ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elun1 GIF version

Theorem elun1 3294
Description: Membership law for union of classes. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
elun1 (𝐴𝐵𝐴 ∈ (𝐵𝐶))

Proof of Theorem elun1
StepHypRef Expression
1 ssun1 3290 . 2 𝐵 ⊆ (𝐵𝐶)
21sseli 3143 1 (𝐴𝐵𝐴 ∈ (𝐵𝐶))
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2141  cun 3119
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-v 2732  df-un 3125  df-in 3127  df-ss 3134
This theorem is referenced by:  dcun  3525  exmidundif  4192  exmidundifim  4193  brtposg  6233  dftpos4  6242  dcdifsnid  6483  undifdcss  6900  fidcenumlemrks  6930  djulclr  7026  djulcl  7028  djuss  7047  finomni  7116  hashennnuni  10713  sumsplitdc  11395  srngbased  12541  srngplusgd  12542  srngmulrd  12543  lmodbased  12552  lmodplusgd  12553  lmodscad  12554  ipsbased  12560  ipsaddgd  12561  ipsmulrd  12562
  Copyright terms: Public domain W3C validator