ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  trss GIF version

Theorem trss 4140
Description: An element of a transitive class is a subset of the class. (Contributed by NM, 7-Aug-1994.)
Assertion
Ref Expression
trss (Tr 𝐴 → (𝐵𝐴𝐵𝐴))

Proof of Theorem trss
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eleq1 2259 . . . . 5 (𝑥 = 𝐵 → (𝑥𝐴𝐵𝐴))
2 sseq1 3206 . . . . 5 (𝑥 = 𝐵 → (𝑥𝐴𝐵𝐴))
31, 2imbi12d 234 . . . 4 (𝑥 = 𝐵 → ((𝑥𝐴𝑥𝐴) ↔ (𝐵𝐴𝐵𝐴)))
43imbi2d 230 . . 3 (𝑥 = 𝐵 → ((Tr 𝐴 → (𝑥𝐴𝑥𝐴)) ↔ (Tr 𝐴 → (𝐵𝐴𝐵𝐴))))
5 dftr3 4135 . . . 4 (Tr 𝐴 ↔ ∀𝑥𝐴 𝑥𝐴)
6 rsp 2544 . . . 4 (∀𝑥𝐴 𝑥𝐴 → (𝑥𝐴𝑥𝐴))
75, 6sylbi 121 . . 3 (Tr 𝐴 → (𝑥𝐴𝑥𝐴))
84, 7vtoclg 2824 . 2 (𝐵𝐴 → (Tr 𝐴 → (𝐵𝐴𝐵𝐴)))
98pm2.43b 52 1 (Tr 𝐴 → (𝐵𝐴𝐵𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  wcel 2167  wral 2475  wss 3157  Tr wtr 4131
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-v 2765  df-in 3163  df-ss 3170  df-uni 3840  df-tr 4132
This theorem is referenced by:  trin  4141  triun  4144  trintssm  4147  tz7.2  4389  ordelss  4414  trsucss  4458  ordsucss  4540  ctinf  12647
  Copyright terms: Public domain W3C validator