Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > unixpm | GIF version |
Description: The double class union of an inhabited cross product is the union of its members. (Contributed by Jim Kingdon, 18-Dec-2018.) |
Ref | Expression |
---|---|
unixpm | ⊢ (∃𝑥 𝑥 ∈ (𝐴 × 𝐵) → ∪ ∪ (𝐴 × 𝐵) = (𝐴 ∪ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relxp 4720 | . . 3 ⊢ Rel (𝐴 × 𝐵) | |
2 | relfld 5139 | . . 3 ⊢ (Rel (𝐴 × 𝐵) → ∪ ∪ (𝐴 × 𝐵) = (dom (𝐴 × 𝐵) ∪ ran (𝐴 × 𝐵))) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ ∪ ∪ (𝐴 × 𝐵) = (dom (𝐴 × 𝐵) ∪ ran (𝐴 × 𝐵)) |
4 | ancom 264 | . . . 4 ⊢ ((∃𝑏 𝑏 ∈ 𝐵 ∧ ∃𝑎 𝑎 ∈ 𝐴) ↔ (∃𝑎 𝑎 ∈ 𝐴 ∧ ∃𝑏 𝑏 ∈ 𝐵)) | |
5 | xpm 5032 | . . . 4 ⊢ ((∃𝑎 𝑎 ∈ 𝐴 ∧ ∃𝑏 𝑏 ∈ 𝐵) ↔ ∃𝑥 𝑥 ∈ (𝐴 × 𝐵)) | |
6 | 4, 5 | bitri 183 | . . 3 ⊢ ((∃𝑏 𝑏 ∈ 𝐵 ∧ ∃𝑎 𝑎 ∈ 𝐴) ↔ ∃𝑥 𝑥 ∈ (𝐴 × 𝐵)) |
7 | dmxpm 4831 | . . . 4 ⊢ (∃𝑏 𝑏 ∈ 𝐵 → dom (𝐴 × 𝐵) = 𝐴) | |
8 | rnxpm 5040 | . . . 4 ⊢ (∃𝑎 𝑎 ∈ 𝐴 → ran (𝐴 × 𝐵) = 𝐵) | |
9 | uneq12 3276 | . . . 4 ⊢ ((dom (𝐴 × 𝐵) = 𝐴 ∧ ran (𝐴 × 𝐵) = 𝐵) → (dom (𝐴 × 𝐵) ∪ ran (𝐴 × 𝐵)) = (𝐴 ∪ 𝐵)) | |
10 | 7, 8, 9 | syl2an 287 | . . 3 ⊢ ((∃𝑏 𝑏 ∈ 𝐵 ∧ ∃𝑎 𝑎 ∈ 𝐴) → (dom (𝐴 × 𝐵) ∪ ran (𝐴 × 𝐵)) = (𝐴 ∪ 𝐵)) |
11 | 6, 10 | sylbir 134 | . 2 ⊢ (∃𝑥 𝑥 ∈ (𝐴 × 𝐵) → (dom (𝐴 × 𝐵) ∪ ran (𝐴 × 𝐵)) = (𝐴 ∪ 𝐵)) |
12 | 3, 11 | eqtrid 2215 | 1 ⊢ (∃𝑥 𝑥 ∈ (𝐴 × 𝐵) → ∪ ∪ (𝐴 × 𝐵) = (𝐴 ∪ 𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1348 ∃wex 1485 ∈ wcel 2141 ∪ cun 3119 ∪ cuni 3796 × cxp 4609 dom cdm 4611 ran crn 4612 Rel wrel 4616 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-xp 4617 df-rel 4618 df-cnv 4619 df-dm 4621 df-rn 4622 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |