| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > uniexg | GIF version | ||
| Description: The ZF Axiom of Union in class notation, in the form of a theorem instead of an inference. We use the antecedent 𝐴 ∈ 𝑉 instead of 𝐴 ∈ V to make the theorem more general and thus shorten some proofs; obviously the universal class constant V is one possible substitution for class variable 𝑉. (Contributed by NM, 25-Nov-1994.) |
| Ref | Expression |
|---|---|
| uniexg | ⊢ (𝐴 ∈ 𝑉 → ∪ 𝐴 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unieq 3897 | . . 3 ⊢ (𝑥 = 𝐴 → ∪ 𝑥 = ∪ 𝐴) | |
| 2 | 1 | eleq1d 2298 | . 2 ⊢ (𝑥 = 𝐴 → (∪ 𝑥 ∈ V ↔ ∪ 𝐴 ∈ V)) |
| 3 | vex 2802 | . . 3 ⊢ 𝑥 ∈ V | |
| 4 | 3 | uniex 4528 | . 2 ⊢ ∪ 𝑥 ∈ V |
| 5 | 2, 4 | vtoclg 2861 | 1 ⊢ (𝐴 ∈ 𝑉 → ∪ 𝐴 ∈ V) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1395 ∈ wcel 2200 Vcvv 2799 ∪ cuni 3888 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-un 4524 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-rex 2514 df-v 2801 df-uni 3889 |
| This theorem is referenced by: uniexd 4531 abnexg 4537 snnex 4539 uniexb 4564 ssonuni 4580 dmexg 4988 rnexg 4989 elxp4 5216 elxp5 5217 iotaexab 5297 relrnfvex 5645 fvexg 5646 sefvex 5648 riotaexg 5958 iunexg 6264 1stvalg 6288 2ndvalg 6289 cnvf1o 6371 brtpos2 6397 tfrlemiex 6477 tfr1onlemex 6493 tfrcllemex 6506 en1bg 6952 en1uniel 6956 fival 7137 suplocexprlem2b 7901 suplocexprlemlub 7911 wrdexb 11083 restid 13283 tgval 13295 tgvalex 13296 istopon 14687 eltg 14726 eltg2 14727 tgss2 14753 ntrval 14784 restin 14850 cnovex 14870 cnprcl2k 14880 cnptopresti 14912 cnptoprest 14913 cnptoprest2 14914 lmtopcnp 14924 txbasex 14931 uptx 14948 reldvg 15353 |
| Copyright terms: Public domain | W3C validator |