Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > 0sald | Structured version Visualization version GIF version |
Description: The empty set belongs to every sigma-algebra. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
0sald.1 | ⊢ (𝜑 → 𝑆 ∈ SAlg) |
Ref | Expression |
---|---|
0sald | ⊢ (𝜑 → ∅ ∈ 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0sald.1 | . 2 ⊢ (𝜑 → 𝑆 ∈ SAlg) | |
2 | 0sal 43751 | . 2 ⊢ (𝑆 ∈ SAlg → ∅ ∈ 𝑆) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → ∅ ∈ 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 ∅c0 4253 SAlgcsalg 43739 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1087 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rab 3072 df-v 3424 df-dif 3886 df-in 3890 df-ss 3900 df-pw 4532 df-uni 4837 df-salg 43740 |
This theorem is referenced by: subsalsal 43788 smfpimltxr 44170 smfconst 44172 smfpimgtxr 44202 smfresal 44209 |
Copyright terms: Public domain | W3C validator |