ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uni0 GIF version

Theorem uni0 3914
Description: The union of the empty set is the empty set. Theorem 8.7 of [Quine] p. 54. (Reproved without relying on ax-nul by Eric Schmidt.) (Contributed by NM, 16-Sep-1993.) (Revised by Eric Schmidt, 4-Apr-2007.)
Assertion
Ref Expression
uni0 ∅ = ∅

Proof of Theorem uni0
StepHypRef Expression
1 0ss 3530 . 2 ∅ ⊆ {∅}
2 uni0b 3912 . 2 ( ∅ = ∅ ↔ ∅ ⊆ {∅})
31, 2mpbir 146 1 ∅ = ∅
Colors of variables: wff set class
Syntax hints:   = wceq 1395  wss 3197  c0 3491  {csn 3666   cuni 3887
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-dif 3199  df-in 3203  df-ss 3210  df-nul 3492  df-sn 3672  df-uni 3888
This theorem is referenced by:  iununir  4048  nnpredcl  4712  unixp0im  5261  iotanul  5290  1st0  6280  2nd0  6281  brtpos0  6388  tpostpos  6400  nnsucuniel  6631  sup00  7158  nnnninfeq2  7284  0opn  14665
  Copyright terms: Public domain W3C validator