ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elun1 GIF version

Theorem elun1 3340
Description: Membership law for union of classes. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
elun1 (𝐴𝐵𝐴 ∈ (𝐵𝐶))

Proof of Theorem elun1
StepHypRef Expression
1 ssun1 3336 . 2 𝐵 ⊆ (𝐵𝐶)
21sseli 3189 1 (𝐴𝐵𝐴 ∈ (𝐵𝐶))
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2176  cun 3164
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-v 2774  df-un 3170  df-in 3172  df-ss 3179
This theorem is referenced by:  dcun  3570  exmidundif  4250  exmidundifim  4251  brtposg  6340  dftpos4  6349  dcdifsnid  6590  undifdcss  7020  fidcenumlemrks  7055  djulclr  7151  djulcl  7153  djuss  7172  finomni  7242  hashennnuni  10924  sumsplitdc  11743  srngbased  12979  srngplusgd  12980  srngmulrd  12981  lmodbased  12997  lmodplusgd  12998  lmodscad  12999  ipsbased  13009  ipsaddgd  13010  ipsmulrd  13011  psrbasg  14436  elplyd  15213  ply1term  15215
  Copyright terms: Public domain W3C validator