![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 0nelfun | Structured version Visualization version GIF version |
Description: A function does not contain the empty set. (Contributed by BJ, 26-Nov-2021.) |
Ref | Expression |
---|---|
0nelfun | ⊢ (Fun 𝑅 → ∅ ∉ 𝑅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funrel 6118 | . 2 ⊢ (Fun 𝑅 → Rel 𝑅) | |
2 | 0nelrel 5367 | . 2 ⊢ (Rel 𝑅 → ∅ ∉ 𝑅) | |
3 | 1, 2 | syl 17 | 1 ⊢ (Fun 𝑅 → ∅ ∉ 𝑅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∉ wnel 3074 ∅c0 4115 Rel wrel 5317 Fun wfun 6095 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-sep 4975 ax-nul 4983 ax-pr 5097 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ne 2972 df-nel 3075 df-v 3387 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-nul 4116 df-if 4278 df-sn 4369 df-pr 4371 df-op 4375 df-opab 4906 df-xp 5318 df-rel 5319 df-fun 6103 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |