Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > uniexg | GIF version |
Description: The ZF Axiom of Union in class notation, in the form of a theorem instead of an inference. We use the antecedent 𝐴 ∈ 𝑉 instead of 𝐴 ∈ V to make the theorem more general and thus shorten some proofs; obviously the universal class constant V is one possible substitution for class variable 𝑉. (Contributed by NM, 25-Nov-1994.) |
Ref | Expression |
---|---|
uniexg | ⊢ (𝐴 ∈ 𝑉 → ∪ 𝐴 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unieq 3797 | . . 3 ⊢ (𝑥 = 𝐴 → ∪ 𝑥 = ∪ 𝐴) | |
2 | 1 | eleq1d 2234 | . 2 ⊢ (𝑥 = 𝐴 → (∪ 𝑥 ∈ V ↔ ∪ 𝐴 ∈ V)) |
3 | vex 2728 | . . 3 ⊢ 𝑥 ∈ V | |
4 | 3 | uniex 4414 | . 2 ⊢ ∪ 𝑥 ∈ V |
5 | 2, 4 | vtoclg 2785 | 1 ⊢ (𝐴 ∈ 𝑉 → ∪ 𝐴 ∈ V) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1343 ∈ wcel 2136 Vcvv 2725 ∪ cuni 3788 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4099 ax-un 4410 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2296 df-rex 2449 df-v 2727 df-uni 3789 |
This theorem is referenced by: uniexd 4417 abnexg 4423 snnex 4425 uniexb 4450 ssonuni 4464 dmexg 4867 rnexg 4868 elxp4 5090 elxp5 5091 relrnfvex 5503 fvexg 5504 sefvex 5506 riotaexg 5801 iunexg 6084 1stvalg 6107 2ndvalg 6108 cnvf1o 6189 brtpos2 6215 tfrlemiex 6295 tfr1onlemex 6311 tfrcllemex 6324 en1bg 6762 en1uniel 6766 fival 6931 suplocexprlem2b 7651 suplocexprlemlub 7661 restid 12562 istopon 12611 tgval 12649 tgvalex 12650 eltg 12652 eltg2 12653 tgss2 12679 ntrval 12710 restin 12776 cnovex 12796 cnprcl2k 12806 cnptopresti 12838 cnptoprest 12839 cnptoprest2 12840 lmtopcnp 12850 txbasex 12857 uptx 12874 reldvg 13248 |
Copyright terms: Public domain | W3C validator |