ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elun1 GIF version

Theorem elun1 3339
Description: Membership law for union of classes. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
elun1 (𝐴𝐵𝐴 ∈ (𝐵𝐶))

Proof of Theorem elun1
StepHypRef Expression
1 ssun1 3335 . 2 𝐵 ⊆ (𝐵𝐶)
21sseli 3188 1 (𝐴𝐵𝐴 ∈ (𝐵𝐶))
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2175  cun 3163
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-v 2773  df-un 3169  df-in 3171  df-ss 3178
This theorem is referenced by:  dcun  3569  exmidundif  4249  exmidundifim  4250  brtposg  6339  dftpos4  6348  dcdifsnid  6589  undifdcss  7019  fidcenumlemrks  7054  djulclr  7150  djulcl  7152  djuss  7171  finomni  7241  hashennnuni  10922  sumsplitdc  11714  srngbased  12950  srngplusgd  12951  srngmulrd  12952  lmodbased  12968  lmodplusgd  12969  lmodscad  12970  ipsbased  12980  ipsaddgd  12981  ipsmulrd  12982  psrbasg  14407  elplyd  15184  ply1term  15186
  Copyright terms: Public domain W3C validator