Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > uniexg | GIF version |
Description: The ZF Axiom of Union in class notation, in the form of a theorem instead of an inference. We use the antecedent 𝐴 ∈ 𝑉 instead of 𝐴 ∈ V to make the theorem more general and thus shorten some proofs; obviously the universal class constant V is one possible substitution for class variable 𝑉. (Contributed by NM, 25-Nov-1994.) |
Ref | Expression |
---|---|
uniexg | ⊢ (𝐴 ∈ 𝑉 → ∪ 𝐴 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unieq 3805 | . . 3 ⊢ (𝑥 = 𝐴 → ∪ 𝑥 = ∪ 𝐴) | |
2 | 1 | eleq1d 2239 | . 2 ⊢ (𝑥 = 𝐴 → (∪ 𝑥 ∈ V ↔ ∪ 𝐴 ∈ V)) |
3 | vex 2733 | . . 3 ⊢ 𝑥 ∈ V | |
4 | 3 | uniex 4422 | . 2 ⊢ ∪ 𝑥 ∈ V |
5 | 2, 4 | vtoclg 2790 | 1 ⊢ (𝐴 ∈ 𝑉 → ∪ 𝐴 ∈ V) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1348 ∈ wcel 2141 Vcvv 2730 ∪ cuni 3796 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-un 4418 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-rex 2454 df-v 2732 df-uni 3797 |
This theorem is referenced by: uniexd 4425 abnexg 4431 snnex 4433 uniexb 4458 ssonuni 4472 dmexg 4875 rnexg 4876 elxp4 5098 elxp5 5099 relrnfvex 5514 fvexg 5515 sefvex 5517 riotaexg 5813 iunexg 6098 1stvalg 6121 2ndvalg 6122 cnvf1o 6204 brtpos2 6230 tfrlemiex 6310 tfr1onlemex 6326 tfrcllemex 6339 en1bg 6778 en1uniel 6782 fival 6947 suplocexprlem2b 7676 suplocexprlemlub 7686 restid 12590 istopon 12805 tgval 12843 tgvalex 12844 eltg 12846 eltg2 12847 tgss2 12873 ntrval 12904 restin 12970 cnovex 12990 cnprcl2k 13000 cnptopresti 13032 cnptoprest 13033 cnptoprest2 13034 lmtopcnp 13044 txbasex 13051 uptx 13068 reldvg 13442 |
Copyright terms: Public domain | W3C validator |