Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 0nelrel | Structured version Visualization version GIF version |
Description: A binary relation does not contain the empty set. (Contributed by AV, 15-Nov-2021.) |
Ref | Expression |
---|---|
0nelrel | ⊢ (Rel 𝑅 → ∅ ∉ 𝑅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0nelrel0 5638 | . 2 ⊢ (Rel 𝑅 → ¬ ∅ ∈ 𝑅) | |
2 | df-nel 3049 | . 2 ⊢ (∅ ∉ 𝑅 ↔ ¬ ∅ ∈ 𝑅) | |
3 | 1, 2 | sylibr 233 | 1 ⊢ (Rel 𝑅 → ∅ ∉ 𝑅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2108 ∉ wnel 3048 ∅c0 4253 Rel wrel 5585 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ne 2943 df-nel 3049 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-opab 5133 df-xp 5586 df-rel 5587 |
This theorem is referenced by: 0nelfun 6436 |
Copyright terms: Public domain | W3C validator |