ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unixpm GIF version

Theorem unixpm 5263
Description: The double class union of an inhabited cross product is the union of its members. (Contributed by Jim Kingdon, 18-Dec-2018.)
Assertion
Ref Expression
unixpm (∃𝑥 𝑥 ∈ (𝐴 × 𝐵) → (𝐴 × 𝐵) = (𝐴𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem unixpm
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relxp 4827 . . 3 Rel (𝐴 × 𝐵)
2 relfld 5256 . . 3 (Rel (𝐴 × 𝐵) → (𝐴 × 𝐵) = (dom (𝐴 × 𝐵) ∪ ran (𝐴 × 𝐵)))
31, 2ax-mp 5 . 2 (𝐴 × 𝐵) = (dom (𝐴 × 𝐵) ∪ ran (𝐴 × 𝐵))
4 ancom 266 . . . 4 ((∃𝑏 𝑏𝐵 ∧ ∃𝑎 𝑎𝐴) ↔ (∃𝑎 𝑎𝐴 ∧ ∃𝑏 𝑏𝐵))
5 xpm 5149 . . . 4 ((∃𝑎 𝑎𝐴 ∧ ∃𝑏 𝑏𝐵) ↔ ∃𝑥 𝑥 ∈ (𝐴 × 𝐵))
64, 5bitri 184 . . 3 ((∃𝑏 𝑏𝐵 ∧ ∃𝑎 𝑎𝐴) ↔ ∃𝑥 𝑥 ∈ (𝐴 × 𝐵))
7 dmxpm 4943 . . . 4 (∃𝑏 𝑏𝐵 → dom (𝐴 × 𝐵) = 𝐴)
8 rnxpm 5157 . . . 4 (∃𝑎 𝑎𝐴 → ran (𝐴 × 𝐵) = 𝐵)
9 uneq12 3353 . . . 4 ((dom (𝐴 × 𝐵) = 𝐴 ∧ ran (𝐴 × 𝐵) = 𝐵) → (dom (𝐴 × 𝐵) ∪ ran (𝐴 × 𝐵)) = (𝐴𝐵))
107, 8, 9syl2an 289 . . 3 ((∃𝑏 𝑏𝐵 ∧ ∃𝑎 𝑎𝐴) → (dom (𝐴 × 𝐵) ∪ ran (𝐴 × 𝐵)) = (𝐴𝐵))
116, 10sylbir 135 . 2 (∃𝑥 𝑥 ∈ (𝐴 × 𝐵) → (dom (𝐴 × 𝐵) ∪ ran (𝐴 × 𝐵)) = (𝐴𝐵))
123, 11eqtrid 2274 1 (∃𝑥 𝑥 ∈ (𝐴 × 𝐵) → (𝐴 × 𝐵) = (𝐴𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1395  wex 1538  wcel 2200  cun 3195   cuni 3887   × cxp 4716  dom cdm 4718  ran crn 4719  Rel wrel 4723
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-xp 4724  df-rel 4725  df-cnv 4726  df-dm 4728  df-rn 4729
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator