ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnvexg GIF version

Theorem cnvexg 5226
Description: The converse of a set is a set. Corollary 6.8(1) of [TakeutiZaring] p. 26. (Contributed by NM, 17-Mar-1998.)
Assertion
Ref Expression
cnvexg (𝐴𝑉𝐴 ∈ V)

Proof of Theorem cnvexg
StepHypRef Expression
1 relcnv 5066 . . 3 Rel 𝐴
2 relssdmrn 5209 . . 3 (Rel 𝐴𝐴 ⊆ (dom 𝐴 × ran 𝐴))
31, 2ax-mp 5 . 2 𝐴 ⊆ (dom 𝐴 × ran 𝐴)
4 df-rn 4691 . . . 4 ran 𝐴 = dom 𝐴
5 rnexg 4949 . . . 4 (𝐴𝑉 → ran 𝐴 ∈ V)
64, 5eqeltrrid 2294 . . 3 (𝐴𝑉 → dom 𝐴 ∈ V)
7 dfdm4 4876 . . . 4 dom 𝐴 = ran 𝐴
8 dmexg 4948 . . . 4 (𝐴𝑉 → dom 𝐴 ∈ V)
97, 8eqeltrrid 2294 . . 3 (𝐴𝑉 → ran 𝐴 ∈ V)
10 xpexg 4794 . . 3 ((dom 𝐴 ∈ V ∧ ran 𝐴 ∈ V) → (dom 𝐴 × ran 𝐴) ∈ V)
116, 9, 10syl2anc 411 . 2 (𝐴𝑉 → (dom 𝐴 × ran 𝐴) ∈ V)
12 ssexg 4188 . 2 ((𝐴 ⊆ (dom 𝐴 × ran 𝐴) ∧ (dom 𝐴 × ran 𝐴) ∈ V) → 𝐴 ∈ V)
133, 11, 12sylancr 414 1 (𝐴𝑉𝐴 ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2177  Vcvv 2773  wss 3168   × cxp 4678  ccnv 4679  dom cdm 4680  ran crn 4681  Rel wrel 4685
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4167  ax-pow 4223  ax-pr 4258  ax-un 4485
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-un 3172  df-in 3174  df-ss 3181  df-pw 3620  df-sn 3641  df-pr 3642  df-op 3644  df-uni 3854  df-br 4049  df-opab 4111  df-xp 4686  df-rel 4687  df-cnv 4688  df-dm 4690  df-rn 4691
This theorem is referenced by:  cnvex  5227  relcnvexb  5228  cofunex2g  6205  cnvf1o  6321  brtpos2  6347  tposexg  6354  cnven  6911  cnvct  6912  fopwdom  6945  relcnvfi  7055  ennnfonelemim  12845  xpsval  13234  isunitd  13918  znval  14448  znle  14449  znbaslemnn  14451  znleval  14465  pw1nct  16055
  Copyright terms: Public domain W3C validator