| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0nelrel0 | Structured version Visualization version GIF version | ||
| Description: A binary relation does not contain the empty set. (Contributed by AV, 15-Nov-2021.) (Revised by BJ, 14-Jul-2023.) |
| Ref | Expression |
|---|---|
| 0nelrel0 | ⊢ (Rel 𝑅 → ¬ ∅ ∈ 𝑅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rel 5645 | . . 3 ⊢ (Rel 𝑅 ↔ 𝑅 ⊆ (V × V)) | |
| 2 | 1 | biimpi 216 | . 2 ⊢ (Rel 𝑅 → 𝑅 ⊆ (V × V)) |
| 3 | 0nelxp 5672 | . . 3 ⊢ ¬ ∅ ∈ (V × V) | |
| 4 | 3 | a1i 11 | . 2 ⊢ (Rel 𝑅 → ¬ ∅ ∈ (V × V)) |
| 5 | 2, 4 | ssneldd 3949 | 1 ⊢ (Rel 𝑅 → ¬ ∅ ∈ 𝑅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2109 Vcvv 3447 ⊆ wss 3914 ∅c0 4296 × cxp 5636 Rel wrel 5643 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-opab 5170 df-xp 5644 df-rel 5645 |
| This theorem is referenced by: 0nelrel 5699 reldmtpos 8213 bj-0nelopab 37054 bj-brrelex12ALT 37055 tposrescnv 48867 tposres3 48869 tposres 48870 idfurcl 49087 oppfrcllem 49116 2oppf 49121 fucofvalne 49314 |
| Copyright terms: Public domain | W3C validator |