ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulnqprlemfl GIF version

Theorem mulnqprlemfl 7576
Description: Lemma for mulnqpr 7578. The forward subset relationship for the lower cut. (Contributed by Jim Kingdon, 18-Jul-2021.)
Assertion
Ref Expression
mulnqprlemfl ((๐ด โˆˆ Q โˆง ๐ต โˆˆ Q) โ†’ (1st โ€˜โŸจ{๐‘™ โˆฃ ๐‘™ <Q (๐ด ยทQ ๐ต)}, {๐‘ข โˆฃ (๐ด ยทQ ๐ต) <Q ๐‘ข}โŸฉ) โІ (1st โ€˜(โŸจ{๐‘™ โˆฃ ๐‘™ <Q ๐ด}, {๐‘ข โˆฃ ๐ด <Q ๐‘ข}โŸฉ ยทP โŸจ{๐‘™ โˆฃ ๐‘™ <Q ๐ต}, {๐‘ข โˆฃ ๐ต <Q ๐‘ข}โŸฉ)))
Distinct variable groups:   ๐ด,๐‘™,๐‘ข   ๐ต,๐‘™,๐‘ข

Proof of Theorem mulnqprlemfl
Dummy variable ๐‘Ÿ is distinct from all other variables.
StepHypRef Expression
1 mulnqprlemru 7575 . . . . . 6 ((๐ด โˆˆ Q โˆง ๐ต โˆˆ Q) โ†’ (2nd โ€˜(โŸจ{๐‘™ โˆฃ ๐‘™ <Q ๐ด}, {๐‘ข โˆฃ ๐ด <Q ๐‘ข}โŸฉ ยทP โŸจ{๐‘™ โˆฃ ๐‘™ <Q ๐ต}, {๐‘ข โˆฃ ๐ต <Q ๐‘ข}โŸฉ)) โІ (2nd โ€˜โŸจ{๐‘™ โˆฃ ๐‘™ <Q (๐ด ยทQ ๐ต)}, {๐‘ข โˆฃ (๐ด ยทQ ๐ต) <Q ๐‘ข}โŸฉ))
2 ltsonq 7399 . . . . . . . . 9 <Q Or Q
3 mulclnq 7377 . . . . . . . . 9 ((๐ด โˆˆ Q โˆง ๐ต โˆˆ Q) โ†’ (๐ด ยทQ ๐ต) โˆˆ Q)
4 sonr 4319 . . . . . . . . 9 (( <Q Or Q โˆง (๐ด ยทQ ๐ต) โˆˆ Q) โ†’ ยฌ (๐ด ยทQ ๐ต) <Q (๐ด ยทQ ๐ต))
52, 3, 4sylancr 414 . . . . . . . 8 ((๐ด โˆˆ Q โˆง ๐ต โˆˆ Q) โ†’ ยฌ (๐ด ยทQ ๐ต) <Q (๐ด ยทQ ๐ต))
6 ltrelnq 7366 . . . . . . . . . . . 12 <Q โІ (Q ร— Q)
76brel 4680 . . . . . . . . . . 11 ((๐ด ยทQ ๐ต) <Q (๐ด ยทQ ๐ต) โ†’ ((๐ด ยทQ ๐ต) โˆˆ Q โˆง (๐ด ยทQ ๐ต) โˆˆ Q))
87simpld 112 . . . . . . . . . 10 ((๐ด ยทQ ๐ต) <Q (๐ด ยทQ ๐ต) โ†’ (๐ด ยทQ ๐ต) โˆˆ Q)
9 elex 2750 . . . . . . . . . 10 ((๐ด ยทQ ๐ต) โˆˆ Q โ†’ (๐ด ยทQ ๐ต) โˆˆ V)
108, 9syl 14 . . . . . . . . 9 ((๐ด ยทQ ๐ต) <Q (๐ด ยทQ ๐ต) โ†’ (๐ด ยทQ ๐ต) โˆˆ V)
11 breq2 4009 . . . . . . . . 9 (๐‘ข = (๐ด ยทQ ๐ต) โ†’ ((๐ด ยทQ ๐ต) <Q ๐‘ข โ†” (๐ด ยทQ ๐ต) <Q (๐ด ยทQ ๐ต)))
1210, 11elab3 2891 . . . . . . . 8 ((๐ด ยทQ ๐ต) โˆˆ {๐‘ข โˆฃ (๐ด ยทQ ๐ต) <Q ๐‘ข} โ†” (๐ด ยทQ ๐ต) <Q (๐ด ยทQ ๐ต))
135, 12sylnibr 677 . . . . . . 7 ((๐ด โˆˆ Q โˆง ๐ต โˆˆ Q) โ†’ ยฌ (๐ด ยทQ ๐ต) โˆˆ {๐‘ข โˆฃ (๐ด ยทQ ๐ต) <Q ๐‘ข})
14 ltnqex 7550 . . . . . . . . 9 {๐‘™ โˆฃ ๐‘™ <Q (๐ด ยทQ ๐ต)} โˆˆ V
15 gtnqex 7551 . . . . . . . . 9 {๐‘ข โˆฃ (๐ด ยทQ ๐ต) <Q ๐‘ข} โˆˆ V
1614, 15op2nd 6150 . . . . . . . 8 (2nd โ€˜โŸจ{๐‘™ โˆฃ ๐‘™ <Q (๐ด ยทQ ๐ต)}, {๐‘ข โˆฃ (๐ด ยทQ ๐ต) <Q ๐‘ข}โŸฉ) = {๐‘ข โˆฃ (๐ด ยทQ ๐ต) <Q ๐‘ข}
1716eleq2i 2244 . . . . . . 7 ((๐ด ยทQ ๐ต) โˆˆ (2nd โ€˜โŸจ{๐‘™ โˆฃ ๐‘™ <Q (๐ด ยทQ ๐ต)}, {๐‘ข โˆฃ (๐ด ยทQ ๐ต) <Q ๐‘ข}โŸฉ) โ†” (๐ด ยทQ ๐ต) โˆˆ {๐‘ข โˆฃ (๐ด ยทQ ๐ต) <Q ๐‘ข})
1813, 17sylnibr 677 . . . . . 6 ((๐ด โˆˆ Q โˆง ๐ต โˆˆ Q) โ†’ ยฌ (๐ด ยทQ ๐ต) โˆˆ (2nd โ€˜โŸจ{๐‘™ โˆฃ ๐‘™ <Q (๐ด ยทQ ๐ต)}, {๐‘ข โˆฃ (๐ด ยทQ ๐ต) <Q ๐‘ข}โŸฉ))
191, 18ssneldd 3160 . . . . 5 ((๐ด โˆˆ Q โˆง ๐ต โˆˆ Q) โ†’ ยฌ (๐ด ยทQ ๐ต) โˆˆ (2nd โ€˜(โŸจ{๐‘™ โˆฃ ๐‘™ <Q ๐ด}, {๐‘ข โˆฃ ๐ด <Q ๐‘ข}โŸฉ ยทP โŸจ{๐‘™ โˆฃ ๐‘™ <Q ๐ต}, {๐‘ข โˆฃ ๐ต <Q ๐‘ข}โŸฉ)))
2019adantr 276 . . . 4 (((๐ด โˆˆ Q โˆง ๐ต โˆˆ Q) โˆง ๐‘Ÿ โˆˆ (1st โ€˜โŸจ{๐‘™ โˆฃ ๐‘™ <Q (๐ด ยทQ ๐ต)}, {๐‘ข โˆฃ (๐ด ยทQ ๐ต) <Q ๐‘ข}โŸฉ)) โ†’ ยฌ (๐ด ยทQ ๐ต) โˆˆ (2nd โ€˜(โŸจ{๐‘™ โˆฃ ๐‘™ <Q ๐ด}, {๐‘ข โˆฃ ๐ด <Q ๐‘ข}โŸฉ ยทP โŸจ{๐‘™ โˆฃ ๐‘™ <Q ๐ต}, {๐‘ข โˆฃ ๐ต <Q ๐‘ข}โŸฉ)))
21 nqprlu 7548 . . . . . . 7 (๐ด โˆˆ Q โ†’ โŸจ{๐‘™ โˆฃ ๐‘™ <Q ๐ด}, {๐‘ข โˆฃ ๐ด <Q ๐‘ข}โŸฉ โˆˆ P)
22 nqprlu 7548 . . . . . . 7 (๐ต โˆˆ Q โ†’ โŸจ{๐‘™ โˆฃ ๐‘™ <Q ๐ต}, {๐‘ข โˆฃ ๐ต <Q ๐‘ข}โŸฉ โˆˆ P)
23 mulclpr 7573 . . . . . . 7 ((โŸจ{๐‘™ โˆฃ ๐‘™ <Q ๐ด}, {๐‘ข โˆฃ ๐ด <Q ๐‘ข}โŸฉ โˆˆ P โˆง โŸจ{๐‘™ โˆฃ ๐‘™ <Q ๐ต}, {๐‘ข โˆฃ ๐ต <Q ๐‘ข}โŸฉ โˆˆ P) โ†’ (โŸจ{๐‘™ โˆฃ ๐‘™ <Q ๐ด}, {๐‘ข โˆฃ ๐ด <Q ๐‘ข}โŸฉ ยทP โŸจ{๐‘™ โˆฃ ๐‘™ <Q ๐ต}, {๐‘ข โˆฃ ๐ต <Q ๐‘ข}โŸฉ) โˆˆ P)
2421, 22, 23syl2an 289 . . . . . 6 ((๐ด โˆˆ Q โˆง ๐ต โˆˆ Q) โ†’ (โŸจ{๐‘™ โˆฃ ๐‘™ <Q ๐ด}, {๐‘ข โˆฃ ๐ด <Q ๐‘ข}โŸฉ ยทP โŸจ{๐‘™ โˆฃ ๐‘™ <Q ๐ต}, {๐‘ข โˆฃ ๐ต <Q ๐‘ข}โŸฉ) โˆˆ P)
25 prop 7476 . . . . . 6 ((โŸจ{๐‘™ โˆฃ ๐‘™ <Q ๐ด}, {๐‘ข โˆฃ ๐ด <Q ๐‘ข}โŸฉ ยทP โŸจ{๐‘™ โˆฃ ๐‘™ <Q ๐ต}, {๐‘ข โˆฃ ๐ต <Q ๐‘ข}โŸฉ) โˆˆ P โ†’ โŸจ(1st โ€˜(โŸจ{๐‘™ โˆฃ ๐‘™ <Q ๐ด}, {๐‘ข โˆฃ ๐ด <Q ๐‘ข}โŸฉ ยทP โŸจ{๐‘™ โˆฃ ๐‘™ <Q ๐ต}, {๐‘ข โˆฃ ๐ต <Q ๐‘ข}โŸฉ)), (2nd โ€˜(โŸจ{๐‘™ โˆฃ ๐‘™ <Q ๐ด}, {๐‘ข โˆฃ ๐ด <Q ๐‘ข}โŸฉ ยทP โŸจ{๐‘™ โˆฃ ๐‘™ <Q ๐ต}, {๐‘ข โˆฃ ๐ต <Q ๐‘ข}โŸฉ))โŸฉ โˆˆ P)
2624, 25syl 14 . . . . 5 ((๐ด โˆˆ Q โˆง ๐ต โˆˆ Q) โ†’ โŸจ(1st โ€˜(โŸจ{๐‘™ โˆฃ ๐‘™ <Q ๐ด}, {๐‘ข โˆฃ ๐ด <Q ๐‘ข}โŸฉ ยทP โŸจ{๐‘™ โˆฃ ๐‘™ <Q ๐ต}, {๐‘ข โˆฃ ๐ต <Q ๐‘ข}โŸฉ)), (2nd โ€˜(โŸจ{๐‘™ โˆฃ ๐‘™ <Q ๐ด}, {๐‘ข โˆฃ ๐ด <Q ๐‘ข}โŸฉ ยทP โŸจ{๐‘™ โˆฃ ๐‘™ <Q ๐ต}, {๐‘ข โˆฃ ๐ต <Q ๐‘ข}โŸฉ))โŸฉ โˆˆ P)
27 vex 2742 . . . . . . 7 ๐‘Ÿ โˆˆ V
28 breq1 4008 . . . . . . 7 (๐‘™ = ๐‘Ÿ โ†’ (๐‘™ <Q (๐ด ยทQ ๐ต) โ†” ๐‘Ÿ <Q (๐ด ยทQ ๐ต)))
2914, 15op1st 6149 . . . . . . 7 (1st โ€˜โŸจ{๐‘™ โˆฃ ๐‘™ <Q (๐ด ยทQ ๐ต)}, {๐‘ข โˆฃ (๐ด ยทQ ๐ต) <Q ๐‘ข}โŸฉ) = {๐‘™ โˆฃ ๐‘™ <Q (๐ด ยทQ ๐ต)}
3027, 28, 29elab2 2887 . . . . . 6 (๐‘Ÿ โˆˆ (1st โ€˜โŸจ{๐‘™ โˆฃ ๐‘™ <Q (๐ด ยทQ ๐ต)}, {๐‘ข โˆฃ (๐ด ยทQ ๐ต) <Q ๐‘ข}โŸฉ) โ†” ๐‘Ÿ <Q (๐ด ยทQ ๐ต))
3130biimpi 120 . . . . 5 (๐‘Ÿ โˆˆ (1st โ€˜โŸจ{๐‘™ โˆฃ ๐‘™ <Q (๐ด ยทQ ๐ต)}, {๐‘ข โˆฃ (๐ด ยทQ ๐ต) <Q ๐‘ข}โŸฉ) โ†’ ๐‘Ÿ <Q (๐ด ยทQ ๐ต))
32 prloc 7492 . . . . 5 ((โŸจ(1st โ€˜(โŸจ{๐‘™ โˆฃ ๐‘™ <Q ๐ด}, {๐‘ข โˆฃ ๐ด <Q ๐‘ข}โŸฉ ยทP โŸจ{๐‘™ โˆฃ ๐‘™ <Q ๐ต}, {๐‘ข โˆฃ ๐ต <Q ๐‘ข}โŸฉ)), (2nd โ€˜(โŸจ{๐‘™ โˆฃ ๐‘™ <Q ๐ด}, {๐‘ข โˆฃ ๐ด <Q ๐‘ข}โŸฉ ยทP โŸจ{๐‘™ โˆฃ ๐‘™ <Q ๐ต}, {๐‘ข โˆฃ ๐ต <Q ๐‘ข}โŸฉ))โŸฉ โˆˆ P โˆง ๐‘Ÿ <Q (๐ด ยทQ ๐ต)) โ†’ (๐‘Ÿ โˆˆ (1st โ€˜(โŸจ{๐‘™ โˆฃ ๐‘™ <Q ๐ด}, {๐‘ข โˆฃ ๐ด <Q ๐‘ข}โŸฉ ยทP โŸจ{๐‘™ โˆฃ ๐‘™ <Q ๐ต}, {๐‘ข โˆฃ ๐ต <Q ๐‘ข}โŸฉ)) โˆจ (๐ด ยทQ ๐ต) โˆˆ (2nd โ€˜(โŸจ{๐‘™ โˆฃ ๐‘™ <Q ๐ด}, {๐‘ข โˆฃ ๐ด <Q ๐‘ข}โŸฉ ยทP โŸจ{๐‘™ โˆฃ ๐‘™ <Q ๐ต}, {๐‘ข โˆฃ ๐ต <Q ๐‘ข}โŸฉ))))
3326, 31, 32syl2an 289 . . . 4 (((๐ด โˆˆ Q โˆง ๐ต โˆˆ Q) โˆง ๐‘Ÿ โˆˆ (1st โ€˜โŸจ{๐‘™ โˆฃ ๐‘™ <Q (๐ด ยทQ ๐ต)}, {๐‘ข โˆฃ (๐ด ยทQ ๐ต) <Q ๐‘ข}โŸฉ)) โ†’ (๐‘Ÿ โˆˆ (1st โ€˜(โŸจ{๐‘™ โˆฃ ๐‘™ <Q ๐ด}, {๐‘ข โˆฃ ๐ด <Q ๐‘ข}โŸฉ ยทP โŸจ{๐‘™ โˆฃ ๐‘™ <Q ๐ต}, {๐‘ข โˆฃ ๐ต <Q ๐‘ข}โŸฉ)) โˆจ (๐ด ยทQ ๐ต) โˆˆ (2nd โ€˜(โŸจ{๐‘™ โˆฃ ๐‘™ <Q ๐ด}, {๐‘ข โˆฃ ๐ด <Q ๐‘ข}โŸฉ ยทP โŸจ{๐‘™ โˆฃ ๐‘™ <Q ๐ต}, {๐‘ข โˆฃ ๐ต <Q ๐‘ข}โŸฉ))))
3420, 33ecased 1349 . . 3 (((๐ด โˆˆ Q โˆง ๐ต โˆˆ Q) โˆง ๐‘Ÿ โˆˆ (1st โ€˜โŸจ{๐‘™ โˆฃ ๐‘™ <Q (๐ด ยทQ ๐ต)}, {๐‘ข โˆฃ (๐ด ยทQ ๐ต) <Q ๐‘ข}โŸฉ)) โ†’ ๐‘Ÿ โˆˆ (1st โ€˜(โŸจ{๐‘™ โˆฃ ๐‘™ <Q ๐ด}, {๐‘ข โˆฃ ๐ด <Q ๐‘ข}โŸฉ ยทP โŸจ{๐‘™ โˆฃ ๐‘™ <Q ๐ต}, {๐‘ข โˆฃ ๐ต <Q ๐‘ข}โŸฉ)))
3534ex 115 . 2 ((๐ด โˆˆ Q โˆง ๐ต โˆˆ Q) โ†’ (๐‘Ÿ โˆˆ (1st โ€˜โŸจ{๐‘™ โˆฃ ๐‘™ <Q (๐ด ยทQ ๐ต)}, {๐‘ข โˆฃ (๐ด ยทQ ๐ต) <Q ๐‘ข}โŸฉ) โ†’ ๐‘Ÿ โˆˆ (1st โ€˜(โŸจ{๐‘™ โˆฃ ๐‘™ <Q ๐ด}, {๐‘ข โˆฃ ๐ด <Q ๐‘ข}โŸฉ ยทP โŸจ{๐‘™ โˆฃ ๐‘™ <Q ๐ต}, {๐‘ข โˆฃ ๐ต <Q ๐‘ข}โŸฉ))))
3635ssrdv 3163 1 ((๐ด โˆˆ Q โˆง ๐ต โˆˆ Q) โ†’ (1st โ€˜โŸจ{๐‘™ โˆฃ ๐‘™ <Q (๐ด ยทQ ๐ต)}, {๐‘ข โˆฃ (๐ด ยทQ ๐ต) <Q ๐‘ข}โŸฉ) โІ (1st โ€˜(โŸจ{๐‘™ โˆฃ ๐‘™ <Q ๐ด}, {๐‘ข โˆฃ ๐ด <Q ๐‘ข}โŸฉ ยทP โŸจ{๐‘™ โˆฃ ๐‘™ <Q ๐ต}, {๐‘ข โˆฃ ๐ต <Q ๐‘ข}โŸฉ)))
Colors of variables: wff set class
Syntax hints:  ยฌ wn 3   โ†’ wi 4   โˆง wa 104   โˆจ wo 708   โˆˆ wcel 2148  {cab 2163  Vcvv 2739   โІ wss 3131  โŸจcop 3597   class class class wbr 4005   Or wor 4297  โ€˜cfv 5218  (class class class)co 5877  1st c1st 6141  2nd c2nd 6142  Qcnq 7281   ยทQ cmq 7284   <Q cltq 7286  Pcnp 7292   ยทP cmp 7295
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-iinf 4589
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-tr 4104  df-eprel 4291  df-id 4295  df-po 4298  df-iso 4299  df-iord 4368  df-on 4370  df-suc 4373  df-iom 4592  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-ov 5880  df-oprab 5881  df-mpo 5882  df-1st 6143  df-2nd 6144  df-recs 6308  df-irdg 6373  df-1o 6419  df-2o 6420  df-oadd 6423  df-omul 6424  df-er 6537  df-ec 6539  df-qs 6543  df-ni 7305  df-pli 7306  df-mi 7307  df-lti 7308  df-plpq 7345  df-mpq 7346  df-enq 7348  df-nqqs 7349  df-plqqs 7350  df-mqqs 7351  df-1nqqs 7352  df-rq 7353  df-ltnqqs 7354  df-enq0 7425  df-nq0 7426  df-0nq0 7427  df-plq0 7428  df-mq0 7429  df-inp 7467  df-imp 7470
This theorem is referenced by:  mulnqpr  7578
  Copyright terms: Public domain W3C validator