MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0nelrel0 Structured version   Visualization version   GIF version

Theorem 0nelrel0 5698
Description: A binary relation does not contain the empty set. (Contributed by AV, 15-Nov-2021.) (Revised by BJ, 14-Jul-2023.)
Assertion
Ref Expression
0nelrel0 (Rel 𝑅 → ¬ ∅ ∈ 𝑅)

Proof of Theorem 0nelrel0
StepHypRef Expression
1 df-rel 5645 . . 3 (Rel 𝑅𝑅 ⊆ (V × V))
21biimpi 216 . 2 (Rel 𝑅𝑅 ⊆ (V × V))
3 0nelxp 5672 . . 3 ¬ ∅ ∈ (V × V)
43a1i 11 . 2 (Rel 𝑅 → ¬ ∅ ∈ (V × V))
52, 4ssneldd 3949 1 (Rel 𝑅 → ¬ ∅ ∈ 𝑅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wcel 2109  Vcvv 3447  wss 3914  c0 4296   × cxp 5636  Rel wrel 5643
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-v 3449  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-opab 5170  df-xp 5644  df-rel 5645
This theorem is referenced by:  0nelrel  5699  reldmtpos  8213  bj-0nelopab  37054  bj-brrelex12ALT  37055  tposrescnv  48867  tposres3  48869  tposres  48870  idfurcl  49087  oppfrcllem  49116  2oppf  49121  fucofvalne  49314
  Copyright terms: Public domain W3C validator