| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > uniexg | GIF version | ||
| Description: The ZF Axiom of Union in class notation, in the form of a theorem instead of an inference. We use the antecedent 𝐴 ∈ 𝑉 instead of 𝐴 ∈ V to make the theorem more general and thus shorten some proofs; obviously the universal class constant V is one possible substitution for class variable 𝑉. (Contributed by NM, 25-Nov-1994.) |
| Ref | Expression |
|---|---|
| uniexg | ⊢ (𝐴 ∈ 𝑉 → ∪ 𝐴 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unieq 3859 | . . 3 ⊢ (𝑥 = 𝐴 → ∪ 𝑥 = ∪ 𝐴) | |
| 2 | 1 | eleq1d 2274 | . 2 ⊢ (𝑥 = 𝐴 → (∪ 𝑥 ∈ V ↔ ∪ 𝐴 ∈ V)) |
| 3 | vex 2775 | . . 3 ⊢ 𝑥 ∈ V | |
| 4 | 3 | uniex 4484 | . 2 ⊢ ∪ 𝑥 ∈ V |
| 5 | 2, 4 | vtoclg 2833 | 1 ⊢ (𝐴 ∈ 𝑉 → ∪ 𝐴 ∈ V) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ∈ wcel 2176 Vcvv 2772 ∪ cuni 3850 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-un 4480 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-rex 2490 df-v 2774 df-uni 3851 |
| This theorem is referenced by: uniexd 4487 abnexg 4493 snnex 4495 uniexb 4520 ssonuni 4536 dmexg 4942 rnexg 4943 elxp4 5170 elxp5 5171 iotaexab 5250 relrnfvex 5594 fvexg 5595 sefvex 5597 riotaexg 5903 iunexg 6204 1stvalg 6228 2ndvalg 6229 cnvf1o 6311 brtpos2 6337 tfrlemiex 6417 tfr1onlemex 6433 tfrcllemex 6446 en1bg 6892 en1uniel 6896 fival 7072 suplocexprlem2b 7827 suplocexprlemlub 7837 wrdexb 11006 restid 13082 tgval 13094 tgvalex 13095 istopon 14485 eltg 14524 eltg2 14525 tgss2 14551 ntrval 14582 restin 14648 cnovex 14668 cnprcl2k 14678 cnptopresti 14710 cnptoprest 14711 cnptoprest2 14712 lmtopcnp 14722 txbasex 14729 uptx 14746 reldvg 15151 |
| Copyright terms: Public domain | W3C validator |