Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smfpimgtxr Structured version   Visualization version   GIF version

Theorem smfpimgtxr 46762
Description: Given a function measurable w.r.t. to a sigma-algebra, the preimage of an open interval unbounded above is in the subspace sigma-algebra induced by its domain. (Contributed by Glauco Siliprandi, 26-Jun-2021.) (Revised by Glauco Siliprandi, 15-Dec-2024.)
Hypotheses
Ref Expression
smfpimgtxr.x 𝑥𝐹
smfpimgtxr.s (𝜑𝑆 ∈ SAlg)
smfpimgtxr.f (𝜑𝐹 ∈ (SMblFn‘𝑆))
smfpimgtxr.d 𝐷 = dom 𝐹
smfpimgtxr.a (𝜑𝐴 ∈ ℝ*)
Assertion
Ref Expression
smfpimgtxr (𝜑 → {𝑥𝐷𝐴 < (𝐹𝑥)} ∈ (𝑆t 𝐷))
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝐷(𝑥)   𝑆(𝑥)   𝐹(𝑥)

Proof of Theorem smfpimgtxr
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 breq1 5098 . . . . 5 (𝐴 = -∞ → (𝐴 < (𝐹𝑥) ↔ -∞ < (𝐹𝑥)))
21rabbidv 3404 . . . 4 (𝐴 = -∞ → {𝑥𝐷𝐴 < (𝐹𝑥)} = {𝑥𝐷 ∣ -∞ < (𝐹𝑥)})
3 smfpimgtxr.d . . . . . . 7 𝐷 = dom 𝐹
4 smfpimgtxr.x . . . . . . . 8 𝑥𝐹
54nfdm 5897 . . . . . . 7 𝑥dom 𝐹
63, 5nfcxfr 2889 . . . . . 6 𝑥𝐷
7 nfcv 2891 . . . . . 6 𝑦𝐷
8 nfv 1914 . . . . . 6 𝑦-∞ < (𝐹𝑥)
9 nfcv 2891 . . . . . . 7 𝑥-∞
10 nfcv 2891 . . . . . . 7 𝑥 <
11 nfcv 2891 . . . . . . . 8 𝑥𝑦
124, 11nffv 6836 . . . . . . 7 𝑥(𝐹𝑦)
139, 10, 12nfbr 5142 . . . . . 6 𝑥-∞ < (𝐹𝑦)
14 fveq2 6826 . . . . . . 7 (𝑥 = 𝑦 → (𝐹𝑥) = (𝐹𝑦))
1514breq2d 5107 . . . . . 6 (𝑥 = 𝑦 → (-∞ < (𝐹𝑥) ↔ -∞ < (𝐹𝑦)))
166, 7, 8, 13, 15cbvrabw 3432 . . . . 5 {𝑥𝐷 ∣ -∞ < (𝐹𝑥)} = {𝑦𝐷 ∣ -∞ < (𝐹𝑦)}
17 nfv 1914 . . . . . 6 𝑦𝜑
18 smfpimgtxr.s . . . . . . . 8 (𝜑𝑆 ∈ SAlg)
19 smfpimgtxr.f . . . . . . . 8 (𝜑𝐹 ∈ (SMblFn‘𝑆))
2018, 19, 3smff 46714 . . . . . . 7 (𝜑𝐹:𝐷⟶ℝ)
2120ffvelcdmda 7022 . . . . . 6 ((𝜑𝑦𝐷) → (𝐹𝑦) ∈ ℝ)
2217, 21pimgtmnf 46705 . . . . 5 (𝜑 → {𝑦𝐷 ∣ -∞ < (𝐹𝑦)} = 𝐷)
2316, 22eqtrid 2776 . . . 4 (𝜑 → {𝑥𝐷 ∣ -∞ < (𝐹𝑥)} = 𝐷)
242, 23sylan9eqr 2786 . . 3 ((𝜑𝐴 = -∞) → {𝑥𝐷𝐴 < (𝐹𝑥)} = 𝐷)
2518, 19, 3smfdmss 46715 . . . . 5 (𝜑𝐷 𝑆)
2618, 25subsaluni 46342 . . . 4 (𝜑𝐷 ∈ (𝑆t 𝐷))
2726adantr 480 . . 3 ((𝜑𝐴 = -∞) → 𝐷 ∈ (𝑆t 𝐷))
2824, 27eqeltrd 2828 . 2 ((𝜑𝐴 = -∞) → {𝑥𝐷𝐴 < (𝐹𝑥)} ∈ (𝑆t 𝐷))
29 breq1 5098 . . . . . . 7 (𝐴 = +∞ → (𝐴 < (𝐹𝑥) ↔ +∞ < (𝐹𝑥)))
3029rabbidv 3404 . . . . . 6 (𝐴 = +∞ → {𝑥𝐷𝐴 < (𝐹𝑥)} = {𝑥𝐷 ∣ +∞ < (𝐹𝑥)})
314, 6, 20pimgtpnf2f 46687 . . . . . 6 (𝜑 → {𝑥𝐷 ∣ +∞ < (𝐹𝑥)} = ∅)
3230, 31sylan9eqr 2786 . . . . 5 ((𝜑𝐴 = +∞) → {𝑥𝐷𝐴 < (𝐹𝑥)} = ∅)
3319dmexd 7843 . . . . . . . . 9 (𝜑 → dom 𝐹 ∈ V)
343, 33eqeltrid 2832 . . . . . . . 8 (𝜑𝐷 ∈ V)
35 eqid 2729 . . . . . . . 8 (𝑆t 𝐷) = (𝑆t 𝐷)
3618, 34, 35subsalsal 46341 . . . . . . 7 (𝜑 → (𝑆t 𝐷) ∈ SAlg)
37360sald 46332 . . . . . 6 (𝜑 → ∅ ∈ (𝑆t 𝐷))
3837adantr 480 . . . . 5 ((𝜑𝐴 = +∞) → ∅ ∈ (𝑆t 𝐷))
3932, 38eqeltrd 2828 . . . 4 ((𝜑𝐴 = +∞) → {𝑥𝐷𝐴 < (𝐹𝑥)} ∈ (𝑆t 𝐷))
4039adantlr 715 . . 3 (((𝜑𝐴 ≠ -∞) ∧ 𝐴 = +∞) → {𝑥𝐷𝐴 < (𝐹𝑥)} ∈ (𝑆t 𝐷))
41 simpll 766 . . . 4 (((𝜑𝐴 ≠ -∞) ∧ ¬ 𝐴 = +∞) → 𝜑)
42 smfpimgtxr.a . . . . . 6 (𝜑𝐴 ∈ ℝ*)
4341, 42syl 17 . . . . 5 (((𝜑𝐴 ≠ -∞) ∧ ¬ 𝐴 = +∞) → 𝐴 ∈ ℝ*)
44 simplr 768 . . . . 5 (((𝜑𝐴 ≠ -∞) ∧ ¬ 𝐴 = +∞) → 𝐴 ≠ -∞)
45 neqne 2933 . . . . . 6 𝐴 = +∞ → 𝐴 ≠ +∞)
4645adantl 481 . . . . 5 (((𝜑𝐴 ≠ -∞) ∧ ¬ 𝐴 = +∞) → 𝐴 ≠ +∞)
4743, 44, 46xrred 45345 . . . 4 (((𝜑𝐴 ≠ -∞) ∧ ¬ 𝐴 = +∞) → 𝐴 ∈ ℝ)
4818adantr 480 . . . . 5 ((𝜑𝐴 ∈ ℝ) → 𝑆 ∈ SAlg)
4919adantr 480 . . . . 5 ((𝜑𝐴 ∈ ℝ) → 𝐹 ∈ (SMblFn‘𝑆))
50 simpr 484 . . . . 5 ((𝜑𝐴 ∈ ℝ) → 𝐴 ∈ ℝ)
514, 48, 49, 3, 50smfpreimagtf 46750 . . . 4 ((𝜑𝐴 ∈ ℝ) → {𝑥𝐷𝐴 < (𝐹𝑥)} ∈ (𝑆t 𝐷))
5241, 47, 51syl2anc 584 . . 3 (((𝜑𝐴 ≠ -∞) ∧ ¬ 𝐴 = +∞) → {𝑥𝐷𝐴 < (𝐹𝑥)} ∈ (𝑆t 𝐷))
5340, 52pm2.61dan 812 . 2 ((𝜑𝐴 ≠ -∞) → {𝑥𝐷𝐴 < (𝐹𝑥)} ∈ (𝑆t 𝐷))
5428, 53pm2.61dane 3012 1 (𝜑 → {𝑥𝐷𝐴 < (𝐹𝑥)} ∈ (𝑆t 𝐷))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  wnfc 2876  wne 2925  {crab 3396  Vcvv 3438  c0 4286   class class class wbr 5095  dom cdm 5623  cfv 6486  (class class class)co 7353  cr 11027  +∞cpnf 11165  -∞cmnf 11166  *cxr 11167   < clt 11168  t crest 17342  SAlgcsalg 46290  SMblFncsmblfn 46677
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-inf2 9556  ax-cc 10348  ax-ac2 10376  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-iin 4947  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-er 8632  df-map 8762  df-pm 8763  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-sup 9351  df-inf 9352  df-card 9854  df-acn 9857  df-ac 10029  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-n0 12403  df-z 12490  df-uz 12754  df-q 12868  df-rp 12912  df-ioo 13270  df-ico 13272  df-fl 13714  df-rest 17344  df-salg 46291  df-smblfn 46678
This theorem is referenced by:  smfpimgtxrmptf  46766  smfpimne  46821  smfinfdmmbllem  46830
  Copyright terms: Public domain W3C validator