| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elun1 | GIF version | ||
| Description: Membership law for union of classes. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| elun1 | ⊢ (𝐴 ∈ 𝐵 → 𝐴 ∈ (𝐵 ∪ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssun1 3344 | . 2 ⊢ 𝐵 ⊆ (𝐵 ∪ 𝐶) | |
| 2 | 1 | sseli 3197 | 1 ⊢ (𝐴 ∈ 𝐵 → 𝐴 ∈ (𝐵 ∪ 𝐶)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2178 ∪ cun 3172 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-v 2778 df-un 3178 df-in 3180 df-ss 3187 |
| This theorem is referenced by: dcun 3578 exmidundif 4266 exmidundifim 4267 brtposg 6363 dftpos4 6372 dcdifsnid 6613 undifdcss 7046 fidcenumlemrks 7081 djulclr 7177 djulcl 7179 djuss 7198 finomni 7268 hashennnuni 10961 sumsplitdc 11858 srngbased 13094 srngplusgd 13095 srngmulrd 13096 lmodbased 13112 lmodplusgd 13113 lmodscad 13114 ipsbased 13124 ipsaddgd 13125 ipsmulrd 13126 psrbasg 14551 elplyd 15328 ply1term 15330 |
| Copyright terms: Public domain | W3C validator |