| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0nelfun | Structured version Visualization version GIF version | ||
| Description: A function does not contain the empty set. (Contributed by BJ, 26-Nov-2021.) |
| Ref | Expression |
|---|---|
| 0nelfun | ⊢ (Fun 𝑅 → ∅ ∉ 𝑅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funrel 6541 | . 2 ⊢ (Fun 𝑅 → Rel 𝑅) | |
| 2 | 0nelrel 5707 | . 2 ⊢ (Rel 𝑅 → ∅ ∉ 𝑅) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (Fun 𝑅 → ∅ ∉ 𝑅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∉ wnel 3031 ∅c0 4304 Rel wrel 5651 Fun wfun 6513 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5259 ax-nul 5269 ax-pr 5395 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2928 df-nel 3032 df-v 3457 df-dif 3925 df-un 3927 df-ss 3939 df-nul 4305 df-if 4497 df-sn 4598 df-pr 4600 df-op 4604 df-opab 5178 df-xp 5652 df-rel 5653 df-fun 6521 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |