ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnvexg GIF version

Theorem cnvexg 5262
Description: The converse of a set is a set. Corollary 6.8(1) of [TakeutiZaring] p. 26. (Contributed by NM, 17-Mar-1998.)
Assertion
Ref Expression
cnvexg (𝐴𝑉𝐴 ∈ V)

Proof of Theorem cnvexg
StepHypRef Expression
1 relcnv 5102 . . 3 Rel 𝐴
2 relssdmrn 5245 . . 3 (Rel 𝐴𝐴 ⊆ (dom 𝐴 × ran 𝐴))
31, 2ax-mp 5 . 2 𝐴 ⊆ (dom 𝐴 × ran 𝐴)
4 df-rn 4727 . . . 4 ran 𝐴 = dom 𝐴
5 rnexg 4985 . . . 4 (𝐴𝑉 → ran 𝐴 ∈ V)
64, 5eqeltrrid 2317 . . 3 (𝐴𝑉 → dom 𝐴 ∈ V)
7 dfdm4 4912 . . . 4 dom 𝐴 = ran 𝐴
8 dmexg 4984 . . . 4 (𝐴𝑉 → dom 𝐴 ∈ V)
97, 8eqeltrrid 2317 . . 3 (𝐴𝑉 → ran 𝐴 ∈ V)
10 xpexg 4830 . . 3 ((dom 𝐴 ∈ V ∧ ran 𝐴 ∈ V) → (dom 𝐴 × ran 𝐴) ∈ V)
116, 9, 10syl2anc 411 . 2 (𝐴𝑉 → (dom 𝐴 × ran 𝐴) ∈ V)
12 ssexg 4222 . 2 ((𝐴 ⊆ (dom 𝐴 × ran 𝐴) ∧ (dom 𝐴 × ran 𝐴) ∈ V) → 𝐴 ∈ V)
133, 11, 12sylancr 414 1 (𝐴𝑉𝐴 ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2200  Vcvv 2799  wss 3197   × cxp 4714  ccnv 4715  dom cdm 4716  ran crn 4717  Rel wrel 4721
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4521
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-xp 4722  df-rel 4723  df-cnv 4724  df-dm 4726  df-rn 4727
This theorem is referenced by:  cnvex  5263  relcnvexb  5264  cofunex2g  6245  cnvf1o  6361  brtpos2  6387  tposexg  6394  cnven  6951  cnvct  6952  fopwdom  6985  relcnvfi  7096  ennnfonelemim  12981  xpsval  13371  isunitd  14055  znval  14585  znle  14586  znbaslemnn  14588  znleval  14602  pw1nct  16300
  Copyright terms: Public domain W3C validator