MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0nelrel Structured version   Visualization version   GIF version

Theorem 0nelrel 5410
Description: A binary relation does not contain the empty set. (Contributed by AV, 15-Nov-2021.)
Assertion
Ref Expression
0nelrel (Rel 𝑅 → ∅ ∉ 𝑅)

Proof of Theorem 0nelrel
StepHypRef Expression
1 df-rel 5362 . . . 4 (Rel 𝑅𝑅 ⊆ (V × V))
21biimpi 208 . . 3 (Rel 𝑅𝑅 ⊆ (V × V))
3 0nelxp 5389 . . . 4 ¬ ∅ ∈ (V × V)
43a1i 11 . . 3 (Rel 𝑅 → ¬ ∅ ∈ (V × V))
52, 4ssneldd 3823 . 2 (Rel 𝑅 → ¬ ∅ ∈ 𝑅)
6 df-nel 3075 . 2 (∅ ∉ 𝑅 ↔ ¬ ∅ ∈ 𝑅)
75, 6sylibr 226 1 (Rel 𝑅 → ∅ ∉ 𝑅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wcel 2106  wnel 3074  Vcvv 3397  wss 3791  c0 4140   × cxp 5353  Rel wrel 5360
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2054  ax-9 2115  ax-10 2134  ax-11 2149  ax-12 2162  ax-ext 2753  ax-sep 5017  ax-nul 5025  ax-pr 5138
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-clab 2763  df-cleq 2769  df-clel 2773  df-nfc 2920  df-ne 2969  df-nel 3075  df-v 3399  df-dif 3794  df-un 3796  df-in 3798  df-ss 3805  df-nul 4141  df-if 4307  df-sn 4398  df-pr 4400  df-op 4404  df-opab 4949  df-xp 5361  df-rel 5362
This theorem is referenced by:  0nelfun  6153
  Copyright terms: Public domain W3C validator