ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  trss GIF version

Theorem trss 4071
Description: An element of a transitive class is a subset of the class. (Contributed by NM, 7-Aug-1994.)
Assertion
Ref Expression
trss (Tr 𝐴 → (𝐵𝐴𝐵𝐴))

Proof of Theorem trss
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eleq1 2220 . . . . 5 (𝑥 = 𝐵 → (𝑥𝐴𝐵𝐴))
2 sseq1 3151 . . . . 5 (𝑥 = 𝐵 → (𝑥𝐴𝐵𝐴))
31, 2imbi12d 233 . . . 4 (𝑥 = 𝐵 → ((𝑥𝐴𝑥𝐴) ↔ (𝐵𝐴𝐵𝐴)))
43imbi2d 229 . . 3 (𝑥 = 𝐵 → ((Tr 𝐴 → (𝑥𝐴𝑥𝐴)) ↔ (Tr 𝐴 → (𝐵𝐴𝐵𝐴))))
5 dftr3 4066 . . . 4 (Tr 𝐴 ↔ ∀𝑥𝐴 𝑥𝐴)
6 rsp 2504 . . . 4 (∀𝑥𝐴 𝑥𝐴 → (𝑥𝐴𝑥𝐴))
75, 6sylbi 120 . . 3 (Tr 𝐴 → (𝑥𝐴𝑥𝐴))
84, 7vtoclg 2772 . 2 (𝐵𝐴 → (Tr 𝐴 → (𝐵𝐴𝐵𝐴)))
98pm2.43b 52 1 (Tr 𝐴 → (𝐵𝐴𝐵𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1335  wcel 2128  wral 2435  wss 3102  Tr wtr 4062
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2139
This theorem depends on definitions:  df-bi 116  df-tru 1338  df-nf 1441  df-sb 1743  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ral 2440  df-v 2714  df-in 3108  df-ss 3115  df-uni 3773  df-tr 4063
This theorem is referenced by:  trin  4072  triun  4075  trintssm  4078  tz7.2  4313  ordelss  4338  trsucss  4382  ordsucss  4461  ctinf  12131
  Copyright terms: Public domain W3C validator