 / 𝑘𝐵
49 nfcv 2312 . . . . . . . . . 10 𝑘1
5047, 48, 49nfif 3554 . . . . . . . . 9 𝑘if(𝑚𝐴, 𝑚 / 𝑘𝐵, 1)
51 eleq1w 2231 . . . . . . . . . 10 (𝑘 = 𝑚 → (𝑘𝐴𝑚𝐴))
52 csbeq1a 3058 . . . . . . . . . 10 (𝑘 = 𝑚𝐵 = 𝑚 / 𝑘𝐵)
5351, 52ifbieq1d 3548 . . . . . . . . 9 (𝑘 = 𝑚 → if(𝑘𝐴, 𝐵, 1) = if(𝑚𝐴, 𝑚 / 𝑘𝐵, 1))
54 eqid 2170 . . . . . . . . 9 (𝑘𝑍 ↦ if(𝑘𝐴, 𝐵, 1)) = (𝑘𝑍 ↦ if(𝑘𝐴, 𝐵, 1))
5546, 50, 53, 54fvmptf 5588 . . . . . . . 8 ((𝑚𝑍 ∧ if(𝑚𝐴, 𝑚 / 𝑘𝐵, 1) ∈ ℂ) → ((𝑘𝑍 ↦ if(𝑘𝐴, 𝐵, 1))‘𝑚) = if(𝑚𝐴, 𝑚 / 𝑘𝐵, 1))
5643, 45, 55syl2anc 409 . . . . . . 7 (((𝜑𝑛 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑚 ∈ ((𝑁 + 1)...𝑛)) → ((𝑘𝑍 ↦ if(𝑘𝐴, 𝐵, 1))‘𝑚) = if(𝑚𝐴, 𝑚 / 𝑘𝐵, 1))
57 1ex 7915 . . . . . . . . 9 1 ∈ V
5857fvconst2 5712 . . . . . . . 8 (𝑚 ∈ (ℤ‘(𝑁 + 1)) → (((ℤ‘(𝑁 + 1)) × {1})‘𝑚) = 1)
5941, 58syl 14 . . . . . . 7 (((𝜑𝑛 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑚 ∈ ((𝑁 + 1)...𝑛)) → (((ℤ‘(𝑁 + 1)) × {1})‘𝑚) = 1)
6038, 56, 593eqtr4d 2213 . . . . . 6 (((𝜑𝑛 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑚 ∈ ((𝑁 + 1)...𝑛)) → ((𝑘𝑍 ↦ if(𝑘𝐴, 𝐵, 1))‘𝑚) = (((ℤ‘(𝑁 + 1)) × {1})‘𝑚))
616ad2antrr 485 . . . . . . . . 9 (((𝜑𝑛 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑝 ∈ (ℤ‘(𝑁 + 1))) → (𝑁 + 1) ∈ 𝑍)
62 simpr 109 . . . . . . . . 9 (((𝜑𝑛 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑝 ∈ (ℤ‘(𝑁 + 1))) → 𝑝 ∈ (ℤ‘(𝑁 + 1)))
632uztrn2 9504 . . . . . . . . 9 (((𝑁 + 1) ∈ 𝑍𝑝 ∈ (ℤ‘(𝑁 + 1))) → 𝑝𝑍)
6461, 62, 63syl2anc 409 . . . . . . . 8 (((𝜑𝑛 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑝 ∈ (ℤ‘(𝑁 + 1))) → 𝑝𝑍)
6517ad2antrr 485 . . . . . . . . . . 11 (((𝜑𝑛 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑝 ∈ (ℤ‘(𝑁 + 1))) → 𝐴 ⊆ (𝑀...𝑁))
6611ad2antrr 485 . . . . . . . . . . . . . . . . 17 (((𝜑𝑛 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑝 ∈ (ℤ‘(𝑁 + 1))) → 𝑁 ∈ ℤ)
6766zred 9334 . . . . . . . . . . . . . . . 16 (((𝜑𝑛 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑝 ∈ (ℤ‘(𝑁 + 1))) → 𝑁 ∈ ℝ)
68 peano2re 8055 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ ℝ → (𝑁 + 1) ∈ ℝ)
6967, 68syl 14 . . . . . . . . . . . . . . . 16 (((𝜑𝑛 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑝 ∈ (ℤ‘(𝑁 + 1))) → (𝑁 + 1) ∈ ℝ)
70 eluzelz 9496 . . . . . . . . . . . . . . . . . 18 (𝑝 ∈ (ℤ‘(𝑁 + 1)) → 𝑝 ∈ ℤ)
7170adantl 275 . . . . . . . . . . . . . . . . 17 (((𝜑𝑛 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑝 ∈ (ℤ‘(𝑁 + 1))) → 𝑝 ∈ ℤ)
7271zred 9334 . . . . . . . . . . . . . . . 16 (((𝜑𝑛 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑝 ∈ (ℤ‘(𝑁 + 1))) → 𝑝 ∈ ℝ)
7367ltp1d 8846 . . . . . . . . . . . . . . . 16 (((𝜑𝑛 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑝 ∈ (ℤ‘(𝑁 + 1))) → 𝑁 < (𝑁 + 1))
74 eluzle 9499 . . . . . . . . . . . . . . . . 17 (𝑝 ∈ (ℤ‘(𝑁 + 1)) → (𝑁 + 1) ≤ 𝑝)
7574adantl 275 . . . . . . . . . . . . . . . 16 (((𝜑𝑛 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑝 ∈ (ℤ‘(𝑁 + 1))) → (𝑁 + 1) ≤ 𝑝)
7667, 69, 72, 73, 75ltletrd 8342 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑝 ∈ (ℤ‘(𝑁 + 1))) → 𝑁 < 𝑝)
77 zltnle 9258 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℤ ∧ 𝑝 ∈ ℤ) → (𝑁 < 𝑝 ↔ ¬ 𝑝𝑁))
7866, 71, 77syl2anc 409 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑝 ∈ (ℤ‘(𝑁 + 1))) → (𝑁 < 𝑝 ↔ ¬ 𝑝𝑁))
7976, 78mpbid 146 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑝 ∈ (ℤ‘(𝑁 + 1))) → ¬ 𝑝𝑁)
8079intnand 926 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑝 ∈ (ℤ‘(𝑁 + 1))) → ¬ (𝑀𝑝𝑝𝑁))
8180intnand 926 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑝 ∈ (ℤ‘(𝑁 + 1))) → ¬ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑝 ∈ ℤ) ∧ (𝑀𝑝𝑝𝑁)))
82 elfz2 9972 . . . . . . . . . . . 12 (𝑝 ∈ (𝑀...𝑁) ↔ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑝 ∈ ℤ) ∧ (𝑀𝑝𝑝𝑁)))
8381, 82sylnibr 672 . . . . . . . . . . 11 (((𝜑𝑛 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑝 ∈ (ℤ‘(𝑁 + 1))) → ¬ 𝑝 ∈ (𝑀...𝑁))
8465, 83ssneldd 3150 . . . . . . . . . 10 (((𝜑𝑛 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑝 ∈ (ℤ‘(𝑁 + 1))) → ¬ 𝑝𝐴)
8584iffalsed 3536 . . . . . . . . 9 (((𝜑𝑛 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑝 ∈ (ℤ‘(𝑁 + 1))) → if(𝑝𝐴, 𝑝 / 𝑘𝐵, 1) = 1)
8685, 44eqeltrdi 2261 . . . . . . . 8 (((𝜑𝑛 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑝 ∈ (ℤ‘(𝑁 + 1))) → if(𝑝𝐴, 𝑝 / 𝑘𝐵, 1) ∈ ℂ)
87 nfcv 2312 . . . . . . . . 9 𝑘𝑝
88 nfv 1521 . . . . . . . . . 10 𝑘 𝑝𝐴
89 nfcsb1v 3082 . . . . . . . . . 10 𝑘𝑝 / 𝑘𝐵
9088, 89, 49nfif 3554 . . . . . . . . 9 𝑘if(𝑝𝐴, 𝑝 / 𝑘𝐵, 1)
91 eleq1w 2231 . . . . . . . . . 10 (𝑘 = 𝑝 → (𝑘𝐴𝑝𝐴))
92 csbeq1a 3058 . . . . . . . . . 10 (𝑘 = 𝑝𝐵 = 𝑝 / 𝑘𝐵)
9391, 92ifbieq1d 3548 . . . . . . . . 9 (𝑘 = 𝑝 → if(𝑘𝐴, 𝐵, 1) = if(𝑝𝐴, 𝑝 / 𝑘𝐵, 1))
9487, 90, 93, 54fvmptf 5588 . . . . . . . 8 ((𝑝𝑍 ∧ if(𝑝𝐴, 𝑝 / 𝑘𝐵, 1) ∈ ℂ) → ((𝑘𝑍 ↦ if(𝑘𝐴, 𝐵, 1))‘𝑝) = if(𝑝𝐴, 𝑝 / 𝑘𝐵, 1))
9564, 86, 94syl2anc 409 . . . . . . 7 (((𝜑𝑛 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑝 ∈ (ℤ‘(𝑁 + 1))) → ((𝑘𝑍 ↦ if(𝑘𝐴, 𝐵, 1))‘𝑝) = if(𝑝𝐴, 𝑝 / 𝑘𝐵, 1))
9695, 86eqeltrd 2247 . . . . . 6 (((𝜑𝑛 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑝 ∈ (ℤ‘(𝑁 + 1))) → ((𝑘𝑍 ↦ if(𝑘𝐴, 𝐵, 1))‘𝑝) ∈ ℂ)
9757fvconst2 5712 . . . . . . . 8 (𝑝 ∈ (ℤ‘(𝑁 + 1)) → (((ℤ‘(𝑁 + 1)) × {1})‘𝑝) = 1)
9897adantl 275 . . . . . . 7 (((𝜑𝑛 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑝 ∈ (ℤ‘(𝑁 + 1))) → (((ℤ‘(𝑁 + 1)) × {1})‘𝑝) = 1)
9998, 44eqeltrdi 2261 . . . . . 6 (((𝜑𝑛 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑝 ∈ (ℤ‘(𝑁 + 1))) → (((ℤ‘(𝑁 + 1)) × {1})‘𝑝) ∈ ℂ)
100 mulcl 7901 . . . . . . 7 ((𝑝 ∈ ℂ ∧ 𝑞 ∈ ℂ) → (𝑝 · 𝑞) ∈ ℂ)
101100adantl 275 . . . . . 6 (((𝜑𝑛 ∈ (ℤ‘(𝑁 + 1))) ∧ (𝑝 ∈ ℂ ∧ 𝑞 ∈ ℂ)) → (𝑝 · 𝑞) ∈ ℂ)
10216, 60, 96, 99, 101seq3fveq 10427 . . . . 5 ((𝜑𝑛 ∈ (ℤ‘(𝑁 + 1))) → (seq(𝑁 + 1)( · , (𝑘𝑍 ↦ if(𝑘𝐴, 𝐵, 1)))‘𝑛) = (seq(𝑁 + 1)( · , ((ℤ‘(𝑁 + 1)) × {1}))‘𝑛))
1038prodf1 11505 . . . . . 6 (𝑛 ∈ (ℤ‘(𝑁 + 1)) → (seq(𝑁 + 1)( · , ((ℤ‘(𝑁 + 1)) × {1}))‘𝑛) = 1)
104103adantl 275 . . . . 5 ((𝜑𝑛 ∈ (ℤ‘(𝑁 + 1))) → (seq(𝑁 + 1)( · , ((ℤ‘(𝑁 + 1)) × {1}))‘𝑛) = 1)
105102, 104eqtrd 2203 . . . 4 ((𝜑𝑛 ∈ (ℤ‘(𝑁 + 1))) → (seq(𝑁 + 1)( · , (𝑘𝑍 ↦ if(𝑘𝐴, 𝐵, 1)))‘𝑛) = 1)
1068, 12, 14, 15, 105climconst 11253 . . 3 (𝜑 → seq(𝑁 + 1)( · , (𝑘𝑍 ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 1)
107 breq1 3992 . . . . 5 (𝑦 = 1 → (𝑦 # 0 ↔ 1 # 0))
108 breq2 3993 . . . . 5 (𝑦 = 1 → (seq(𝑁 + 1)( · , (𝑘𝑍 ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦 ↔ seq(𝑁 + 1)( · , (𝑘𝑍 ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 1))
109107, 108anbi12d 470 . . . 4 (𝑦 = 1 → ((𝑦 # 0 ∧ seq(𝑁 + 1)( · , (𝑘𝑍 ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦) ↔ (1 # 0 ∧ seq(𝑁 + 1)( · , (𝑘𝑍 ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 1)))
11057, 109spcev 2825 . . 3 ((1 # 0 ∧ seq(𝑁 + 1)( · , (𝑘𝑍 ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 1) → ∃𝑦(𝑦 # 0 ∧ seq(𝑁 + 1)( · , (𝑘𝑍 ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦))
1117, 106, 110sylancr 412 . 2 (𝜑 → ∃𝑦(𝑦 # 0 ∧ seq(𝑁 + 1)( · , (𝑘𝑍 ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦))
112 seqeq1 10404 . . . . . 6 (𝑛 = (𝑁 + 1) → seq𝑛( · , (𝑘𝑍 ↦ if(𝑘𝐴, 𝐵, 1))) = seq(𝑁 + 1)( · , (𝑘𝑍 ↦ if(𝑘𝐴, 𝐵, 1))))
113112breq1d 3999 . . . . 5 (𝑛 = (𝑁 + 1) → (seq𝑛( · , (𝑘𝑍 ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦 ↔ seq(𝑁 + 1)( · , (𝑘𝑍 ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦))
114113anbi2d 461 . . . 4 (𝑛 = (𝑁 + 1) → ((𝑦 # 0 ∧ seq𝑛( · , (𝑘𝑍 ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦) ↔ (𝑦 # 0 ∧ seq(𝑁 + 1)( · , (𝑘𝑍 ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦)))
115114exbidv 1818 . . 3 (𝑛 = (𝑁 + 1) → (∃𝑦(𝑦 # 0 ∧ seq𝑛( · , (𝑘𝑍 ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦) ↔ ∃𝑦(𝑦 # 0 ∧ seq(𝑁 + 1)( · , (𝑘𝑍 ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦)))
116115rspcev 2834 . 2 (((𝑁 + 1) ∈ 𝑍 ∧ ∃𝑦(𝑦 # 0 ∧ seq(𝑁 + 1)( · , (𝑘𝑍 ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦)) → ∃𝑛𝑍𝑦(𝑦 # 0 ∧ seq𝑛( · , (𝑘𝑍 ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦))
1176, 111, 116syl2anc 409 1 (𝜑 → ∃𝑛𝑍𝑦(𝑦 # 0 ∧ seq𝑛( · , (𝑘𝑍 ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  w3a 973   = wceq 1348  wex 1485  wcel 2141  wrex 2449  Vcvv 2730  csb 3049  wss 3121  ifcif 3526  {csn 3583   class class class wbr 3989  cmpt 4050   × cxp 4609  cfv 5198  (class class class)co 5853  cc 7772  cr 7773  0cc0 7774  1c1 7775   + caddc 7777   · cmul 7779   < clt 7954  cle 7955   # cap 8500  cz 9212  cuz 9487  ...cfz 9965  seqcseq 10401  cli 11241
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890  ax-pre-mulgt0 7891  ax-pre-mulext 7892
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-po 4281  df-iso 4282  df-iord 4351  df-on 4353  df-ilim 4354  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-frec 6370  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-reap 8494  df-ap 8501  df-div 8590  df-inn 8879  df-2 8937  df-n0 9136  df-z 9213  df-uz 9488  df-rp 9611  df-fz 9966  df-fzo 10099  df-seqfrec 10402  df-exp 10476  df-cj 10806  df-rsqrt 10962  df-abs 10963  df-clim 11242
This theorem is referenced by:  fprodssdc  11553
  Copyright terms: Public domain W3C validator