MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0nelrel Structured version   Visualization version   GIF version

Theorem 0nelrel 5594
Description: A binary relation does not contain the empty set. (Contributed by AV, 15-Nov-2021.)
Assertion
Ref Expression
0nelrel (Rel 𝑅 → ∅ ∉ 𝑅)

Proof of Theorem 0nelrel
StepHypRef Expression
1 0nelrel0 5593 . 2 (Rel 𝑅 → ¬ ∅ ∈ 𝑅)
2 df-nel 3040 . 2 (∅ ∉ 𝑅 ↔ ¬ ∅ ∈ 𝑅)
31, 2sylibr 237 1 (Rel 𝑅 → ∅ ∉ 𝑅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wcel 2114  wnel 3039  c0 4221  Rel wrel 5540
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-ext 2711  ax-sep 5177  ax-nul 5184  ax-pr 5306
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-sb 2075  df-clab 2718  df-cleq 2731  df-clel 2812  df-ne 2936  df-nel 3040  df-v 3402  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-nul 4222  df-if 4425  df-sn 4527  df-pr 4529  df-op 4533  df-opab 5103  df-xp 5541  df-rel 5542
This theorem is referenced by:  0nelfun  6368
  Copyright terms: Public domain W3C validator