Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  0sald Structured version   Visualization version   GIF version

Theorem 0sald 46271
Description: The empty set belongs to every sigma-algebra. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypothesis
Ref Expression
0sald.1 (𝜑𝑆 ∈ SAlg)
Assertion
Ref Expression
0sald (𝜑 → ∅ ∈ 𝑆)

Proof of Theorem 0sald
StepHypRef Expression
1 0sald.1 . 2 (𝜑𝑆 ∈ SAlg)
2 0sal 46241 . 2 (𝑆 ∈ SAlg → ∅ ∈ 𝑆)
31, 2syl 17 1 (𝜑 → ∅ ∈ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  c0 4352  SAlgcsalg 46229
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1089  df-tru 1540  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rab 3444  df-v 3490  df-dif 3979  df-ss 3993  df-pw 4624  df-uni 4932  df-salg 46230
This theorem is referenced by:  subsalsal  46280  smfpimltxr  46668  smfconst  46670  smfpimgtxr  46701  smfresal  46709
  Copyright terms: Public domain W3C validator