![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > uniexg | GIF version |
Description: The ZF Axiom of Union in class notation, in the form of a theorem instead of an inference. We use the antecedent 𝐴 ∈ 𝑉 instead of 𝐴 ∈ V to make the theorem more general and thus shorten some proofs; obviously the universal class constant V is one possible substitution for class variable 𝑉. (Contributed by NM, 25-Nov-1994.) |
Ref | Expression |
---|---|
uniexg | ⊢ (𝐴 ∈ 𝑉 → ∪ 𝐴 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unieq 3845 | . . 3 ⊢ (𝑥 = 𝐴 → ∪ 𝑥 = ∪ 𝐴) | |
2 | 1 | eleq1d 2262 | . 2 ⊢ (𝑥 = 𝐴 → (∪ 𝑥 ∈ V ↔ ∪ 𝐴 ∈ V)) |
3 | vex 2763 | . . 3 ⊢ 𝑥 ∈ V | |
4 | 3 | uniex 4469 | . 2 ⊢ ∪ 𝑥 ∈ V |
5 | 2, 4 | vtoclg 2821 | 1 ⊢ (𝐴 ∈ 𝑉 → ∪ 𝐴 ∈ V) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2164 Vcvv 2760 ∪ cuni 3836 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-un 4465 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-rex 2478 df-v 2762 df-uni 3837 |
This theorem is referenced by: uniexd 4472 abnexg 4478 snnex 4480 uniexb 4505 ssonuni 4521 dmexg 4927 rnexg 4928 elxp4 5154 elxp5 5155 iotaexab 5234 relrnfvex 5573 fvexg 5574 sefvex 5576 riotaexg 5878 iunexg 6173 1stvalg 6197 2ndvalg 6198 cnvf1o 6280 brtpos2 6306 tfrlemiex 6386 tfr1onlemex 6402 tfrcllemex 6415 en1bg 6856 en1uniel 6860 fival 7031 suplocexprlem2b 7776 suplocexprlemlub 7786 wrdexb 10929 restid 12864 tgval 12876 tgvalex 12877 istopon 14192 eltg 14231 eltg2 14232 tgss2 14258 ntrval 14289 restin 14355 cnovex 14375 cnprcl2k 14385 cnptopresti 14417 cnptoprest 14418 cnptoprest2 14419 lmtopcnp 14429 txbasex 14436 uptx 14453 reldvg 14858 |
Copyright terms: Public domain | W3C validator |