Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > trss | GIF version |
Description: An element of a transitive class is a subset of the class. (Contributed by NM, 7-Aug-1994.) |
Ref | Expression |
---|---|
trss | ⊢ (Tr 𝐴 → (𝐵 ∈ 𝐴 → 𝐵 ⊆ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 2220 | . . . . 5 ⊢ (𝑥 = 𝐵 → (𝑥 ∈ 𝐴 ↔ 𝐵 ∈ 𝐴)) | |
2 | sseq1 3151 | . . . . 5 ⊢ (𝑥 = 𝐵 → (𝑥 ⊆ 𝐴 ↔ 𝐵 ⊆ 𝐴)) | |
3 | 1, 2 | imbi12d 233 | . . . 4 ⊢ (𝑥 = 𝐵 → ((𝑥 ∈ 𝐴 → 𝑥 ⊆ 𝐴) ↔ (𝐵 ∈ 𝐴 → 𝐵 ⊆ 𝐴))) |
4 | 3 | imbi2d 229 | . . 3 ⊢ (𝑥 = 𝐵 → ((Tr 𝐴 → (𝑥 ∈ 𝐴 → 𝑥 ⊆ 𝐴)) ↔ (Tr 𝐴 → (𝐵 ∈ 𝐴 → 𝐵 ⊆ 𝐴)))) |
5 | dftr3 4066 | . . . 4 ⊢ (Tr 𝐴 ↔ ∀𝑥 ∈ 𝐴 𝑥 ⊆ 𝐴) | |
6 | rsp 2504 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 𝑥 ⊆ 𝐴 → (𝑥 ∈ 𝐴 → 𝑥 ⊆ 𝐴)) | |
7 | 5, 6 | sylbi 120 | . . 3 ⊢ (Tr 𝐴 → (𝑥 ∈ 𝐴 → 𝑥 ⊆ 𝐴)) |
8 | 4, 7 | vtoclg 2772 | . 2 ⊢ (𝐵 ∈ 𝐴 → (Tr 𝐴 → (𝐵 ∈ 𝐴 → 𝐵 ⊆ 𝐴))) |
9 | 8 | pm2.43b 52 | 1 ⊢ (Tr 𝐴 → (𝐵 ∈ 𝐴 → 𝐵 ⊆ 𝐴)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1335 ∈ wcel 2128 ∀wral 2435 ⊆ wss 3102 Tr wtr 4062 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-ext 2139 |
This theorem depends on definitions: df-bi 116 df-tru 1338 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ral 2440 df-v 2714 df-in 3108 df-ss 3115 df-uni 3773 df-tr 4063 |
This theorem is referenced by: trin 4072 triun 4075 trintssm 4078 tz7.2 4313 ordelss 4338 trsucss 4382 ordsucss 4461 ctinf 12131 |
Copyright terms: Public domain | W3C validator |