MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0nelfun Structured version   Visualization version   GIF version

Theorem 0nelfun 6499
Description: A function does not contain the empty set. (Contributed by BJ, 26-Nov-2021.)
Assertion
Ref Expression
0nelfun (Fun 𝑅 → ∅ ∉ 𝑅)

Proof of Theorem 0nelfun
StepHypRef Expression
1 funrel 6498 . 2 (Fun 𝑅 → Rel 𝑅)
2 0nelrel 5675 . 2 (Rel 𝑅 → ∅ ∉ 𝑅)
31, 2syl 17 1 (Fun 𝑅 → ∅ ∉ 𝑅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wnel 3032  c0 4280  Rel wrel 5619  Fun wfun 6475
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-nel 3033  df-v 3438  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-opab 5152  df-xp 5620  df-rel 5621  df-fun 6483
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator