| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > uniexg | GIF version | ||
| Description: The ZF Axiom of Union in class notation, in the form of a theorem instead of an inference. We use the antecedent 𝐴 ∈ 𝑉 instead of 𝐴 ∈ V to make the theorem more general and thus shorten some proofs; obviously the universal class constant V is one possible substitution for class variable 𝑉. (Contributed by NM, 25-Nov-1994.) |
| Ref | Expression |
|---|---|
| uniexg | ⊢ (𝐴 ∈ 𝑉 → ∪ 𝐴 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unieq 3849 | . . 3 ⊢ (𝑥 = 𝐴 → ∪ 𝑥 = ∪ 𝐴) | |
| 2 | 1 | eleq1d 2265 | . 2 ⊢ (𝑥 = 𝐴 → (∪ 𝑥 ∈ V ↔ ∪ 𝐴 ∈ V)) |
| 3 | vex 2766 | . . 3 ⊢ 𝑥 ∈ V | |
| 4 | 3 | uniex 4473 | . 2 ⊢ ∪ 𝑥 ∈ V |
| 5 | 2, 4 | vtoclg 2824 | 1 ⊢ (𝐴 ∈ 𝑉 → ∪ 𝐴 ∈ V) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2167 Vcvv 2763 ∪ cuni 3840 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-un 4469 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rex 2481 df-v 2765 df-uni 3841 |
| This theorem is referenced by: uniexd 4476 abnexg 4482 snnex 4484 uniexb 4509 ssonuni 4525 dmexg 4931 rnexg 4932 elxp4 5158 elxp5 5159 iotaexab 5238 relrnfvex 5577 fvexg 5578 sefvex 5580 riotaexg 5882 iunexg 6177 1stvalg 6201 2ndvalg 6202 cnvf1o 6284 brtpos2 6310 tfrlemiex 6390 tfr1onlemex 6406 tfrcllemex 6419 en1bg 6860 en1uniel 6864 fival 7037 suplocexprlem2b 7783 suplocexprlemlub 7793 wrdexb 10949 restid 12931 tgval 12943 tgvalex 12944 istopon 14259 eltg 14298 eltg2 14299 tgss2 14325 ntrval 14356 restin 14422 cnovex 14442 cnprcl2k 14452 cnptopresti 14484 cnptoprest 14485 cnptoprest2 14486 lmtopcnp 14496 txbasex 14503 uptx 14520 reldvg 14925 |
| Copyright terms: Public domain | W3C validator |