Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 0nelrel | Structured version Visualization version GIF version |
Description: A binary relation does not contain the empty set. (Contributed by AV, 15-Nov-2021.) |
Ref | Expression |
---|---|
0nelrel | ⊢ (Rel 𝑅 → ∅ ∉ 𝑅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0nelrel0 5647 | . 2 ⊢ (Rel 𝑅 → ¬ ∅ ∈ 𝑅) | |
2 | df-nel 3050 | . 2 ⊢ (∅ ∉ 𝑅 ↔ ¬ ∅ ∈ 𝑅) | |
3 | 1, 2 | sylibr 233 | 1 ⊢ (Rel 𝑅 → ∅ ∉ 𝑅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2106 ∉ wnel 3049 ∅c0 4256 Rel wrel 5594 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ne 2944 df-nel 3050 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-opab 5137 df-xp 5595 df-rel 5596 |
This theorem is referenced by: 0nelfun 6452 |
Copyright terms: Public domain | W3C validator |