ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elun1 GIF version

Theorem elun1 3330
Description: Membership law for union of classes. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
elun1 (𝐴𝐵𝐴 ∈ (𝐵𝐶))

Proof of Theorem elun1
StepHypRef Expression
1 ssun1 3326 . 2 𝐵 ⊆ (𝐵𝐶)
21sseli 3179 1 (𝐴𝐵𝐴 ∈ (𝐵𝐶))
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2167  cun 3155
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-un 3161  df-in 3163  df-ss 3170
This theorem is referenced by:  dcun  3560  exmidundif  4239  exmidundifim  4240  brtposg  6312  dftpos4  6321  dcdifsnid  6562  undifdcss  6984  fidcenumlemrks  7019  djulclr  7115  djulcl  7117  djuss  7136  finomni  7206  hashennnuni  10871  sumsplitdc  11597  srngbased  12824  srngplusgd  12825  srngmulrd  12826  lmodbased  12842  lmodplusgd  12843  lmodscad  12844  ipsbased  12854  ipsaddgd  12855  ipsmulrd  12856  psrbasg  14227  elplyd  14977  ply1term  14979
  Copyright terms: Public domain W3C validator