MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0nelfun Structured version   Visualization version   GIF version

Theorem 0nelfun 6589
Description: A function does not contain the empty set. (Contributed by BJ, 26-Nov-2021.)
Assertion
Ref Expression
0nelfun (Fun 𝑅 → ∅ ∉ 𝑅)

Proof of Theorem 0nelfun
StepHypRef Expression
1 funrel 6588 . 2 (Fun 𝑅 → Rel 𝑅)
2 0nelrel 5751 . 2 (Rel 𝑅 → ∅ ∉ 𝑅)
31, 2syl 17 1 (Fun 𝑅 → ∅ ∉ 𝑅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wnel 3045  c0 4340  Rel wrel 5695  Fun wfun 6560
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2707  ax-sep 5303  ax-nul 5313  ax-pr 5439
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1541  df-fal 1551  df-ex 1778  df-sb 2064  df-clab 2714  df-cleq 2728  df-clel 2815  df-ne 2940  df-nel 3046  df-v 3481  df-dif 3967  df-un 3969  df-ss 3981  df-nul 4341  df-if 4533  df-sn 4633  df-pr 4635  df-op 4639  df-opab 5212  df-xp 5696  df-rel 5697  df-fun 6568
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator