![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > elun1 | GIF version |
Description: Membership law for union of classes. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
elun1 | ⊢ (𝐴 ∈ 𝐵 → 𝐴 ∈ (𝐵 ∪ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssun1 3323 | . 2 ⊢ 𝐵 ⊆ (𝐵 ∪ 𝐶) | |
2 | 1 | sseli 3176 | 1 ⊢ (𝐴 ∈ 𝐵 → 𝐴 ∈ (𝐵 ∪ 𝐶)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2164 ∪ cun 3152 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 df-un 3158 df-in 3160 df-ss 3167 |
This theorem is referenced by: dcun 3557 exmidundif 4236 exmidundifim 4237 brtposg 6309 dftpos4 6318 dcdifsnid 6559 undifdcss 6981 fidcenumlemrks 7014 djulclr 7110 djulcl 7112 djuss 7131 finomni 7201 hashennnuni 10853 sumsplitdc 11578 srngbased 12767 srngplusgd 12768 srngmulrd 12769 lmodbased 12785 lmodplusgd 12786 lmodscad 12787 ipsbased 12797 ipsaddgd 12798 ipsmulrd 12799 psrbasg 14170 elplyd 14920 ply1term 14922 |
Copyright terms: Public domain | W3C validator |