Step | Hyp | Ref
| Expression |
1 | | breq1 5082 |
. . . . . 6
⊢ (𝐴 = -∞ → (𝐴 < (𝐹‘𝑥) ↔ -∞ < (𝐹‘𝑥))) |
2 | 1 | rabbidv 3413 |
. . . . 5
⊢ (𝐴 = -∞ → {𝑥 ∈ 𝐷 ∣ 𝐴 < (𝐹‘𝑥)} = {𝑥 ∈ 𝐷 ∣ -∞ < (𝐹‘𝑥)}) |
3 | 2 | adantl 482 |
. . . 4
⊢ ((𝜑 ∧ 𝐴 = -∞) → {𝑥 ∈ 𝐷 ∣ 𝐴 < (𝐹‘𝑥)} = {𝑥 ∈ 𝐷 ∣ -∞ < (𝐹‘𝑥)}) |
4 | | smfpimgtxr.d |
. . . . . . . . 9
⊢ 𝐷 = dom 𝐹 |
5 | | smfpimgtxr.x |
. . . . . . . . . 10
⊢
Ⅎ𝑥𝐹 |
6 | 5 | nfdm 5859 |
. . . . . . . . 9
⊢
Ⅎ𝑥dom
𝐹 |
7 | 4, 6 | nfcxfr 2907 |
. . . . . . . 8
⊢
Ⅎ𝑥𝐷 |
8 | | nfcv 2909 |
. . . . . . . 8
⊢
Ⅎ𝑦𝐷 |
9 | | nfv 1921 |
. . . . . . . 8
⊢
Ⅎ𝑦-∞
< (𝐹‘𝑥) |
10 | | nfcv 2909 |
. . . . . . . . 9
⊢
Ⅎ𝑥-∞ |
11 | | nfcv 2909 |
. . . . . . . . 9
⊢
Ⅎ𝑥
< |
12 | | nfcv 2909 |
. . . . . . . . . 10
⊢
Ⅎ𝑥𝑦 |
13 | 5, 12 | nffv 6781 |
. . . . . . . . 9
⊢
Ⅎ𝑥(𝐹‘𝑦) |
14 | 10, 11, 13 | nfbr 5126 |
. . . . . . . 8
⊢
Ⅎ𝑥-∞
< (𝐹‘𝑦) |
15 | | fveq2 6771 |
. . . . . . . . 9
⊢ (𝑥 = 𝑦 → (𝐹‘𝑥) = (𝐹‘𝑦)) |
16 | 15 | breq2d 5091 |
. . . . . . . 8
⊢ (𝑥 = 𝑦 → (-∞ < (𝐹‘𝑥) ↔ -∞ < (𝐹‘𝑦))) |
17 | 7, 8, 9, 14, 16 | cbvrabw 3423 |
. . . . . . 7
⊢ {𝑥 ∈ 𝐷 ∣ -∞ < (𝐹‘𝑥)} = {𝑦 ∈ 𝐷 ∣ -∞ < (𝐹‘𝑦)} |
18 | 17 | a1i 11 |
. . . . . 6
⊢ (𝜑 → {𝑥 ∈ 𝐷 ∣ -∞ < (𝐹‘𝑥)} = {𝑦 ∈ 𝐷 ∣ -∞ < (𝐹‘𝑦)}) |
19 | | nfv 1921 |
. . . . . . 7
⊢
Ⅎ𝑦𝜑 |
20 | | smfpimgtxr.s |
. . . . . . . . . 10
⊢ (𝜑 → 𝑆 ∈ SAlg) |
21 | | smfpimgtxr.f |
. . . . . . . . . 10
⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝑆)) |
22 | 20, 21, 4 | smff 44236 |
. . . . . . . . 9
⊢ (𝜑 → 𝐹:𝐷⟶ℝ) |
23 | 22 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → 𝐹:𝐷⟶ℝ) |
24 | | simpr 485 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → 𝑦 ∈ 𝐷) |
25 | 23, 24 | ffvelrnd 6959 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → (𝐹‘𝑦) ∈ ℝ) |
26 | 19, 25 | pimgtmnf 44227 |
. . . . . 6
⊢ (𝜑 → {𝑦 ∈ 𝐷 ∣ -∞ < (𝐹‘𝑦)} = 𝐷) |
27 | | eqidd 2741 |
. . . . . 6
⊢ (𝜑 → 𝐷 = 𝐷) |
28 | 18, 26, 27 | 3eqtrd 2784 |
. . . . 5
⊢ (𝜑 → {𝑥 ∈ 𝐷 ∣ -∞ < (𝐹‘𝑥)} = 𝐷) |
29 | 28 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ 𝐴 = -∞) → {𝑥 ∈ 𝐷 ∣ -∞ < (𝐹‘𝑥)} = 𝐷) |
30 | 3, 29 | eqtrd 2780 |
. . 3
⊢ ((𝜑 ∧ 𝐴 = -∞) → {𝑥 ∈ 𝐷 ∣ 𝐴 < (𝐹‘𝑥)} = 𝐷) |
31 | 20, 21, 4 | smfdmss 44237 |
. . . . . . 7
⊢ (𝜑 → 𝐷 ⊆ ∪ 𝑆) |
32 | 20, 31 | restuni4 42640 |
. . . . . 6
⊢ (𝜑 → ∪ (𝑆
↾t 𝐷) =
𝐷) |
33 | 32 | eqcomd 2746 |
. . . . 5
⊢ (𝜑 → 𝐷 = ∪ (𝑆 ↾t 𝐷)) |
34 | 21 | dmexd 7746 |
. . . . . . . 8
⊢ (𝜑 → dom 𝐹 ∈ V) |
35 | 4, 34 | eqeltrid 2845 |
. . . . . . 7
⊢ (𝜑 → 𝐷 ∈ V) |
36 | | eqid 2740 |
. . . . . . 7
⊢ (𝑆 ↾t 𝐷) = (𝑆 ↾t 𝐷) |
37 | 20, 35, 36 | subsalsal 43869 |
. . . . . 6
⊢ (𝜑 → (𝑆 ↾t 𝐷) ∈ SAlg) |
38 | 37 | salunid 43863 |
. . . . 5
⊢ (𝜑 → ∪ (𝑆
↾t 𝐷)
∈ (𝑆
↾t 𝐷)) |
39 | 33, 38 | eqeltrd 2841 |
. . . 4
⊢ (𝜑 → 𝐷 ∈ (𝑆 ↾t 𝐷)) |
40 | 39 | adantr 481 |
. . 3
⊢ ((𝜑 ∧ 𝐴 = -∞) → 𝐷 ∈ (𝑆 ↾t 𝐷)) |
41 | 30, 40 | eqeltrd 2841 |
. 2
⊢ ((𝜑 ∧ 𝐴 = -∞) → {𝑥 ∈ 𝐷 ∣ 𝐴 < (𝐹‘𝑥)} ∈ (𝑆 ↾t 𝐷)) |
42 | | neqne 2953 |
. . . 4
⊢ (¬
𝐴 = -∞ → 𝐴 ≠ -∞) |
43 | 42 | adantl 482 |
. . 3
⊢ ((𝜑 ∧ ¬ 𝐴 = -∞) → 𝐴 ≠ -∞) |
44 | | breq1 5082 |
. . . . . . . . 9
⊢ (𝐴 = +∞ → (𝐴 < (𝐹‘𝑥) ↔ +∞ < (𝐹‘𝑥))) |
45 | 44 | rabbidv 3413 |
. . . . . . . 8
⊢ (𝐴 = +∞ → {𝑥 ∈ 𝐷 ∣ 𝐴 < (𝐹‘𝑥)} = {𝑥 ∈ 𝐷 ∣ +∞ < (𝐹‘𝑥)}) |
46 | 45 | adantl 482 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐴 = +∞) → {𝑥 ∈ 𝐷 ∣ 𝐴 < (𝐹‘𝑥)} = {𝑥 ∈ 𝐷 ∣ +∞ < (𝐹‘𝑥)}) |
47 | 5, 22 | pimgtpnf2 44212 |
. . . . . . . 8
⊢ (𝜑 → {𝑥 ∈ 𝐷 ∣ +∞ < (𝐹‘𝑥)} = ∅) |
48 | 47 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐴 = +∞) → {𝑥 ∈ 𝐷 ∣ +∞ < (𝐹‘𝑥)} = ∅) |
49 | 46, 48 | eqtrd 2780 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐴 = +∞) → {𝑥 ∈ 𝐷 ∣ 𝐴 < (𝐹‘𝑥)} = ∅) |
50 | 37 | 0sald 43860 |
. . . . . . 7
⊢ (𝜑 → ∅ ∈ (𝑆 ↾t 𝐷)) |
51 | 50 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐴 = +∞) → ∅ ∈ (𝑆 ↾t 𝐷)) |
52 | 49, 51 | eqeltrd 2841 |
. . . . 5
⊢ ((𝜑 ∧ 𝐴 = +∞) → {𝑥 ∈ 𝐷 ∣ 𝐴 < (𝐹‘𝑥)} ∈ (𝑆 ↾t 𝐷)) |
53 | 52 | adantlr 712 |
. . . 4
⊢ (((𝜑 ∧ 𝐴 ≠ -∞) ∧ 𝐴 = +∞) → {𝑥 ∈ 𝐷 ∣ 𝐴 < (𝐹‘𝑥)} ∈ (𝑆 ↾t 𝐷)) |
54 | | simpll 764 |
. . . . 5
⊢ (((𝜑 ∧ 𝐴 ≠ -∞) ∧ ¬ 𝐴 = +∞) → 𝜑) |
55 | | smfpimgtxr.a |
. . . . . . 7
⊢ (𝜑 → 𝐴 ∈
ℝ*) |
56 | 54, 55 | syl 17 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐴 ≠ -∞) ∧ ¬ 𝐴 = +∞) → 𝐴 ∈
ℝ*) |
57 | | simplr 766 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐴 ≠ -∞) ∧ ¬ 𝐴 = +∞) → 𝐴 ≠ -∞) |
58 | | neqne 2953 |
. . . . . . 7
⊢ (¬
𝐴 = +∞ → 𝐴 ≠ +∞) |
59 | 58 | adantl 482 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐴 ≠ -∞) ∧ ¬ 𝐴 = +∞) → 𝐴 ≠ +∞) |
60 | 56, 57, 59 | xrred 42875 |
. . . . 5
⊢ (((𝜑 ∧ 𝐴 ≠ -∞) ∧ ¬ 𝐴 = +∞) → 𝐴 ∈
ℝ) |
61 | 20 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐴 ∈ ℝ) → 𝑆 ∈ SAlg) |
62 | 21 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐴 ∈ ℝ) → 𝐹 ∈ (SMblFn‘𝑆)) |
63 | | simpr 485 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐴 ∈ ℝ) → 𝐴 ∈ ℝ) |
64 | 5, 61, 62, 4, 63 | smfpreimagtf 44271 |
. . . . 5
⊢ ((𝜑 ∧ 𝐴 ∈ ℝ) → {𝑥 ∈ 𝐷 ∣ 𝐴 < (𝐹‘𝑥)} ∈ (𝑆 ↾t 𝐷)) |
65 | 54, 60, 64 | syl2anc 584 |
. . . 4
⊢ (((𝜑 ∧ 𝐴 ≠ -∞) ∧ ¬ 𝐴 = +∞) → {𝑥 ∈ 𝐷 ∣ 𝐴 < (𝐹‘𝑥)} ∈ (𝑆 ↾t 𝐷)) |
66 | 53, 65 | pm2.61dan 810 |
. . 3
⊢ ((𝜑 ∧ 𝐴 ≠ -∞) → {𝑥 ∈ 𝐷 ∣ 𝐴 < (𝐹‘𝑥)} ∈ (𝑆 ↾t 𝐷)) |
67 | 43, 66 | syldan 591 |
. 2
⊢ ((𝜑 ∧ ¬ 𝐴 = -∞) → {𝑥 ∈ 𝐷 ∣ 𝐴 < (𝐹‘𝑥)} ∈ (𝑆 ↾t 𝐷)) |
68 | 41, 67 | pm2.61dan 810 |
1
⊢ (𝜑 → {𝑥 ∈ 𝐷 ∣ 𝐴 < (𝐹‘𝑥)} ∈ (𝑆 ↾t 𝐷)) |