| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > uniexg | GIF version | ||
| Description: The ZF Axiom of Union in class notation, in the form of a theorem instead of an inference. We use the antecedent 𝐴 ∈ 𝑉 instead of 𝐴 ∈ V to make the theorem more general and thus shorten some proofs; obviously the universal class constant V is one possible substitution for class variable 𝑉. (Contributed by NM, 25-Nov-1994.) |
| Ref | Expression |
|---|---|
| uniexg | ⊢ (𝐴 ∈ 𝑉 → ∪ 𝐴 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unieq 3873 | . . 3 ⊢ (𝑥 = 𝐴 → ∪ 𝑥 = ∪ 𝐴) | |
| 2 | 1 | eleq1d 2276 | . 2 ⊢ (𝑥 = 𝐴 → (∪ 𝑥 ∈ V ↔ ∪ 𝐴 ∈ V)) |
| 3 | vex 2779 | . . 3 ⊢ 𝑥 ∈ V | |
| 4 | 3 | uniex 4502 | . 2 ⊢ ∪ 𝑥 ∈ V |
| 5 | 2, 4 | vtoclg 2838 | 1 ⊢ (𝐴 ∈ 𝑉 → ∪ 𝐴 ∈ V) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ∈ wcel 2178 Vcvv 2776 ∪ cuni 3864 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-un 4498 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-rex 2492 df-v 2778 df-uni 3865 |
| This theorem is referenced by: uniexd 4505 abnexg 4511 snnex 4513 uniexb 4538 ssonuni 4554 dmexg 4961 rnexg 4962 elxp4 5189 elxp5 5190 iotaexab 5269 relrnfvex 5617 fvexg 5618 sefvex 5620 riotaexg 5926 iunexg 6227 1stvalg 6251 2ndvalg 6252 cnvf1o 6334 brtpos2 6360 tfrlemiex 6440 tfr1onlemex 6456 tfrcllemex 6469 en1bg 6915 en1uniel 6919 fival 7098 suplocexprlem2b 7862 suplocexprlemlub 7872 wrdexb 11043 restid 13197 tgval 13209 tgvalex 13210 istopon 14600 eltg 14639 eltg2 14640 tgss2 14666 ntrval 14697 restin 14763 cnovex 14783 cnprcl2k 14793 cnptopresti 14825 cnptoprest 14826 cnptoprest2 14827 lmtopcnp 14837 txbasex 14844 uptx 14861 reldvg 15266 |
| Copyright terms: Public domain | W3C validator |