![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > uniexg | GIF version |
Description: The ZF Axiom of Union in class notation, in the form of a theorem instead of an inference. We use the antecedent 𝐴 ∈ 𝑉 instead of 𝐴 ∈ V to make the theorem more general and thus shorten some proofs; obviously the universal class constant V is one possible substitution for class variable 𝑉. (Contributed by NM, 25-Nov-1994.) |
Ref | Expression |
---|---|
uniexg | ⊢ (𝐴 ∈ 𝑉 → ∪ 𝐴 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unieq 3820 | . . 3 ⊢ (𝑥 = 𝐴 → ∪ 𝑥 = ∪ 𝐴) | |
2 | 1 | eleq1d 2246 | . 2 ⊢ (𝑥 = 𝐴 → (∪ 𝑥 ∈ V ↔ ∪ 𝐴 ∈ V)) |
3 | vex 2742 | . . 3 ⊢ 𝑥 ∈ V | |
4 | 3 | uniex 4439 | . 2 ⊢ ∪ 𝑥 ∈ V |
5 | 2, 4 | vtoclg 2799 | 1 ⊢ (𝐴 ∈ 𝑉 → ∪ 𝐴 ∈ V) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1353 ∈ wcel 2148 Vcvv 2739 ∪ cuni 3811 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-un 4435 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-rex 2461 df-v 2741 df-uni 3812 |
This theorem is referenced by: uniexd 4442 abnexg 4448 snnex 4450 uniexb 4475 ssonuni 4489 dmexg 4893 rnexg 4894 elxp4 5118 elxp5 5119 relrnfvex 5535 fvexg 5536 sefvex 5538 riotaexg 5837 iunexg 6122 1stvalg 6145 2ndvalg 6146 cnvf1o 6228 brtpos2 6254 tfrlemiex 6334 tfr1onlemex 6350 tfrcllemex 6363 en1bg 6802 en1uniel 6806 fival 6971 suplocexprlem2b 7715 suplocexprlemlub 7725 restid 12704 tgval 12716 tgvalex 12717 istopon 13552 eltg 13591 eltg2 13592 tgss2 13618 ntrval 13649 restin 13715 cnovex 13735 cnprcl2k 13745 cnptopresti 13777 cnptoprest 13778 cnptoprest2 13779 lmtopcnp 13789 txbasex 13796 uptx 13813 reldvg 14187 |
Copyright terms: Public domain | W3C validator |