![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 0nelfun | Structured version Visualization version GIF version |
Description: A function does not contain the empty set. (Contributed by BJ, 26-Nov-2021.) |
Ref | Expression |
---|---|
0nelfun | ⊢ (Fun 𝑅 → ∅ ∉ 𝑅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funrel 6595 | . 2 ⊢ (Fun 𝑅 → Rel 𝑅) | |
2 | 0nelrel 5761 | . 2 ⊢ (Rel 𝑅 → ∅ ∉ 𝑅) | |
3 | 1, 2 | syl 17 | 1 ⊢ (Fun 𝑅 → ∅ ∉ 𝑅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∉ wnel 3052 ∅c0 4352 Rel wrel 5705 Fun wfun 6567 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-nel 3053 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-opab 5229 df-xp 5706 df-rel 5707 df-fun 6575 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |