ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  0nelrel GIF version

Theorem 0nelrel 4719
Description: A binary relation does not contain the empty set. (Contributed by AV, 15-Nov-2021.)
Assertion
Ref Expression
0nelrel (Rel 𝑅 → ∅ ∉ 𝑅)

Proof of Theorem 0nelrel
StepHypRef Expression
1 df-rel 4680 . . . 4 (Rel 𝑅𝑅 ⊆ (V × V))
21biimpi 120 . . 3 (Rel 𝑅𝑅 ⊆ (V × V))
3 0nelxp 4701 . . . 4 ¬ ∅ ∈ (V × V)
43a1i 9 . . 3 (Rel 𝑅 → ¬ ∅ ∈ (V × V))
52, 4ssneldd 3195 . 2 (Rel 𝑅 → ¬ ∅ ∈ 𝑅)
6 df-nel 2471 . 2 (∅ ∉ 𝑅 ↔ ¬ ∅ ∈ 𝑅)
75, 6sylibr 134 1 (Rel 𝑅 → ∅ ∉ 𝑅)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wcel 2175  wnel 2470  Vcvv 2771  wss 3165  c0 3459   × cxp 4671  Rel wrel 4678
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-v 2773  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-opab 4105  df-xp 4679  df-rel 4680
This theorem is referenced by:  0nelfun  5286
  Copyright terms: Public domain W3C validator