| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0nelrel | Structured version Visualization version GIF version | ||
| Description: A binary relation does not contain the empty set. (Contributed by AV, 15-Nov-2021.) |
| Ref | Expression |
|---|---|
| 0nelrel | ⊢ (Rel 𝑅 → ∅ ∉ 𝑅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0nelrel0 5674 | . 2 ⊢ (Rel 𝑅 → ¬ ∅ ∈ 𝑅) | |
| 2 | df-nel 3033 | . 2 ⊢ (∅ ∉ 𝑅 ↔ ¬ ∅ ∈ 𝑅) | |
| 3 | 1, 2 | sylibr 234 | 1 ⊢ (Rel 𝑅 → ∅ ∉ 𝑅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2111 ∉ wnel 3032 ∅c0 4280 Rel wrel 5619 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-nel 3033 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-opab 5152 df-xp 5620 df-rel 5621 |
| This theorem is referenced by: 0nelfun 6499 |
| Copyright terms: Public domain | W3C validator |