![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 0nelfun | Structured version Visualization version GIF version |
Description: A function does not contain the empty set. (Contributed by BJ, 26-Nov-2021.) |
Ref | Expression |
---|---|
0nelfun | ⊢ (Fun 𝑅 → ∅ ∉ 𝑅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funrel 6588 | . 2 ⊢ (Fun 𝑅 → Rel 𝑅) | |
2 | 0nelrel 5751 | . 2 ⊢ (Rel 𝑅 → ∅ ∉ 𝑅) | |
3 | 1, 2 | syl 17 | 1 ⊢ (Fun 𝑅 → ∅ ∉ 𝑅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∉ wnel 3045 ∅c0 4340 Rel wrel 5695 Fun wfun 6560 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2707 ax-sep 5303 ax-nul 5313 ax-pr 5439 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1541 df-fal 1551 df-ex 1778 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-ne 2940 df-nel 3046 df-v 3481 df-dif 3967 df-un 3969 df-ss 3981 df-nul 4341 df-if 4533 df-sn 4633 df-pr 4635 df-op 4639 df-opab 5212 df-xp 5696 df-rel 5697 df-fun 6568 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |