Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elun1 | GIF version |
Description: Membership law for union of classes. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
elun1 | ⊢ (𝐴 ∈ 𝐵 → 𝐴 ∈ (𝐵 ∪ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssun1 3285 | . 2 ⊢ 𝐵 ⊆ (𝐵 ∪ 𝐶) | |
2 | 1 | sseli 3138 | 1 ⊢ (𝐴 ∈ 𝐵 → 𝐴 ∈ (𝐵 ∪ 𝐶)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2136 ∪ cun 3114 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 |
This theorem is referenced by: dcun 3519 exmidundif 4185 exmidundifim 4186 brtposg 6222 dftpos4 6231 dcdifsnid 6472 undifdcss 6888 fidcenumlemrks 6918 djulclr 7014 djulcl 7016 djuss 7035 finomni 7104 hashennnuni 10692 sumsplitdc 11373 srngbased 12518 srngplusgd 12519 srngmulrd 12520 lmodbased 12529 lmodplusgd 12530 lmodscad 12531 ipsbased 12537 ipsaddgd 12538 ipsmulrd 12539 |
Copyright terms: Public domain | W3C validator |