![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 0nelrel0 | Structured version Visualization version GIF version |
Description: A binary relation does not contain the empty set. (Contributed by AV, 15-Nov-2021.) (Revised by BJ, 14-Jul-2023.) |
Ref | Expression |
---|---|
0nelrel0 | ⊢ (Rel 𝑅 → ¬ ∅ ∈ 𝑅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rel 5707 | . . 3 ⊢ (Rel 𝑅 ↔ 𝑅 ⊆ (V × V)) | |
2 | 1 | biimpi 216 | . 2 ⊢ (Rel 𝑅 → 𝑅 ⊆ (V × V)) |
3 | 0nelxp 5734 | . . 3 ⊢ ¬ ∅ ∈ (V × V) | |
4 | 3 | a1i 11 | . 2 ⊢ (Rel 𝑅 → ¬ ∅ ∈ (V × V)) |
5 | 2, 4 | ssneldd 4011 | 1 ⊢ (Rel 𝑅 → ¬ ∅ ∈ 𝑅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2108 Vcvv 3488 ⊆ wss 3976 ∅c0 4352 × cxp 5698 Rel wrel 5705 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-opab 5229 df-xp 5706 df-rel 5707 |
This theorem is referenced by: 0nelrel 5761 reldmtpos 8275 bj-0nelopab 37032 bj-brrelex12ALT 37033 |
Copyright terms: Public domain | W3C validator |