ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uni0 GIF version

Theorem uni0 3862
Description: The union of the empty set is the empty set. Theorem 8.7 of [Quine] p. 54. (Reproved without relying on ax-nul by Eric Schmidt.) (Contributed by NM, 16-Sep-1993.) (Revised by Eric Schmidt, 4-Apr-2007.)
Assertion
Ref Expression
uni0 ∅ = ∅

Proof of Theorem uni0
StepHypRef Expression
1 0ss 3485 . 2 ∅ ⊆ {∅}
2 uni0b 3860 . 2 ( ∅ = ∅ ↔ ∅ ⊆ {∅})
31, 2mpbir 146 1 ∅ = ∅
Colors of variables: wff set class
Syntax hints:   = wceq 1364  wss 3153  c0 3446  {csn 3618   cuni 3835
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-dif 3155  df-in 3159  df-ss 3166  df-nul 3447  df-sn 3624  df-uni 3836
This theorem is referenced by:  iununir  3996  nnpredcl  4655  unixp0im  5202  iotanul  5230  1st0  6197  2nd0  6198  brtpos0  6305  tpostpos  6317  nnsucuniel  6548  sup00  7062  nnnninfeq2  7188  0opn  14174
  Copyright terms: Public domain W3C validator