ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulnqprlemfu GIF version

Theorem mulnqprlemfu 7408
Description: Lemma for mulnqpr 7409. The forward subset relationship for the upper cut. (Contributed by Jim Kingdon, 18-Jul-2021.)
Assertion
Ref Expression
mulnqprlemfu ((𝐴Q𝐵Q) → (2nd ‘⟨{𝑙𝑙 <Q (𝐴 ·Q 𝐵)}, {𝑢 ∣ (𝐴 ·Q 𝐵) <Q 𝑢}⟩) ⊆ (2nd ‘(⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ ·P ⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩)))
Distinct variable groups:   𝐴,𝑙,𝑢   𝐵,𝑙,𝑢

Proof of Theorem mulnqprlemfu
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 mulnqprlemrl 7405 . . . . . 6 ((𝐴Q𝐵Q) → (1st ‘(⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ ·P ⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩)) ⊆ (1st ‘⟨{𝑙𝑙 <Q (𝐴 ·Q 𝐵)}, {𝑢 ∣ (𝐴 ·Q 𝐵) <Q 𝑢}⟩))
2 ltsonq 7230 . . . . . . . . 9 <Q Or Q
3 mulclnq 7208 . . . . . . . . 9 ((𝐴Q𝐵Q) → (𝐴 ·Q 𝐵) ∈ Q)
4 sonr 4247 . . . . . . . . 9 (( <Q Or Q ∧ (𝐴 ·Q 𝐵) ∈ Q) → ¬ (𝐴 ·Q 𝐵) <Q (𝐴 ·Q 𝐵))
52, 3, 4sylancr 411 . . . . . . . 8 ((𝐴Q𝐵Q) → ¬ (𝐴 ·Q 𝐵) <Q (𝐴 ·Q 𝐵))
6 ltrelnq 7197 . . . . . . . . . . . 12 <Q ⊆ (Q × Q)
76brel 4599 . . . . . . . . . . 11 ((𝐴 ·Q 𝐵) <Q (𝐴 ·Q 𝐵) → ((𝐴 ·Q 𝐵) ∈ Q ∧ (𝐴 ·Q 𝐵) ∈ Q))
87simpld 111 . . . . . . . . . 10 ((𝐴 ·Q 𝐵) <Q (𝐴 ·Q 𝐵) → (𝐴 ·Q 𝐵) ∈ Q)
9 elex 2700 . . . . . . . . . 10 ((𝐴 ·Q 𝐵) ∈ Q → (𝐴 ·Q 𝐵) ∈ V)
108, 9syl 14 . . . . . . . . 9 ((𝐴 ·Q 𝐵) <Q (𝐴 ·Q 𝐵) → (𝐴 ·Q 𝐵) ∈ V)
11 breq1 3940 . . . . . . . . 9 (𝑙 = (𝐴 ·Q 𝐵) → (𝑙 <Q (𝐴 ·Q 𝐵) ↔ (𝐴 ·Q 𝐵) <Q (𝐴 ·Q 𝐵)))
1210, 11elab3 2840 . . . . . . . 8 ((𝐴 ·Q 𝐵) ∈ {𝑙𝑙 <Q (𝐴 ·Q 𝐵)} ↔ (𝐴 ·Q 𝐵) <Q (𝐴 ·Q 𝐵))
135, 12sylnibr 667 . . . . . . 7 ((𝐴Q𝐵Q) → ¬ (𝐴 ·Q 𝐵) ∈ {𝑙𝑙 <Q (𝐴 ·Q 𝐵)})
14 ltnqex 7381 . . . . . . . . 9 {𝑙𝑙 <Q (𝐴 ·Q 𝐵)} ∈ V
15 gtnqex 7382 . . . . . . . . 9 {𝑢 ∣ (𝐴 ·Q 𝐵) <Q 𝑢} ∈ V
1614, 15op1st 6052 . . . . . . . 8 (1st ‘⟨{𝑙𝑙 <Q (𝐴 ·Q 𝐵)}, {𝑢 ∣ (𝐴 ·Q 𝐵) <Q 𝑢}⟩) = {𝑙𝑙 <Q (𝐴 ·Q 𝐵)}
1716eleq2i 2207 . . . . . . 7 ((𝐴 ·Q 𝐵) ∈ (1st ‘⟨{𝑙𝑙 <Q (𝐴 ·Q 𝐵)}, {𝑢 ∣ (𝐴 ·Q 𝐵) <Q 𝑢}⟩) ↔ (𝐴 ·Q 𝐵) ∈ {𝑙𝑙 <Q (𝐴 ·Q 𝐵)})
1813, 17sylnibr 667 . . . . . 6 ((𝐴Q𝐵Q) → ¬ (𝐴 ·Q 𝐵) ∈ (1st ‘⟨{𝑙𝑙 <Q (𝐴 ·Q 𝐵)}, {𝑢 ∣ (𝐴 ·Q 𝐵) <Q 𝑢}⟩))
191, 18ssneldd 3105 . . . . 5 ((𝐴Q𝐵Q) → ¬ (𝐴 ·Q 𝐵) ∈ (1st ‘(⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ ·P ⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩)))
2019adantr 274 . . . 4 (((𝐴Q𝐵Q) ∧ 𝑟 ∈ (2nd ‘⟨{𝑙𝑙 <Q (𝐴 ·Q 𝐵)}, {𝑢 ∣ (𝐴 ·Q 𝐵) <Q 𝑢}⟩)) → ¬ (𝐴 ·Q 𝐵) ∈ (1st ‘(⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ ·P ⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩)))
21 nqprlu 7379 . . . . . . . 8 (𝐴Q → ⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ ∈ P)
22 nqprlu 7379 . . . . . . . 8 (𝐵Q → ⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩ ∈ P)
23 mulclpr 7404 . . . . . . . 8 ((⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ ∈ P ∧ ⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩ ∈ P) → (⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ ·P ⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩) ∈ P)
2421, 22, 23syl2an 287 . . . . . . 7 ((𝐴Q𝐵Q) → (⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ ·P ⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩) ∈ P)
25 prop 7307 . . . . . . 7 ((⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ ·P ⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩) ∈ P → ⟨(1st ‘(⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ ·P ⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩)), (2nd ‘(⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ ·P ⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩))⟩ ∈ P)
2624, 25syl 14 . . . . . 6 ((𝐴Q𝐵Q) → ⟨(1st ‘(⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ ·P ⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩)), (2nd ‘(⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ ·P ⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩))⟩ ∈ P)
27 vex 2692 . . . . . . . 8 𝑟 ∈ V
28 breq2 3941 . . . . . . . 8 (𝑢 = 𝑟 → ((𝐴 ·Q 𝐵) <Q 𝑢 ↔ (𝐴 ·Q 𝐵) <Q 𝑟))
2914, 15op2nd 6053 . . . . . . . 8 (2nd ‘⟨{𝑙𝑙 <Q (𝐴 ·Q 𝐵)}, {𝑢 ∣ (𝐴 ·Q 𝐵) <Q 𝑢}⟩) = {𝑢 ∣ (𝐴 ·Q 𝐵) <Q 𝑢}
3027, 28, 29elab2 2836 . . . . . . 7 (𝑟 ∈ (2nd ‘⟨{𝑙𝑙 <Q (𝐴 ·Q 𝐵)}, {𝑢 ∣ (𝐴 ·Q 𝐵) <Q 𝑢}⟩) ↔ (𝐴 ·Q 𝐵) <Q 𝑟)
3130biimpi 119 . . . . . 6 (𝑟 ∈ (2nd ‘⟨{𝑙𝑙 <Q (𝐴 ·Q 𝐵)}, {𝑢 ∣ (𝐴 ·Q 𝐵) <Q 𝑢}⟩) → (𝐴 ·Q 𝐵) <Q 𝑟)
32 prloc 7323 . . . . . 6 ((⟨(1st ‘(⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ ·P ⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩)), (2nd ‘(⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ ·P ⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩))⟩ ∈ P ∧ (𝐴 ·Q 𝐵) <Q 𝑟) → ((𝐴 ·Q 𝐵) ∈ (1st ‘(⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ ·P ⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩)) ∨ 𝑟 ∈ (2nd ‘(⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ ·P ⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩))))
3326, 31, 32syl2an 287 . . . . 5 (((𝐴Q𝐵Q) ∧ 𝑟 ∈ (2nd ‘⟨{𝑙𝑙 <Q (𝐴 ·Q 𝐵)}, {𝑢 ∣ (𝐴 ·Q 𝐵) <Q 𝑢}⟩)) → ((𝐴 ·Q 𝐵) ∈ (1st ‘(⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ ·P ⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩)) ∨ 𝑟 ∈ (2nd ‘(⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ ·P ⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩))))
3433orcomd 719 . . . 4 (((𝐴Q𝐵Q) ∧ 𝑟 ∈ (2nd ‘⟨{𝑙𝑙 <Q (𝐴 ·Q 𝐵)}, {𝑢 ∣ (𝐴 ·Q 𝐵) <Q 𝑢}⟩)) → (𝑟 ∈ (2nd ‘(⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ ·P ⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩)) ∨ (𝐴 ·Q 𝐵) ∈ (1st ‘(⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ ·P ⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩))))
3520, 34ecased 1328 . . 3 (((𝐴Q𝐵Q) ∧ 𝑟 ∈ (2nd ‘⟨{𝑙𝑙 <Q (𝐴 ·Q 𝐵)}, {𝑢 ∣ (𝐴 ·Q 𝐵) <Q 𝑢}⟩)) → 𝑟 ∈ (2nd ‘(⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ ·P ⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩)))
3635ex 114 . 2 ((𝐴Q𝐵Q) → (𝑟 ∈ (2nd ‘⟨{𝑙𝑙 <Q (𝐴 ·Q 𝐵)}, {𝑢 ∣ (𝐴 ·Q 𝐵) <Q 𝑢}⟩) → 𝑟 ∈ (2nd ‘(⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ ·P ⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩))))
3736ssrdv 3108 1 ((𝐴Q𝐵Q) → (2nd ‘⟨{𝑙𝑙 <Q (𝐴 ·Q 𝐵)}, {𝑢 ∣ (𝐴 ·Q 𝐵) <Q 𝑢}⟩) ⊆ (2nd ‘(⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ ·P ⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wo 698  wcel 1481  {cab 2126  Vcvv 2689  wss 3076  cop 3535   class class class wbr 3937   Or wor 4225  cfv 5131  (class class class)co 5782  1st c1st 6044  2nd c2nd 6045  Qcnq 7112   ·Q cmq 7115   <Q cltq 7117  Pcnp 7123   ·P cmp 7126
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-iinf 4510
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-tr 4035  df-eprel 4219  df-id 4223  df-po 4226  df-iso 4227  df-iord 4296  df-on 4298  df-suc 4301  df-iom 4513  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-ov 5785  df-oprab 5786  df-mpo 5787  df-1st 6046  df-2nd 6047  df-recs 6210  df-irdg 6275  df-1o 6321  df-2o 6322  df-oadd 6325  df-omul 6326  df-er 6437  df-ec 6439  df-qs 6443  df-ni 7136  df-pli 7137  df-mi 7138  df-lti 7139  df-plpq 7176  df-mpq 7177  df-enq 7179  df-nqqs 7180  df-plqqs 7181  df-mqqs 7182  df-1nqqs 7183  df-rq 7184  df-ltnqqs 7185  df-enq0 7256  df-nq0 7257  df-0nq0 7258  df-plq0 7259  df-mq0 7260  df-inp 7298  df-imp 7301
This theorem is referenced by:  mulnqpr  7409
  Copyright terms: Public domain W3C validator