ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unixpm GIF version

Theorem unixpm 5139
Description: The double class union of an inhabited cross product is the union of its members. (Contributed by Jim Kingdon, 18-Dec-2018.)
Assertion
Ref Expression
unixpm (∃𝑥 𝑥 ∈ (𝐴 × 𝐵) → (𝐴 × 𝐵) = (𝐴𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem unixpm
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relxp 4713 . . 3 Rel (𝐴 × 𝐵)
2 relfld 5132 . . 3 (Rel (𝐴 × 𝐵) → (𝐴 × 𝐵) = (dom (𝐴 × 𝐵) ∪ ran (𝐴 × 𝐵)))
31, 2ax-mp 5 . 2 (𝐴 × 𝐵) = (dom (𝐴 × 𝐵) ∪ ran (𝐴 × 𝐵))
4 ancom 264 . . . 4 ((∃𝑏 𝑏𝐵 ∧ ∃𝑎 𝑎𝐴) ↔ (∃𝑎 𝑎𝐴 ∧ ∃𝑏 𝑏𝐵))
5 xpm 5025 . . . 4 ((∃𝑎 𝑎𝐴 ∧ ∃𝑏 𝑏𝐵) ↔ ∃𝑥 𝑥 ∈ (𝐴 × 𝐵))
64, 5bitri 183 . . 3 ((∃𝑏 𝑏𝐵 ∧ ∃𝑎 𝑎𝐴) ↔ ∃𝑥 𝑥 ∈ (𝐴 × 𝐵))
7 dmxpm 4824 . . . 4 (∃𝑏 𝑏𝐵 → dom (𝐴 × 𝐵) = 𝐴)
8 rnxpm 5033 . . . 4 (∃𝑎 𝑎𝐴 → ran (𝐴 × 𝐵) = 𝐵)
9 uneq12 3271 . . . 4 ((dom (𝐴 × 𝐵) = 𝐴 ∧ ran (𝐴 × 𝐵) = 𝐵) → (dom (𝐴 × 𝐵) ∪ ran (𝐴 × 𝐵)) = (𝐴𝐵))
107, 8, 9syl2an 287 . . 3 ((∃𝑏 𝑏𝐵 ∧ ∃𝑎 𝑎𝐴) → (dom (𝐴 × 𝐵) ∪ ran (𝐴 × 𝐵)) = (𝐴𝐵))
116, 10sylbir 134 . 2 (∃𝑥 𝑥 ∈ (𝐴 × 𝐵) → (dom (𝐴 × 𝐵) ∪ ran (𝐴 × 𝐵)) = (𝐴𝐵))
123, 11syl5eq 2211 1 (∃𝑥 𝑥 ∈ (𝐴 × 𝐵) → (𝐴 × 𝐵) = (𝐴𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1343  wex 1480  wcel 2136  cun 3114   cuni 3789   × cxp 4602  dom cdm 4604  ran crn 4605  Rel wrel 4609
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-xp 4610  df-rel 4611  df-cnv 4612  df-dm 4614  df-rn 4615
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator