| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0nelrel0 | Structured version Visualization version GIF version | ||
| Description: A binary relation does not contain the empty set. (Contributed by AV, 15-Nov-2021.) (Revised by BJ, 14-Jul-2023.) |
| Ref | Expression |
|---|---|
| 0nelrel0 | ⊢ (Rel 𝑅 → ¬ ∅ ∈ 𝑅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rel 5674 | . . 3 ⊢ (Rel 𝑅 ↔ 𝑅 ⊆ (V × V)) | |
| 2 | 1 | biimpi 216 | . 2 ⊢ (Rel 𝑅 → 𝑅 ⊆ (V × V)) |
| 3 | 0nelxp 5701 | . . 3 ⊢ ¬ ∅ ∈ (V × V) | |
| 4 | 3 | a1i 11 | . 2 ⊢ (Rel 𝑅 → ¬ ∅ ∈ (V × V)) |
| 5 | 2, 4 | ssneldd 3968 | 1 ⊢ (Rel 𝑅 → ¬ ∅ ∈ 𝑅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2107 Vcvv 3464 ⊆ wss 3933 ∅c0 4315 × cxp 5665 Rel wrel 5672 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 ax-sep 5278 ax-nul 5288 ax-pr 5414 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-ne 2932 df-v 3466 df-dif 3936 df-un 3938 df-ss 3950 df-nul 4316 df-if 4508 df-sn 4609 df-pr 4611 df-op 4615 df-opab 5188 df-xp 5673 df-rel 5674 |
| This theorem is referenced by: 0nelrel 5728 reldmtpos 8242 bj-0nelopab 37008 bj-brrelex12ALT 37009 tposrescnv 48726 tposres3 48728 tposres 48729 fucofvalne 48984 |
| Copyright terms: Public domain | W3C validator |