![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > smfpimgtxr | Structured version Visualization version GIF version |
Description: Given a function measurable w.r.t. to a sigma-algebra, the preimage of an open interval unbounded above is in the subspace sigma-algebra induced by its domain. (Contributed by Glauco Siliprandi, 26-Jun-2021.) (Revised by Glauco Siliprandi, 15-Dec-2024.) |
Ref | Expression |
---|---|
smfpimgtxr.x | ⊢ Ⅎ𝑥𝐹 |
smfpimgtxr.s | ⊢ (𝜑 → 𝑆 ∈ SAlg) |
smfpimgtxr.f | ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝑆)) |
smfpimgtxr.d | ⊢ 𝐷 = dom 𝐹 |
smfpimgtxr.a | ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
Ref | Expression |
---|---|
smfpimgtxr | ⊢ (𝜑 → {𝑥 ∈ 𝐷 ∣ 𝐴 < (𝐹‘𝑥)} ∈ (𝑆 ↾t 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq1 5108 | . . . . 5 ⊢ (𝐴 = -∞ → (𝐴 < (𝐹‘𝑥) ↔ -∞ < (𝐹‘𝑥))) | |
2 | 1 | rabbidv 3415 | . . . 4 ⊢ (𝐴 = -∞ → {𝑥 ∈ 𝐷 ∣ 𝐴 < (𝐹‘𝑥)} = {𝑥 ∈ 𝐷 ∣ -∞ < (𝐹‘𝑥)}) |
3 | smfpimgtxr.d | . . . . . . 7 ⊢ 𝐷 = dom 𝐹 | |
4 | smfpimgtxr.x | . . . . . . . 8 ⊢ Ⅎ𝑥𝐹 | |
5 | 4 | nfdm 5906 | . . . . . . 7 ⊢ Ⅎ𝑥dom 𝐹 |
6 | 3, 5 | nfcxfr 2905 | . . . . . 6 ⊢ Ⅎ𝑥𝐷 |
7 | nfcv 2907 | . . . . . 6 ⊢ Ⅎ𝑦𝐷 | |
8 | nfv 1917 | . . . . . 6 ⊢ Ⅎ𝑦-∞ < (𝐹‘𝑥) | |
9 | nfcv 2907 | . . . . . . 7 ⊢ Ⅎ𝑥-∞ | |
10 | nfcv 2907 | . . . . . . 7 ⊢ Ⅎ𝑥 < | |
11 | nfcv 2907 | . . . . . . . 8 ⊢ Ⅎ𝑥𝑦 | |
12 | 4, 11 | nffv 6852 | . . . . . . 7 ⊢ Ⅎ𝑥(𝐹‘𝑦) |
13 | 9, 10, 12 | nfbr 5152 | . . . . . 6 ⊢ Ⅎ𝑥-∞ < (𝐹‘𝑦) |
14 | fveq2 6842 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → (𝐹‘𝑥) = (𝐹‘𝑦)) | |
15 | 14 | breq2d 5117 | . . . . . 6 ⊢ (𝑥 = 𝑦 → (-∞ < (𝐹‘𝑥) ↔ -∞ < (𝐹‘𝑦))) |
16 | 6, 7, 8, 13, 15 | cbvrabw 3439 | . . . . 5 ⊢ {𝑥 ∈ 𝐷 ∣ -∞ < (𝐹‘𝑥)} = {𝑦 ∈ 𝐷 ∣ -∞ < (𝐹‘𝑦)} |
17 | nfv 1917 | . . . . . 6 ⊢ Ⅎ𝑦𝜑 | |
18 | smfpimgtxr.s | . . . . . . . 8 ⊢ (𝜑 → 𝑆 ∈ SAlg) | |
19 | smfpimgtxr.f | . . . . . . . 8 ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝑆)) | |
20 | 18, 19, 3 | smff 44963 | . . . . . . 7 ⊢ (𝜑 → 𝐹:𝐷⟶ℝ) |
21 | 20 | ffvelcdmda 7035 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → (𝐹‘𝑦) ∈ ℝ) |
22 | 17, 21 | pimgtmnf 44954 | . . . . 5 ⊢ (𝜑 → {𝑦 ∈ 𝐷 ∣ -∞ < (𝐹‘𝑦)} = 𝐷) |
23 | 16, 22 | eqtrid 2788 | . . . 4 ⊢ (𝜑 → {𝑥 ∈ 𝐷 ∣ -∞ < (𝐹‘𝑥)} = 𝐷) |
24 | 2, 23 | sylan9eqr 2798 | . . 3 ⊢ ((𝜑 ∧ 𝐴 = -∞) → {𝑥 ∈ 𝐷 ∣ 𝐴 < (𝐹‘𝑥)} = 𝐷) |
25 | 18, 19, 3 | smfdmss 44964 | . . . . 5 ⊢ (𝜑 → 𝐷 ⊆ ∪ 𝑆) |
26 | 18, 25 | subsaluni 44591 | . . . 4 ⊢ (𝜑 → 𝐷 ∈ (𝑆 ↾t 𝐷)) |
27 | 26 | adantr 481 | . . 3 ⊢ ((𝜑 ∧ 𝐴 = -∞) → 𝐷 ∈ (𝑆 ↾t 𝐷)) |
28 | 24, 27 | eqeltrd 2838 | . 2 ⊢ ((𝜑 ∧ 𝐴 = -∞) → {𝑥 ∈ 𝐷 ∣ 𝐴 < (𝐹‘𝑥)} ∈ (𝑆 ↾t 𝐷)) |
29 | breq1 5108 | . . . . . . 7 ⊢ (𝐴 = +∞ → (𝐴 < (𝐹‘𝑥) ↔ +∞ < (𝐹‘𝑥))) | |
30 | 29 | rabbidv 3415 | . . . . . 6 ⊢ (𝐴 = +∞ → {𝑥 ∈ 𝐷 ∣ 𝐴 < (𝐹‘𝑥)} = {𝑥 ∈ 𝐷 ∣ +∞ < (𝐹‘𝑥)}) |
31 | 4, 6, 20 | pimgtpnf2f 44936 | . . . . . 6 ⊢ (𝜑 → {𝑥 ∈ 𝐷 ∣ +∞ < (𝐹‘𝑥)} = ∅) |
32 | 30, 31 | sylan9eqr 2798 | . . . . 5 ⊢ ((𝜑 ∧ 𝐴 = +∞) → {𝑥 ∈ 𝐷 ∣ 𝐴 < (𝐹‘𝑥)} = ∅) |
33 | 19 | dmexd 7842 | . . . . . . . . 9 ⊢ (𝜑 → dom 𝐹 ∈ V) |
34 | 3, 33 | eqeltrid 2842 | . . . . . . . 8 ⊢ (𝜑 → 𝐷 ∈ V) |
35 | eqid 2736 | . . . . . . . 8 ⊢ (𝑆 ↾t 𝐷) = (𝑆 ↾t 𝐷) | |
36 | 18, 34, 35 | subsalsal 44590 | . . . . . . 7 ⊢ (𝜑 → (𝑆 ↾t 𝐷) ∈ SAlg) |
37 | 36 | 0sald 44581 | . . . . . 6 ⊢ (𝜑 → ∅ ∈ (𝑆 ↾t 𝐷)) |
38 | 37 | adantr 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝐴 = +∞) → ∅ ∈ (𝑆 ↾t 𝐷)) |
39 | 32, 38 | eqeltrd 2838 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 = +∞) → {𝑥 ∈ 𝐷 ∣ 𝐴 < (𝐹‘𝑥)} ∈ (𝑆 ↾t 𝐷)) |
40 | 39 | adantlr 713 | . . 3 ⊢ (((𝜑 ∧ 𝐴 ≠ -∞) ∧ 𝐴 = +∞) → {𝑥 ∈ 𝐷 ∣ 𝐴 < (𝐹‘𝑥)} ∈ (𝑆 ↾t 𝐷)) |
41 | simpll 765 | . . . 4 ⊢ (((𝜑 ∧ 𝐴 ≠ -∞) ∧ ¬ 𝐴 = +∞) → 𝜑) | |
42 | smfpimgtxr.a | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ ℝ*) | |
43 | 41, 42 | syl 17 | . . . . 5 ⊢ (((𝜑 ∧ 𝐴 ≠ -∞) ∧ ¬ 𝐴 = +∞) → 𝐴 ∈ ℝ*) |
44 | simplr 767 | . . . . 5 ⊢ (((𝜑 ∧ 𝐴 ≠ -∞) ∧ ¬ 𝐴 = +∞) → 𝐴 ≠ -∞) | |
45 | neqne 2951 | . . . . . 6 ⊢ (¬ 𝐴 = +∞ → 𝐴 ≠ +∞) | |
46 | 45 | adantl 482 | . . . . 5 ⊢ (((𝜑 ∧ 𝐴 ≠ -∞) ∧ ¬ 𝐴 = +∞) → 𝐴 ≠ +∞) |
47 | 43, 44, 46 | xrred 43589 | . . . 4 ⊢ (((𝜑 ∧ 𝐴 ≠ -∞) ∧ ¬ 𝐴 = +∞) → 𝐴 ∈ ℝ) |
48 | 18 | adantr 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝐴 ∈ ℝ) → 𝑆 ∈ SAlg) |
49 | 19 | adantr 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝐴 ∈ ℝ) → 𝐹 ∈ (SMblFn‘𝑆)) |
50 | simpr 485 | . . . . 5 ⊢ ((𝜑 ∧ 𝐴 ∈ ℝ) → 𝐴 ∈ ℝ) | |
51 | 4, 48, 49, 3, 50 | smfpreimagtf 44999 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 ∈ ℝ) → {𝑥 ∈ 𝐷 ∣ 𝐴 < (𝐹‘𝑥)} ∈ (𝑆 ↾t 𝐷)) |
52 | 41, 47, 51 | syl2anc 584 | . . 3 ⊢ (((𝜑 ∧ 𝐴 ≠ -∞) ∧ ¬ 𝐴 = +∞) → {𝑥 ∈ 𝐷 ∣ 𝐴 < (𝐹‘𝑥)} ∈ (𝑆 ↾t 𝐷)) |
53 | 40, 52 | pm2.61dan 811 | . 2 ⊢ ((𝜑 ∧ 𝐴 ≠ -∞) → {𝑥 ∈ 𝐷 ∣ 𝐴 < (𝐹‘𝑥)} ∈ (𝑆 ↾t 𝐷)) |
54 | 28, 53 | pm2.61dane 3032 | 1 ⊢ (𝜑 → {𝑥 ∈ 𝐷 ∣ 𝐴 < (𝐹‘𝑥)} ∈ (𝑆 ↾t 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 = wceq 1541 ∈ wcel 2106 Ⅎwnfc 2887 ≠ wne 2943 {crab 3407 Vcvv 3445 ∅c0 4282 class class class wbr 5105 dom cdm 5633 ‘cfv 6496 (class class class)co 7357 ℝcr 11050 +∞cpnf 11186 -∞cmnf 11187 ℝ*cxr 11188 < clt 11189 ↾t crest 17302 SAlgcsalg 44539 SMblFncsmblfn 44926 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2707 ax-rep 5242 ax-sep 5256 ax-nul 5263 ax-pow 5320 ax-pr 5384 ax-un 7672 ax-inf2 9577 ax-cc 10371 ax-ac2 10399 ax-cnex 11107 ax-resscn 11108 ax-1cn 11109 ax-icn 11110 ax-addcl 11111 ax-addrcl 11112 ax-mulcl 11113 ax-mulrcl 11114 ax-mulcom 11115 ax-addass 11116 ax-mulass 11117 ax-distr 11118 ax-i2m1 11119 ax-1ne0 11120 ax-1rid 11121 ax-rnegex 11122 ax-rrecex 11123 ax-cnre 11124 ax-pre-lttri 11125 ax-pre-lttrn 11126 ax-pre-ltadd 11127 ax-pre-mulgt0 11128 ax-pre-sup 11129 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3065 df-rex 3074 df-rmo 3353 df-reu 3354 df-rab 3408 df-v 3447 df-sbc 3740 df-csb 3856 df-dif 3913 df-un 3915 df-in 3917 df-ss 3927 df-pss 3929 df-nul 4283 df-if 4487 df-pw 4562 df-sn 4587 df-pr 4589 df-op 4593 df-uni 4866 df-int 4908 df-iun 4956 df-iin 4957 df-br 5106 df-opab 5168 df-mpt 5189 df-tr 5223 df-id 5531 df-eprel 5537 df-po 5545 df-so 5546 df-fr 5588 df-se 5589 df-we 5590 df-xp 5639 df-rel 5640 df-cnv 5641 df-co 5642 df-dm 5643 df-rn 5644 df-res 5645 df-ima 5646 df-pred 6253 df-ord 6320 df-on 6321 df-lim 6322 df-suc 6323 df-iota 6448 df-fun 6498 df-fn 6499 df-f 6500 df-f1 6501 df-fo 6502 df-f1o 6503 df-fv 6504 df-isom 6505 df-riota 7313 df-ov 7360 df-oprab 7361 df-mpo 7362 df-om 7803 df-1st 7921 df-2nd 7922 df-frecs 8212 df-wrecs 8243 df-recs 8317 df-rdg 8356 df-1o 8412 df-er 8648 df-map 8767 df-pm 8768 df-en 8884 df-dom 8885 df-sdom 8886 df-fin 8887 df-sup 9378 df-inf 9379 df-card 9875 df-acn 9878 df-ac 10052 df-pnf 11191 df-mnf 11192 df-xr 11193 df-ltxr 11194 df-le 11195 df-sub 11387 df-neg 11388 df-div 11813 df-nn 12154 df-n0 12414 df-z 12500 df-uz 12764 df-q 12874 df-rp 12916 df-ioo 13268 df-ico 13270 df-fl 13697 df-rest 17304 df-salg 44540 df-smblfn 44927 |
This theorem is referenced by: smfpimgtxrmptf 45015 smfpimne 45070 smfinfdmmbllem 45079 |
Copyright terms: Public domain | W3C validator |