![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > trss | GIF version |
Description: An element of a transitive class is a subset of the class. (Contributed by NM, 7-Aug-1994.) |
Ref | Expression |
---|---|
trss | ⊢ (Tr 𝐴 → (𝐵 ∈ 𝐴 → 𝐵 ⊆ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 2256 | . . . . 5 ⊢ (𝑥 = 𝐵 → (𝑥 ∈ 𝐴 ↔ 𝐵 ∈ 𝐴)) | |
2 | sseq1 3203 | . . . . 5 ⊢ (𝑥 = 𝐵 → (𝑥 ⊆ 𝐴 ↔ 𝐵 ⊆ 𝐴)) | |
3 | 1, 2 | imbi12d 234 | . . . 4 ⊢ (𝑥 = 𝐵 → ((𝑥 ∈ 𝐴 → 𝑥 ⊆ 𝐴) ↔ (𝐵 ∈ 𝐴 → 𝐵 ⊆ 𝐴))) |
4 | 3 | imbi2d 230 | . . 3 ⊢ (𝑥 = 𝐵 → ((Tr 𝐴 → (𝑥 ∈ 𝐴 → 𝑥 ⊆ 𝐴)) ↔ (Tr 𝐴 → (𝐵 ∈ 𝐴 → 𝐵 ⊆ 𝐴)))) |
5 | dftr3 4132 | . . . 4 ⊢ (Tr 𝐴 ↔ ∀𝑥 ∈ 𝐴 𝑥 ⊆ 𝐴) | |
6 | rsp 2541 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 𝑥 ⊆ 𝐴 → (𝑥 ∈ 𝐴 → 𝑥 ⊆ 𝐴)) | |
7 | 5, 6 | sylbi 121 | . . 3 ⊢ (Tr 𝐴 → (𝑥 ∈ 𝐴 → 𝑥 ⊆ 𝐴)) |
8 | 4, 7 | vtoclg 2821 | . 2 ⊢ (𝐵 ∈ 𝐴 → (Tr 𝐴 → (𝐵 ∈ 𝐴 → 𝐵 ⊆ 𝐴))) |
9 | 8 | pm2.43b 52 | 1 ⊢ (Tr 𝐴 → (𝐵 ∈ 𝐴 → 𝐵 ⊆ 𝐴)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2164 ∀wral 2472 ⊆ wss 3154 Tr wtr 4128 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-v 2762 df-in 3160 df-ss 3167 df-uni 3837 df-tr 4129 |
This theorem is referenced by: trin 4138 triun 4141 trintssm 4144 tz7.2 4386 ordelss 4411 trsucss 4455 ordsucss 4537 ctinf 12590 |
Copyright terms: Public domain | W3C validator |