| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elun1 | GIF version | ||
| Description: Membership law for union of classes. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| elun1 | ⊢ (𝐴 ∈ 𝐵 → 𝐴 ∈ (𝐵 ∪ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssun1 3335 | . 2 ⊢ 𝐵 ⊆ (𝐵 ∪ 𝐶) | |
| 2 | 1 | sseli 3188 | 1 ⊢ (𝐴 ∈ 𝐵 → 𝐴 ∈ (𝐵 ∪ 𝐶)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2175 ∪ cun 3163 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-v 2773 df-un 3169 df-in 3171 df-ss 3178 |
| This theorem is referenced by: dcun 3569 exmidundif 4249 exmidundifim 4250 brtposg 6339 dftpos4 6348 dcdifsnid 6589 undifdcss 7019 fidcenumlemrks 7054 djulclr 7150 djulcl 7152 djuss 7171 finomni 7241 hashennnuni 10922 sumsplitdc 11714 srngbased 12950 srngplusgd 12951 srngmulrd 12952 lmodbased 12968 lmodplusgd 12969 lmodscad 12970 ipsbased 12980 ipsaddgd 12981 ipsmulrd 12982 psrbasg 14407 elplyd 15184 ply1term 15186 |
| Copyright terms: Public domain | W3C validator |