Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > uniexg | GIF version |
Description: The ZF Axiom of Union in class notation, in the form of a theorem instead of an inference. We use the antecedent 𝐴 ∈ 𝑉 instead of 𝐴 ∈ V to make the theorem more general and thus shorten some proofs; obviously the universal class constant V is one possible substitution for class variable 𝑉. (Contributed by NM, 25-Nov-1994.) |
Ref | Expression |
---|---|
uniexg | ⊢ (𝐴 ∈ 𝑉 → ∪ 𝐴 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unieq 3781 | . . 3 ⊢ (𝑥 = 𝐴 → ∪ 𝑥 = ∪ 𝐴) | |
2 | 1 | eleq1d 2226 | . 2 ⊢ (𝑥 = 𝐴 → (∪ 𝑥 ∈ V ↔ ∪ 𝐴 ∈ V)) |
3 | vex 2715 | . . 3 ⊢ 𝑥 ∈ V | |
4 | 3 | uniex 4397 | . 2 ⊢ ∪ 𝑥 ∈ V |
5 | 2, 4 | vtoclg 2772 | 1 ⊢ (𝐴 ∈ 𝑉 → ∪ 𝐴 ∈ V) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1335 ∈ wcel 2128 Vcvv 2712 ∪ cuni 3772 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-sep 4082 ax-un 4393 |
This theorem depends on definitions: df-bi 116 df-tru 1338 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-rex 2441 df-v 2714 df-uni 3773 |
This theorem is referenced by: uniexd 4400 abnexg 4406 snnex 4408 uniexb 4433 ssonuni 4447 dmexg 4850 rnexg 4851 elxp4 5073 elxp5 5074 relrnfvex 5486 fvexg 5487 sefvex 5489 riotaexg 5784 iunexg 6067 1stvalg 6090 2ndvalg 6091 cnvf1o 6172 brtpos2 6198 tfrlemiex 6278 tfr1onlemex 6294 tfrcllemex 6307 en1bg 6745 en1uniel 6749 fival 6914 suplocexprlem2b 7634 suplocexprlemlub 7644 restid 12373 istopon 12422 tgval 12460 tgvalex 12461 eltg 12463 eltg2 12464 tgss2 12490 ntrval 12521 restin 12587 cnovex 12607 cnprcl2k 12617 cnptopresti 12649 cnptoprest 12650 cnptoprest2 12651 lmtopcnp 12661 txbasex 12668 uptx 12685 reldvg 13059 |
Copyright terms: Public domain | W3C validator |