![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 0nelrel | GIF version |
Description: A binary relation does not contain the empty set. (Contributed by AV, 15-Nov-2021.) |
Ref | Expression |
---|---|
0nelrel | ⊢ (Rel 𝑅 → ∅ ∉ 𝑅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rel 4666 | . . . 4 ⊢ (Rel 𝑅 ↔ 𝑅 ⊆ (V × V)) | |
2 | 1 | biimpi 120 | . . 3 ⊢ (Rel 𝑅 → 𝑅 ⊆ (V × V)) |
3 | 0nelxp 4687 | . . . 4 ⊢ ¬ ∅ ∈ (V × V) | |
4 | 3 | a1i 9 | . . 3 ⊢ (Rel 𝑅 → ¬ ∅ ∈ (V × V)) |
5 | 2, 4 | ssneldd 3182 | . 2 ⊢ (Rel 𝑅 → ¬ ∅ ∈ 𝑅) |
6 | df-nel 2460 | . 2 ⊢ (∅ ∉ 𝑅 ↔ ¬ ∅ ∈ 𝑅) | |
7 | 5, 6 | sylibr 134 | 1 ⊢ (Rel 𝑅 → ∅ ∉ 𝑅) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2164 ∉ wnel 2459 Vcvv 2760 ⊆ wss 3153 ∅c0 3446 × cxp 4657 Rel wrel 4664 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-v 2762 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-nul 3447 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-opab 4091 df-xp 4665 df-rel 4666 |
This theorem is referenced by: 0nelfun 5272 |
Copyright terms: Public domain | W3C validator |