| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elun1 | GIF version | ||
| Description: Membership law for union of classes. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| elun1 | ⊢ (𝐴 ∈ 𝐵 → 𝐴 ∈ (𝐵 ∪ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssun1 3336 | . 2 ⊢ 𝐵 ⊆ (𝐵 ∪ 𝐶) | |
| 2 | 1 | sseli 3189 | 1 ⊢ (𝐴 ∈ 𝐵 → 𝐴 ∈ (𝐵 ∪ 𝐶)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2176 ∪ cun 3164 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-v 2774 df-un 3170 df-in 3172 df-ss 3179 |
| This theorem is referenced by: dcun 3570 exmidundif 4250 exmidundifim 4251 brtposg 6340 dftpos4 6349 dcdifsnid 6590 undifdcss 7020 fidcenumlemrks 7055 djulclr 7151 djulcl 7153 djuss 7172 finomni 7242 hashennnuni 10924 sumsplitdc 11743 srngbased 12979 srngplusgd 12980 srngmulrd 12981 lmodbased 12997 lmodplusgd 12998 lmodscad 12999 ipsbased 13009 ipsaddgd 13010 ipsmulrd 13011 psrbasg 14436 elplyd 15213 ply1term 15215 |
| Copyright terms: Public domain | W3C validator |