Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > 0sald | Structured version Visualization version GIF version |
Description: The empty set belongs to every sigma-algebra. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
0sald.1 | ⊢ (𝜑 → 𝑆 ∈ SAlg) |
Ref | Expression |
---|---|
0sald | ⊢ (𝜑 → ∅ ∈ 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0sald.1 | . 2 ⊢ (𝜑 → 𝑆 ∈ SAlg) | |
2 | 0sal 44205 | . 2 ⊢ (𝑆 ∈ SAlg → ∅ ∈ 𝑆) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → ∅ ∈ 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2105 ∅c0 4269 SAlgcsalg 44193 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 397 df-3an 1088 df-tru 1543 df-ex 1781 df-sb 2067 df-clab 2714 df-cleq 2728 df-clel 2814 df-ral 3062 df-rab 3404 df-v 3443 df-dif 3901 df-in 3905 df-ss 3915 df-pw 4549 df-uni 4853 df-salg 44194 |
This theorem is referenced by: subsalsal 44242 smfpimltxr 44630 smfconst 44632 smfpimgtxr 44663 smfresal 44671 |
Copyright terms: Public domain | W3C validator |