| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fncld | GIF version | ||
| Description: The closed-set generator is a well-behaved function. (Contributed by Stefan O'Rear, 1-Feb-2015.) |
| Ref | Expression |
|---|---|
| fncld | ⊢ Clsd Fn Top |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vuniex 4492 | . . . 4 ⊢ ∪ 𝑗 ∈ V | |
| 2 | 1 | pwex 4234 | . . 3 ⊢ 𝒫 ∪ 𝑗 ∈ V |
| 3 | 2 | rabex 4195 | . 2 ⊢ {𝑥 ∈ 𝒫 ∪ 𝑗 ∣ (∪ 𝑗 ∖ 𝑥) ∈ 𝑗} ∈ V |
| 4 | df-cld 14637 | . 2 ⊢ Clsd = (𝑗 ∈ Top ↦ {𝑥 ∈ 𝒫 ∪ 𝑗 ∣ (∪ 𝑗 ∖ 𝑥) ∈ 𝑗}) | |
| 5 | 3, 4 | fnmpti 5413 | 1 ⊢ Clsd Fn Top |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2177 {crab 2489 ∖ cdif 3167 𝒫 cpw 3620 ∪ cuni 3855 Fn wfn 5274 Topctop 14539 Clsdccld 14634 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4169 ax-pow 4225 ax-pr 4260 ax-un 4487 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-rab 2494 df-v 2775 df-un 3174 df-in 3176 df-ss 3183 df-pw 3622 df-sn 3643 df-pr 3644 df-op 3646 df-uni 3856 df-br 4051 df-opab 4113 df-mpt 4114 df-id 4347 df-xp 4688 df-rel 4689 df-cnv 4690 df-co 4691 df-dm 4692 df-fun 5281 df-fn 5282 df-cld 14637 |
| This theorem is referenced by: cldrcl 14644 |
| Copyright terms: Public domain | W3C validator |