![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > uni0 | GIF version |
Description: The union of the empty set is the empty set. Theorem 8.7 of [Quine] p. 54. (Reproved without relying on ax-nul by Eric Schmidt.) (Contributed by NM, 16-Sep-1993.) (Revised by Eric Schmidt, 4-Apr-2007.) |
Ref | Expression |
---|---|
uni0 | ⊢ ∪ ∅ = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ss 3463 | . 2 ⊢ ∅ ⊆ {∅} | |
2 | uni0b 3836 | . 2 ⊢ (∪ ∅ = ∅ ↔ ∅ ⊆ {∅}) | |
3 | 1, 2 | mpbir 146 | 1 ⊢ ∪ ∅ = ∅ |
Colors of variables: wff set class |
Syntax hints: = wceq 1353 ⊆ wss 3131 ∅c0 3424 {csn 3594 ∪ cuni 3811 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-v 2741 df-dif 3133 df-in 3137 df-ss 3144 df-nul 3425 df-sn 3600 df-uni 3812 |
This theorem is referenced by: iununir 3972 nnpredcl 4624 unixp0im 5167 iotanul 5195 1st0 6147 2nd0 6148 brtpos0 6255 tpostpos 6267 nnsucuniel 6498 sup00 7004 nnnninfeq2 7129 0opn 13591 |
Copyright terms: Public domain | W3C validator |