MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0nelrel Structured version   Visualization version   GIF version

Theorem 0nelrel 5737
Description: A binary relation does not contain the empty set. (Contributed by AV, 15-Nov-2021.)
Assertion
Ref Expression
0nelrel (Rel 𝑅 → ∅ ∉ 𝑅)

Proof of Theorem 0nelrel
StepHypRef Expression
1 0nelrel0 5736 . 2 (Rel 𝑅 → ¬ ∅ ∈ 𝑅)
2 df-nel 3046 . 2 (∅ ∉ 𝑅 ↔ ¬ ∅ ∈ 𝑅)
31, 2sylibr 233 1 (Rel 𝑅 → ∅ ∉ 𝑅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wcel 2105  wnel 3045  c0 4322  Rel wrel 5681
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-sb 2067  df-clab 2709  df-cleq 2723  df-clel 2809  df-ne 2940  df-nel 3046  df-v 3475  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-opab 5211  df-xp 5682  df-rel 5683
This theorem is referenced by:  0nelfun  6566
  Copyright terms: Public domain W3C validator