ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  distop GIF version

Theorem distop 14405
Description: The discrete topology on a set 𝐴. Part of Example 2 in [Munkres] p. 77. (Contributed by FL, 17-Jul-2006.) (Revised by Mario Carneiro, 19-Mar-2015.)
Assertion
Ref Expression
distop (𝐴𝑉 → 𝒫 𝐴 ∈ Top)

Proof of Theorem distop
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 uniss 3861 . . . . . 6 (𝑥 ⊆ 𝒫 𝐴 𝑥 𝒫 𝐴)
2 unipw 4251 . . . . . 6 𝒫 𝐴 = 𝐴
31, 2sseqtrdi 3232 . . . . 5 (𝑥 ⊆ 𝒫 𝐴 𝑥𝐴)
4 vuniex 4474 . . . . . 6 𝑥 ∈ V
54elpw 3612 . . . . 5 ( 𝑥 ∈ 𝒫 𝐴 𝑥𝐴)
63, 5sylibr 134 . . . 4 (𝑥 ⊆ 𝒫 𝐴 𝑥 ∈ 𝒫 𝐴)
76ax-gen 1463 . . 3 𝑥(𝑥 ⊆ 𝒫 𝐴 𝑥 ∈ 𝒫 𝐴)
87a1i 9 . 2 (𝐴𝑉 → ∀𝑥(𝑥 ⊆ 𝒫 𝐴 𝑥 ∈ 𝒫 𝐴))
9 velpw 3613 . . . . . 6 (𝑥 ∈ 𝒫 𝐴𝑥𝐴)
10 velpw 3613 . . . . . . . 8 (𝑦 ∈ 𝒫 𝐴𝑦𝐴)
11 ssinss1 3393 . . . . . . . . . 10 (𝑥𝐴 → (𝑥𝑦) ⊆ 𝐴)
1211a1i 9 . . . . . . . . 9 (𝑦𝐴 → (𝑥𝐴 → (𝑥𝑦) ⊆ 𝐴))
13 vex 2766 . . . . . . . . . . 11 𝑦 ∈ V
1413inex2 4169 . . . . . . . . . 10 (𝑥𝑦) ∈ V
1514elpw 3612 . . . . . . . . 9 ((𝑥𝑦) ∈ 𝒫 𝐴 ↔ (𝑥𝑦) ⊆ 𝐴)
1612, 15imbitrrdi 162 . . . . . . . 8 (𝑦𝐴 → (𝑥𝐴 → (𝑥𝑦) ∈ 𝒫 𝐴))
1710, 16sylbi 121 . . . . . . 7 (𝑦 ∈ 𝒫 𝐴 → (𝑥𝐴 → (𝑥𝑦) ∈ 𝒫 𝐴))
1817com12 30 . . . . . 6 (𝑥𝐴 → (𝑦 ∈ 𝒫 𝐴 → (𝑥𝑦) ∈ 𝒫 𝐴))
199, 18sylbi 121 . . . . 5 (𝑥 ∈ 𝒫 𝐴 → (𝑦 ∈ 𝒫 𝐴 → (𝑥𝑦) ∈ 𝒫 𝐴))
2019ralrimiv 2569 . . . 4 (𝑥 ∈ 𝒫 𝐴 → ∀𝑦 ∈ 𝒫 𝐴(𝑥𝑦) ∈ 𝒫 𝐴)
2120rgen 2550 . . 3 𝑥 ∈ 𝒫 𝐴𝑦 ∈ 𝒫 𝐴(𝑥𝑦) ∈ 𝒫 𝐴
2221a1i 9 . 2 (𝐴𝑉 → ∀𝑥 ∈ 𝒫 𝐴𝑦 ∈ 𝒫 𝐴(𝑥𝑦) ∈ 𝒫 𝐴)
23 pwexg 4214 . . 3 (𝐴𝑉 → 𝒫 𝐴 ∈ V)
24 istopg 14319 . . 3 (𝒫 𝐴 ∈ V → (𝒫 𝐴 ∈ Top ↔ (∀𝑥(𝑥 ⊆ 𝒫 𝐴 𝑥 ∈ 𝒫 𝐴) ∧ ∀𝑥 ∈ 𝒫 𝐴𝑦 ∈ 𝒫 𝐴(𝑥𝑦) ∈ 𝒫 𝐴)))
2523, 24syl 14 . 2 (𝐴𝑉 → (𝒫 𝐴 ∈ Top ↔ (∀𝑥(𝑥 ⊆ 𝒫 𝐴 𝑥 ∈ 𝒫 𝐴) ∧ ∀𝑥 ∈ 𝒫 𝐴𝑦 ∈ 𝒫 𝐴(𝑥𝑦) ∈ 𝒫 𝐴)))
268, 22, 25mpbir2and 946 1 (𝐴𝑉 → 𝒫 𝐴 ∈ Top)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wal 1362  wcel 2167  wral 2475  Vcvv 2763  cin 3156  wss 3157  𝒫 cpw 3606   cuni 3840  Topctop 14317
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-un 4469
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-uni 3841  df-top 14318
This theorem is referenced by:  topnex  14406  distopon  14407  distps  14411  discld  14456  restdis  14504  txdis  14597
  Copyright terms: Public domain W3C validator