| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > trss | GIF version | ||
| Description: An element of a transitive class is a subset of the class. (Contributed by NM, 7-Aug-1994.) |
| Ref | Expression |
|---|---|
| trss | ⊢ (Tr 𝐴 → (𝐵 ∈ 𝐴 → 𝐵 ⊆ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1 2269 | . . . . 5 ⊢ (𝑥 = 𝐵 → (𝑥 ∈ 𝐴 ↔ 𝐵 ∈ 𝐴)) | |
| 2 | sseq1 3218 | . . . . 5 ⊢ (𝑥 = 𝐵 → (𝑥 ⊆ 𝐴 ↔ 𝐵 ⊆ 𝐴)) | |
| 3 | 1, 2 | imbi12d 234 | . . . 4 ⊢ (𝑥 = 𝐵 → ((𝑥 ∈ 𝐴 → 𝑥 ⊆ 𝐴) ↔ (𝐵 ∈ 𝐴 → 𝐵 ⊆ 𝐴))) |
| 4 | 3 | imbi2d 230 | . . 3 ⊢ (𝑥 = 𝐵 → ((Tr 𝐴 → (𝑥 ∈ 𝐴 → 𝑥 ⊆ 𝐴)) ↔ (Tr 𝐴 → (𝐵 ∈ 𝐴 → 𝐵 ⊆ 𝐴)))) |
| 5 | dftr3 4151 | . . . 4 ⊢ (Tr 𝐴 ↔ ∀𝑥 ∈ 𝐴 𝑥 ⊆ 𝐴) | |
| 6 | rsp 2554 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 𝑥 ⊆ 𝐴 → (𝑥 ∈ 𝐴 → 𝑥 ⊆ 𝐴)) | |
| 7 | 5, 6 | sylbi 121 | . . 3 ⊢ (Tr 𝐴 → (𝑥 ∈ 𝐴 → 𝑥 ⊆ 𝐴)) |
| 8 | 4, 7 | vtoclg 2835 | . 2 ⊢ (𝐵 ∈ 𝐴 → (Tr 𝐴 → (𝐵 ∈ 𝐴 → 𝐵 ⊆ 𝐴))) |
| 9 | 8 | pm2.43b 52 | 1 ⊢ (Tr 𝐴 → (𝐵 ∈ 𝐴 → 𝐵 ⊆ 𝐴)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ∈ wcel 2177 ∀wral 2485 ⊆ wss 3168 Tr wtr 4147 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-v 2775 df-in 3174 df-ss 3181 df-uni 3854 df-tr 4148 |
| This theorem is referenced by: trin 4157 triun 4160 trintssm 4163 tz7.2 4406 ordelss 4431 trsucss 4475 ordsucss 4557 ctinf 12851 |
| Copyright terms: Public domain | W3C validator |