| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > trss | GIF version | ||
| Description: An element of a transitive class is a subset of the class. (Contributed by NM, 7-Aug-1994.) |
| Ref | Expression |
|---|---|
| trss | ⊢ (Tr 𝐴 → (𝐵 ∈ 𝐴 → 𝐵 ⊆ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1 2259 | . . . . 5 ⊢ (𝑥 = 𝐵 → (𝑥 ∈ 𝐴 ↔ 𝐵 ∈ 𝐴)) | |
| 2 | sseq1 3206 | . . . . 5 ⊢ (𝑥 = 𝐵 → (𝑥 ⊆ 𝐴 ↔ 𝐵 ⊆ 𝐴)) | |
| 3 | 1, 2 | imbi12d 234 | . . . 4 ⊢ (𝑥 = 𝐵 → ((𝑥 ∈ 𝐴 → 𝑥 ⊆ 𝐴) ↔ (𝐵 ∈ 𝐴 → 𝐵 ⊆ 𝐴))) |
| 4 | 3 | imbi2d 230 | . . 3 ⊢ (𝑥 = 𝐵 → ((Tr 𝐴 → (𝑥 ∈ 𝐴 → 𝑥 ⊆ 𝐴)) ↔ (Tr 𝐴 → (𝐵 ∈ 𝐴 → 𝐵 ⊆ 𝐴)))) |
| 5 | dftr3 4135 | . . . 4 ⊢ (Tr 𝐴 ↔ ∀𝑥 ∈ 𝐴 𝑥 ⊆ 𝐴) | |
| 6 | rsp 2544 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 𝑥 ⊆ 𝐴 → (𝑥 ∈ 𝐴 → 𝑥 ⊆ 𝐴)) | |
| 7 | 5, 6 | sylbi 121 | . . 3 ⊢ (Tr 𝐴 → (𝑥 ∈ 𝐴 → 𝑥 ⊆ 𝐴)) |
| 8 | 4, 7 | vtoclg 2824 | . 2 ⊢ (𝐵 ∈ 𝐴 → (Tr 𝐴 → (𝐵 ∈ 𝐴 → 𝐵 ⊆ 𝐴))) |
| 9 | 8 | pm2.43b 52 | 1 ⊢ (Tr 𝐴 → (𝐵 ∈ 𝐴 → 𝐵 ⊆ 𝐴)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2167 ∀wral 2475 ⊆ wss 3157 Tr wtr 4131 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-v 2765 df-in 3163 df-ss 3170 df-uni 3840 df-tr 4132 |
| This theorem is referenced by: trin 4141 triun 4144 trintssm 4147 tz7.2 4389 ordelss 4414 trsucss 4458 ordsucss 4540 ctinf 12647 |
| Copyright terms: Public domain | W3C validator |