ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elun1 GIF version

Theorem elun1 3371
Description: Membership law for union of classes. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
elun1 (𝐴𝐵𝐴 ∈ (𝐵𝐶))

Proof of Theorem elun1
StepHypRef Expression
1 ssun1 3367 . 2 𝐵 ⊆ (𝐵𝐶)
21sseli 3220 1 (𝐴𝐵𝐴 ∈ (𝐵𝐶))
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2200  cun 3195
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-un 3201  df-in 3203  df-ss 3210
This theorem is referenced by:  dcun  3601  exmidundif  4289  exmidundifim  4290  brtposg  6398  dftpos4  6407  dcdifsnid  6648  undifdcss  7081  fidcenumlemrks  7116  djulclr  7212  djulcl  7214  djuss  7233  finomni  7303  hashennnuni  10996  sumsplitdc  11938  bassetsnn  13084  srngbased  13175  srngplusgd  13176  srngmulrd  13177  lmodbased  13193  lmodplusgd  13194  lmodscad  13195  ipsbased  13205  ipsaddgd  13206  ipsmulrd  13207  psrbasg  14632  elplyd  15409  ply1term  15411
  Copyright terms: Public domain W3C validator