ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulnqprlemfu GIF version

Theorem mulnqprlemfu 7643
Description: Lemma for mulnqpr 7644. The forward subset relationship for the upper cut. (Contributed by Jim Kingdon, 18-Jul-2021.)
Assertion
Ref Expression
mulnqprlemfu ((𝐴Q𝐵Q) → (2nd ‘⟨{𝑙𝑙 <Q (𝐴 ·Q 𝐵)}, {𝑢 ∣ (𝐴 ·Q 𝐵) <Q 𝑢}⟩) ⊆ (2nd ‘(⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ ·P ⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩)))
Distinct variable groups:   𝐴,𝑙,𝑢   𝐵,𝑙,𝑢

Proof of Theorem mulnqprlemfu
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 mulnqprlemrl 7640 . . . . . 6 ((𝐴Q𝐵Q) → (1st ‘(⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ ·P ⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩)) ⊆ (1st ‘⟨{𝑙𝑙 <Q (𝐴 ·Q 𝐵)}, {𝑢 ∣ (𝐴 ·Q 𝐵) <Q 𝑢}⟩))
2 ltsonq 7465 . . . . . . . . 9 <Q Or Q
3 mulclnq 7443 . . . . . . . . 9 ((𝐴Q𝐵Q) → (𝐴 ·Q 𝐵) ∈ Q)
4 sonr 4352 . . . . . . . . 9 (( <Q Or Q ∧ (𝐴 ·Q 𝐵) ∈ Q) → ¬ (𝐴 ·Q 𝐵) <Q (𝐴 ·Q 𝐵))
52, 3, 4sylancr 414 . . . . . . . 8 ((𝐴Q𝐵Q) → ¬ (𝐴 ·Q 𝐵) <Q (𝐴 ·Q 𝐵))
6 ltrelnq 7432 . . . . . . . . . . . 12 <Q ⊆ (Q × Q)
76brel 4715 . . . . . . . . . . 11 ((𝐴 ·Q 𝐵) <Q (𝐴 ·Q 𝐵) → ((𝐴 ·Q 𝐵) ∈ Q ∧ (𝐴 ·Q 𝐵) ∈ Q))
87simpld 112 . . . . . . . . . 10 ((𝐴 ·Q 𝐵) <Q (𝐴 ·Q 𝐵) → (𝐴 ·Q 𝐵) ∈ Q)
9 elex 2774 . . . . . . . . . 10 ((𝐴 ·Q 𝐵) ∈ Q → (𝐴 ·Q 𝐵) ∈ V)
108, 9syl 14 . . . . . . . . 9 ((𝐴 ·Q 𝐵) <Q (𝐴 ·Q 𝐵) → (𝐴 ·Q 𝐵) ∈ V)
11 breq1 4036 . . . . . . . . 9 (𝑙 = (𝐴 ·Q 𝐵) → (𝑙 <Q (𝐴 ·Q 𝐵) ↔ (𝐴 ·Q 𝐵) <Q (𝐴 ·Q 𝐵)))
1210, 11elab3 2916 . . . . . . . 8 ((𝐴 ·Q 𝐵) ∈ {𝑙𝑙 <Q (𝐴 ·Q 𝐵)} ↔ (𝐴 ·Q 𝐵) <Q (𝐴 ·Q 𝐵))
135, 12sylnibr 678 . . . . . . 7 ((𝐴Q𝐵Q) → ¬ (𝐴 ·Q 𝐵) ∈ {𝑙𝑙 <Q (𝐴 ·Q 𝐵)})
14 ltnqex 7616 . . . . . . . . 9 {𝑙𝑙 <Q (𝐴 ·Q 𝐵)} ∈ V
15 gtnqex 7617 . . . . . . . . 9 {𝑢 ∣ (𝐴 ·Q 𝐵) <Q 𝑢} ∈ V
1614, 15op1st 6204 . . . . . . . 8 (1st ‘⟨{𝑙𝑙 <Q (𝐴 ·Q 𝐵)}, {𝑢 ∣ (𝐴 ·Q 𝐵) <Q 𝑢}⟩) = {𝑙𝑙 <Q (𝐴 ·Q 𝐵)}
1716eleq2i 2263 . . . . . . 7 ((𝐴 ·Q 𝐵) ∈ (1st ‘⟨{𝑙𝑙 <Q (𝐴 ·Q 𝐵)}, {𝑢 ∣ (𝐴 ·Q 𝐵) <Q 𝑢}⟩) ↔ (𝐴 ·Q 𝐵) ∈ {𝑙𝑙 <Q (𝐴 ·Q 𝐵)})
1813, 17sylnibr 678 . . . . . 6 ((𝐴Q𝐵Q) → ¬ (𝐴 ·Q 𝐵) ∈ (1st ‘⟨{𝑙𝑙 <Q (𝐴 ·Q 𝐵)}, {𝑢 ∣ (𝐴 ·Q 𝐵) <Q 𝑢}⟩))
191, 18ssneldd 3186 . . . . 5 ((𝐴Q𝐵Q) → ¬ (𝐴 ·Q 𝐵) ∈ (1st ‘(⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ ·P ⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩)))
2019adantr 276 . . . 4 (((𝐴Q𝐵Q) ∧ 𝑟 ∈ (2nd ‘⟨{𝑙𝑙 <Q (𝐴 ·Q 𝐵)}, {𝑢 ∣ (𝐴 ·Q 𝐵) <Q 𝑢}⟩)) → ¬ (𝐴 ·Q 𝐵) ∈ (1st ‘(⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ ·P ⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩)))
21 nqprlu 7614 . . . . . . . 8 (𝐴Q → ⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ ∈ P)
22 nqprlu 7614 . . . . . . . 8 (𝐵Q → ⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩ ∈ P)
23 mulclpr 7639 . . . . . . . 8 ((⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ ∈ P ∧ ⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩ ∈ P) → (⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ ·P ⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩) ∈ P)
2421, 22, 23syl2an 289 . . . . . . 7 ((𝐴Q𝐵Q) → (⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ ·P ⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩) ∈ P)
25 prop 7542 . . . . . . 7 ((⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ ·P ⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩) ∈ P → ⟨(1st ‘(⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ ·P ⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩)), (2nd ‘(⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ ·P ⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩))⟩ ∈ P)
2624, 25syl 14 . . . . . 6 ((𝐴Q𝐵Q) → ⟨(1st ‘(⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ ·P ⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩)), (2nd ‘(⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ ·P ⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩))⟩ ∈ P)
27 vex 2766 . . . . . . . 8 𝑟 ∈ V
28 breq2 4037 . . . . . . . 8 (𝑢 = 𝑟 → ((𝐴 ·Q 𝐵) <Q 𝑢 ↔ (𝐴 ·Q 𝐵) <Q 𝑟))
2914, 15op2nd 6205 . . . . . . . 8 (2nd ‘⟨{𝑙𝑙 <Q (𝐴 ·Q 𝐵)}, {𝑢 ∣ (𝐴 ·Q 𝐵) <Q 𝑢}⟩) = {𝑢 ∣ (𝐴 ·Q 𝐵) <Q 𝑢}
3027, 28, 29elab2 2912 . . . . . . 7 (𝑟 ∈ (2nd ‘⟨{𝑙𝑙 <Q (𝐴 ·Q 𝐵)}, {𝑢 ∣ (𝐴 ·Q 𝐵) <Q 𝑢}⟩) ↔ (𝐴 ·Q 𝐵) <Q 𝑟)
3130biimpi 120 . . . . . 6 (𝑟 ∈ (2nd ‘⟨{𝑙𝑙 <Q (𝐴 ·Q 𝐵)}, {𝑢 ∣ (𝐴 ·Q 𝐵) <Q 𝑢}⟩) → (𝐴 ·Q 𝐵) <Q 𝑟)
32 prloc 7558 . . . . . 6 ((⟨(1st ‘(⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ ·P ⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩)), (2nd ‘(⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ ·P ⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩))⟩ ∈ P ∧ (𝐴 ·Q 𝐵) <Q 𝑟) → ((𝐴 ·Q 𝐵) ∈ (1st ‘(⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ ·P ⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩)) ∨ 𝑟 ∈ (2nd ‘(⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ ·P ⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩))))
3326, 31, 32syl2an 289 . . . . 5 (((𝐴Q𝐵Q) ∧ 𝑟 ∈ (2nd ‘⟨{𝑙𝑙 <Q (𝐴 ·Q 𝐵)}, {𝑢 ∣ (𝐴 ·Q 𝐵) <Q 𝑢}⟩)) → ((𝐴 ·Q 𝐵) ∈ (1st ‘(⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ ·P ⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩)) ∨ 𝑟 ∈ (2nd ‘(⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ ·P ⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩))))
3433orcomd 730 . . . 4 (((𝐴Q𝐵Q) ∧ 𝑟 ∈ (2nd ‘⟨{𝑙𝑙 <Q (𝐴 ·Q 𝐵)}, {𝑢 ∣ (𝐴 ·Q 𝐵) <Q 𝑢}⟩)) → (𝑟 ∈ (2nd ‘(⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ ·P ⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩)) ∨ (𝐴 ·Q 𝐵) ∈ (1st ‘(⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ ·P ⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩))))
3520, 34ecased 1360 . . 3 (((𝐴Q𝐵Q) ∧ 𝑟 ∈ (2nd ‘⟨{𝑙𝑙 <Q (𝐴 ·Q 𝐵)}, {𝑢 ∣ (𝐴 ·Q 𝐵) <Q 𝑢}⟩)) → 𝑟 ∈ (2nd ‘(⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ ·P ⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩)))
3635ex 115 . 2 ((𝐴Q𝐵Q) → (𝑟 ∈ (2nd ‘⟨{𝑙𝑙 <Q (𝐴 ·Q 𝐵)}, {𝑢 ∣ (𝐴 ·Q 𝐵) <Q 𝑢}⟩) → 𝑟 ∈ (2nd ‘(⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ ·P ⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩))))
3736ssrdv 3189 1 ((𝐴Q𝐵Q) → (2nd ‘⟨{𝑙𝑙 <Q (𝐴 ·Q 𝐵)}, {𝑢 ∣ (𝐴 ·Q 𝐵) <Q 𝑢}⟩) ⊆ (2nd ‘(⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ ·P ⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wo 709  wcel 2167  {cab 2182  Vcvv 2763  wss 3157  cop 3625   class class class wbr 4033   Or wor 4330  cfv 5258  (class class class)co 5922  1st c1st 6196  2nd c2nd 6197  Qcnq 7347   ·Q cmq 7350   <Q cltq 7352  Pcnp 7358   ·P cmp 7361
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-eprel 4324  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-irdg 6428  df-1o 6474  df-2o 6475  df-oadd 6478  df-omul 6479  df-er 6592  df-ec 6594  df-qs 6598  df-ni 7371  df-pli 7372  df-mi 7373  df-lti 7374  df-plpq 7411  df-mpq 7412  df-enq 7414  df-nqqs 7415  df-plqqs 7416  df-mqqs 7417  df-1nqqs 7418  df-rq 7419  df-ltnqqs 7420  df-enq0 7491  df-nq0 7492  df-0nq0 7493  df-plq0 7494  df-mq0 7495  df-inp 7533  df-imp 7536
This theorem is referenced by:  mulnqpr  7644
  Copyright terms: Public domain W3C validator