Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  0sald Structured version   Visualization version   GIF version

Theorem 0sald 43889
Description: The empty set belongs to every sigma-algebra. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypothesis
Ref Expression
0sald.1 (𝜑𝑆 ∈ SAlg)
Assertion
Ref Expression
0sald (𝜑 → ∅ ∈ 𝑆)

Proof of Theorem 0sald
StepHypRef Expression
1 0sald.1 . 2 (𝜑𝑆 ∈ SAlg)
2 0sal 43861 . 2 (𝑆 ∈ SAlg → ∅ ∈ 𝑆)
31, 2syl 17 1 (𝜑 → ∅ ∈ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2106  c0 4256  SAlgcsalg 43849
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-3an 1088  df-tru 1542  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rab 3073  df-v 3434  df-dif 3890  df-in 3894  df-ss 3904  df-pw 4535  df-uni 4840  df-salg 43850
This theorem is referenced by:  subsalsal  43898  smfpimltxr  44283  smfconst  44285  smfpimgtxr  44315  smfresal  44322
  Copyright terms: Public domain W3C validator