| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0nelrel | Structured version Visualization version GIF version | ||
| Description: A binary relation does not contain the empty set. (Contributed by AV, 15-Nov-2021.) |
| Ref | Expression |
|---|---|
| 0nelrel | ⊢ (Rel 𝑅 → ∅ ∉ 𝑅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0nelrel0 5706 | . 2 ⊢ (Rel 𝑅 → ¬ ∅ ∈ 𝑅) | |
| 2 | df-nel 3032 | . 2 ⊢ (∅ ∉ 𝑅 ↔ ¬ ∅ ∈ 𝑅) | |
| 3 | 1, 2 | sylibr 234 | 1 ⊢ (Rel 𝑅 → ∅ ∉ 𝑅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2109 ∉ wnel 3031 ∅c0 4304 Rel wrel 5651 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5259 ax-nul 5269 ax-pr 5395 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2928 df-nel 3032 df-v 3457 df-dif 3925 df-un 3927 df-ss 3939 df-nul 4305 df-if 4497 df-sn 4598 df-pr 4600 df-op 4604 df-opab 5178 df-xp 5652 df-rel 5653 |
| This theorem is referenced by: 0nelfun 6542 |
| Copyright terms: Public domain | W3C validator |