ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prsstp13 GIF version

Theorem prsstp13 3727
Description: A pair is a subset of an unordered triple containing its members. (Contributed by Jim Kingdon, 11-Aug-2018.)
Assertion
Ref Expression
prsstp13 {𝐴, 𝐶} ⊆ {𝐴, 𝐵, 𝐶}

Proof of Theorem prsstp13
StepHypRef Expression
1 prsstp12 3726 . 2 {𝐴, 𝐶} ⊆ {𝐴, 𝐶, 𝐵}
2 tpcomb 3671 . 2 {𝐴, 𝐵, 𝐶} = {𝐴, 𝐶, 𝐵}
31, 2sseqtrri 3177 1 {𝐴, 𝐶} ⊆ {𝐴, 𝐵, 𝐶}
Colors of variables: wff set class
Syntax hints:  wss 3116  {cpr 3577  {ctp 3578
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-3or 969  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-sn 3582  df-pr 3583  df-tp 3584
This theorem is referenced by:  sstpr  3737
  Copyright terms: Public domain W3C validator