ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnvexg GIF version

Theorem cnvexg 5208
Description: The converse of a set is a set. Corollary 6.8(1) of [TakeutiZaring] p. 26. (Contributed by NM, 17-Mar-1998.)
Assertion
Ref Expression
cnvexg (𝐴𝑉𝐴 ∈ V)

Proof of Theorem cnvexg
StepHypRef Expression
1 relcnv 5048 . . 3 Rel 𝐴
2 relssdmrn 5191 . . 3 (Rel 𝐴𝐴 ⊆ (dom 𝐴 × ran 𝐴))
31, 2ax-mp 5 . 2 𝐴 ⊆ (dom 𝐴 × ran 𝐴)
4 df-rn 4675 . . . 4 ran 𝐴 = dom 𝐴
5 rnexg 4932 . . . 4 (𝐴𝑉 → ran 𝐴 ∈ V)
64, 5eqeltrrid 2284 . . 3 (𝐴𝑉 → dom 𝐴 ∈ V)
7 dfdm4 4859 . . . 4 dom 𝐴 = ran 𝐴
8 dmexg 4931 . . . 4 (𝐴𝑉 → dom 𝐴 ∈ V)
97, 8eqeltrrid 2284 . . 3 (𝐴𝑉 → ran 𝐴 ∈ V)
10 xpexg 4778 . . 3 ((dom 𝐴 ∈ V ∧ ran 𝐴 ∈ V) → (dom 𝐴 × ran 𝐴) ∈ V)
116, 9, 10syl2anc 411 . 2 (𝐴𝑉 → (dom 𝐴 × ran 𝐴) ∈ V)
12 ssexg 4173 . 2 ((𝐴 ⊆ (dom 𝐴 × ran 𝐴) ∧ (dom 𝐴 × ran 𝐴) ∈ V) → 𝐴 ∈ V)
133, 11, 12sylancr 414 1 (𝐴𝑉𝐴 ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2167  Vcvv 2763  wss 3157   × cxp 4662  ccnv 4663  dom cdm 4664  ran crn 4665  Rel wrel 4669
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-br 4035  df-opab 4096  df-xp 4670  df-rel 4671  df-cnv 4672  df-dm 4674  df-rn 4675
This theorem is referenced by:  cnvex  5209  relcnvexb  5210  cofunex2g  6176  cnvf1o  6292  brtpos2  6318  tposexg  6325  cnven  6876  cnvct  6877  fopwdom  6906  relcnvfi  7016  ennnfonelemim  12666  xpsval  13054  isunitd  13738  znval  14268  znle  14269  znbaslemnn  14271  znleval  14285  pw1nct  15734
  Copyright terms: Public domain W3C validator