ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elun1 GIF version

Theorem elun1 3348
Description: Membership law for union of classes. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
elun1 (𝐴𝐵𝐴 ∈ (𝐵𝐶))

Proof of Theorem elun1
StepHypRef Expression
1 ssun1 3344 . 2 𝐵 ⊆ (𝐵𝐶)
21sseli 3197 1 (𝐴𝐵𝐴 ∈ (𝐵𝐶))
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2178  cun 3172
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-v 2778  df-un 3178  df-in 3180  df-ss 3187
This theorem is referenced by:  dcun  3578  exmidundif  4266  exmidundifim  4267  brtposg  6363  dftpos4  6372  dcdifsnid  6613  undifdcss  7046  fidcenumlemrks  7081  djulclr  7177  djulcl  7179  djuss  7198  finomni  7268  hashennnuni  10961  sumsplitdc  11858  srngbased  13094  srngplusgd  13095  srngmulrd  13096  lmodbased  13112  lmodplusgd  13113  lmodscad  13114  ipsbased  13124  ipsaddgd  13125  ipsmulrd  13126  psrbasg  14551  elplyd  15328  ply1term  15330
  Copyright terms: Public domain W3C validator