ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elun1 GIF version

Theorem elun1 3304
Description: Membership law for union of classes. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
elun1 (𝐴𝐵𝐴 ∈ (𝐵𝐶))

Proof of Theorem elun1
StepHypRef Expression
1 ssun1 3300 . 2 𝐵 ⊆ (𝐵𝐶)
21sseli 3153 1 (𝐴𝐵𝐴 ∈ (𝐵𝐶))
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2148  cun 3129
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-v 2741  df-un 3135  df-in 3137  df-ss 3144
This theorem is referenced by:  dcun  3535  exmidundif  4208  exmidundifim  4209  brtposg  6257  dftpos4  6266  dcdifsnid  6507  undifdcss  6924  fidcenumlemrks  6954  djulclr  7050  djulcl  7052  djuss  7071  finomni  7140  hashennnuni  10761  sumsplitdc  11442  srngbased  12607  srngplusgd  12608  srngmulrd  12609  lmodbased  12625  lmodplusgd  12626  lmodscad  12627  ipsbased  12637  ipsaddgd  12638  ipsmulrd  12639
  Copyright terms: Public domain W3C validator