![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > uniexg | GIF version |
Description: The ZF Axiom of Union in class notation, in the form of a theorem instead of an inference. We use the antecedent 𝐴 ∈ 𝑉 instead of 𝐴 ∈ V to make the theorem more general and thus shorten some proofs; obviously the universal class constant V is one possible substitution for class variable 𝑉. (Contributed by NM, 25-Nov-1994.) |
Ref | Expression |
---|---|
uniexg | ⊢ (𝐴 ∈ 𝑉 → ∪ 𝐴 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unieq 3820 | . . 3 ⊢ (𝑥 = 𝐴 → ∪ 𝑥 = ∪ 𝐴) | |
2 | 1 | eleq1d 2246 | . 2 ⊢ (𝑥 = 𝐴 → (∪ 𝑥 ∈ V ↔ ∪ 𝐴 ∈ V)) |
3 | vex 2742 | . . 3 ⊢ 𝑥 ∈ V | |
4 | 3 | uniex 4439 | . 2 ⊢ ∪ 𝑥 ∈ V |
5 | 2, 4 | vtoclg 2799 | 1 ⊢ (𝐴 ∈ 𝑉 → ∪ 𝐴 ∈ V) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1353 ∈ wcel 2148 Vcvv 2739 ∪ cuni 3811 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-un 4435 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-rex 2461 df-v 2741 df-uni 3812 |
This theorem is referenced by: uniexd 4442 abnexg 4448 snnex 4450 uniexb 4475 ssonuni 4489 dmexg 4893 rnexg 4894 elxp4 5118 elxp5 5119 relrnfvex 5535 fvexg 5536 sefvex 5538 riotaexg 5838 iunexg 6123 1stvalg 6146 2ndvalg 6147 cnvf1o 6229 brtpos2 6255 tfrlemiex 6335 tfr1onlemex 6351 tfrcllemex 6364 en1bg 6803 en1uniel 6807 fival 6972 suplocexprlem2b 7716 suplocexprlemlub 7726 restid 12705 tgval 12717 tgvalex 12718 istopon 13701 eltg 13740 eltg2 13741 tgss2 13767 ntrval 13798 restin 13864 cnovex 13884 cnprcl2k 13894 cnptopresti 13926 cnptoprest 13927 cnptoprest2 13928 lmtopcnp 13938 txbasex 13945 uptx 13962 reldvg 14336 |
Copyright terms: Public domain | W3C validator |