| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > 0sald | Structured version Visualization version GIF version | ||
| Description: The empty set belongs to every sigma-algebra. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| Ref | Expression |
|---|---|
| 0sald.1 | ⊢ (𝜑 → 𝑆 ∈ SAlg) |
| Ref | Expression |
|---|---|
| 0sald | ⊢ (𝜑 → ∅ ∈ 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0sald.1 | . 2 ⊢ (𝜑 → 𝑆 ∈ SAlg) | |
| 2 | 0sal 46445 | . 2 ⊢ (𝑆 ∈ SAlg → ∅ ∈ 𝑆) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → ∅ ∈ 𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2113 ∅c0 4282 SAlgcsalg 46433 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ral 3049 df-rab 3397 df-v 3439 df-dif 3901 df-ss 3915 df-pw 4553 df-uni 4861 df-salg 46434 |
| This theorem is referenced by: subsalsal 46484 smfpimltxr 46872 smfconst 46874 smfpimgtxr 46905 smfresal 46913 |
| Copyright terms: Public domain | W3C validator |