ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unixpm GIF version

Theorem unixpm 5146
Description: The double class union of an inhabited cross product is the union of its members. (Contributed by Jim Kingdon, 18-Dec-2018.)
Assertion
Ref Expression
unixpm (∃𝑥 𝑥 ∈ (𝐴 × 𝐵) → (𝐴 × 𝐵) = (𝐴𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem unixpm
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relxp 4720 . . 3 Rel (𝐴 × 𝐵)
2 relfld 5139 . . 3 (Rel (𝐴 × 𝐵) → (𝐴 × 𝐵) = (dom (𝐴 × 𝐵) ∪ ran (𝐴 × 𝐵)))
31, 2ax-mp 5 . 2 (𝐴 × 𝐵) = (dom (𝐴 × 𝐵) ∪ ran (𝐴 × 𝐵))
4 ancom 264 . . . 4 ((∃𝑏 𝑏𝐵 ∧ ∃𝑎 𝑎𝐴) ↔ (∃𝑎 𝑎𝐴 ∧ ∃𝑏 𝑏𝐵))
5 xpm 5032 . . . 4 ((∃𝑎 𝑎𝐴 ∧ ∃𝑏 𝑏𝐵) ↔ ∃𝑥 𝑥 ∈ (𝐴 × 𝐵))
64, 5bitri 183 . . 3 ((∃𝑏 𝑏𝐵 ∧ ∃𝑎 𝑎𝐴) ↔ ∃𝑥 𝑥 ∈ (𝐴 × 𝐵))
7 dmxpm 4831 . . . 4 (∃𝑏 𝑏𝐵 → dom (𝐴 × 𝐵) = 𝐴)
8 rnxpm 5040 . . . 4 (∃𝑎 𝑎𝐴 → ran (𝐴 × 𝐵) = 𝐵)
9 uneq12 3276 . . . 4 ((dom (𝐴 × 𝐵) = 𝐴 ∧ ran (𝐴 × 𝐵) = 𝐵) → (dom (𝐴 × 𝐵) ∪ ran (𝐴 × 𝐵)) = (𝐴𝐵))
107, 8, 9syl2an 287 . . 3 ((∃𝑏 𝑏𝐵 ∧ ∃𝑎 𝑎𝐴) → (dom (𝐴 × 𝐵) ∪ ran (𝐴 × 𝐵)) = (𝐴𝐵))
116, 10sylbir 134 . 2 (∃𝑥 𝑥 ∈ (𝐴 × 𝐵) → (dom (𝐴 × 𝐵) ∪ ran (𝐴 × 𝐵)) = (𝐴𝐵))
123, 11eqtrid 2215 1 (∃𝑥 𝑥 ∈ (𝐴 × 𝐵) → (𝐴 × 𝐵) = (𝐴𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1348  wex 1485  wcel 2141  cun 3119   cuni 3796   × cxp 4609  dom cdm 4611  ran crn 4612  Rel wrel 4616
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-xp 4617  df-rel 4618  df-cnv 4619  df-dm 4621  df-rn 4622
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator