MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0nelrel0 Structured version   Visualization version   GIF version

Theorem 0nelrel0 5674
Description: A binary relation does not contain the empty set. (Contributed by AV, 15-Nov-2021.) (Revised by BJ, 14-Jul-2023.)
Assertion
Ref Expression
0nelrel0 (Rel 𝑅 → ¬ ∅ ∈ 𝑅)

Proof of Theorem 0nelrel0
StepHypRef Expression
1 df-rel 5621 . . 3 (Rel 𝑅𝑅 ⊆ (V × V))
21biimpi 216 . 2 (Rel 𝑅𝑅 ⊆ (V × V))
3 0nelxp 5648 . . 3 ¬ ∅ ∈ (V × V)
43a1i 11 . 2 (Rel 𝑅 → ¬ ∅ ∈ (V × V))
52, 4ssneldd 3932 1 (Rel 𝑅 → ¬ ∅ ∈ 𝑅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wcel 2111  Vcvv 3436  wss 3897  c0 4280   × cxp 5612  Rel wrel 5619
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-v 3438  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-opab 5152  df-xp 5620  df-rel 5621
This theorem is referenced by:  0nelrel  5675  reldmtpos  8164  bj-0nelopab  37110  bj-brrelex12ALT  37111  tposrescnv  48989  tposres3  48991  tposres  48992  idfurcl  49209  oppfrcllem  49238  2oppf  49243  fucofvalne  49436
  Copyright terms: Public domain W3C validator