![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fncld | GIF version |
Description: The closed-set generator is a well-behaved function. (Contributed by Stefan O'Rear, 1-Feb-2015.) |
Ref | Expression |
---|---|
fncld | ⊢ Clsd Fn Top |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vuniex 4320 | . . . 4 ⊢ ∪ 𝑗 ∈ V | |
2 | 1 | pwex 4067 | . . 3 ⊢ 𝒫 ∪ 𝑗 ∈ V |
3 | 2 | rabex 4032 | . 2 ⊢ {𝑥 ∈ 𝒫 ∪ 𝑗 ∣ (∪ 𝑗 ∖ 𝑥) ∈ 𝑗} ∈ V |
4 | df-cld 12107 | . 2 ⊢ Clsd = (𝑗 ∈ Top ↦ {𝑥 ∈ 𝒫 ∪ 𝑗 ∣ (∪ 𝑗 ∖ 𝑥) ∈ 𝑗}) | |
5 | 3, 4 | fnmpti 5209 | 1 ⊢ Clsd Fn Top |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 1463 {crab 2394 ∖ cdif 3034 𝒫 cpw 3476 ∪ cuni 3702 Fn wfn 5076 Topctop 12007 Clsdccld 12104 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 681 ax-5 1406 ax-7 1407 ax-gen 1408 ax-ie1 1452 ax-ie2 1453 ax-8 1465 ax-10 1466 ax-11 1467 ax-i12 1468 ax-bndl 1469 ax-4 1470 ax-13 1474 ax-14 1475 ax-17 1489 ax-i9 1493 ax-ial 1497 ax-i5r 1498 ax-ext 2097 ax-sep 4006 ax-pow 4058 ax-pr 4091 ax-un 4315 |
This theorem depends on definitions: df-bi 116 df-3an 947 df-tru 1317 df-nf 1420 df-sb 1719 df-eu 1978 df-mo 1979 df-clab 2102 df-cleq 2108 df-clel 2111 df-nfc 2244 df-ral 2395 df-rex 2396 df-rab 2399 df-v 2659 df-un 3041 df-in 3043 df-ss 3050 df-pw 3478 df-sn 3499 df-pr 3500 df-op 3502 df-uni 3703 df-br 3896 df-opab 3950 df-mpt 3951 df-id 4175 df-xp 4505 df-rel 4506 df-cnv 4507 df-co 4508 df-dm 4509 df-fun 5083 df-fn 5084 df-cld 12107 |
This theorem is referenced by: cldrcl 12114 |
Copyright terms: Public domain | W3C validator |