Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smfpimgtxr Structured version   Visualization version   GIF version

Theorem smfpimgtxr 46905
Description: Given a function measurable w.r.t. to a sigma-algebra, the preimage of an open interval unbounded above is in the subspace sigma-algebra induced by its domain. (Contributed by Glauco Siliprandi, 26-Jun-2021.) (Revised by Glauco Siliprandi, 15-Dec-2024.)
Hypotheses
Ref Expression
smfpimgtxr.x 𝑥𝐹
smfpimgtxr.s (𝜑𝑆 ∈ SAlg)
smfpimgtxr.f (𝜑𝐹 ∈ (SMblFn‘𝑆))
smfpimgtxr.d 𝐷 = dom 𝐹
smfpimgtxr.a (𝜑𝐴 ∈ ℝ*)
Assertion
Ref Expression
smfpimgtxr (𝜑 → {𝑥𝐷𝐴 < (𝐹𝑥)} ∈ (𝑆t 𝐷))
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝐷(𝑥)   𝑆(𝑥)   𝐹(𝑥)

Proof of Theorem smfpimgtxr
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 breq1 5098 . . . . 5 (𝐴 = -∞ → (𝐴 < (𝐹𝑥) ↔ -∞ < (𝐹𝑥)))
21rabbidv 3403 . . . 4 (𝐴 = -∞ → {𝑥𝐷𝐴 < (𝐹𝑥)} = {𝑥𝐷 ∣ -∞ < (𝐹𝑥)})
3 smfpimgtxr.d . . . . . . 7 𝐷 = dom 𝐹
4 smfpimgtxr.x . . . . . . . 8 𝑥𝐹
54nfdm 5897 . . . . . . 7 𝑥dom 𝐹
63, 5nfcxfr 2893 . . . . . 6 𝑥𝐷
7 nfcv 2895 . . . . . 6 𝑦𝐷
8 nfv 1915 . . . . . 6 𝑦-∞ < (𝐹𝑥)
9 nfcv 2895 . . . . . . 7 𝑥-∞
10 nfcv 2895 . . . . . . 7 𝑥 <
11 nfcv 2895 . . . . . . . 8 𝑥𝑦
124, 11nffv 6840 . . . . . . 7 𝑥(𝐹𝑦)
139, 10, 12nfbr 5142 . . . . . 6 𝑥-∞ < (𝐹𝑦)
14 fveq2 6830 . . . . . . 7 (𝑥 = 𝑦 → (𝐹𝑥) = (𝐹𝑦))
1514breq2d 5107 . . . . . 6 (𝑥 = 𝑦 → (-∞ < (𝐹𝑥) ↔ -∞ < (𝐹𝑦)))
166, 7, 8, 13, 15cbvrabw 3431 . . . . 5 {𝑥𝐷 ∣ -∞ < (𝐹𝑥)} = {𝑦𝐷 ∣ -∞ < (𝐹𝑦)}
17 nfv 1915 . . . . . 6 𝑦𝜑
18 smfpimgtxr.s . . . . . . . 8 (𝜑𝑆 ∈ SAlg)
19 smfpimgtxr.f . . . . . . . 8 (𝜑𝐹 ∈ (SMblFn‘𝑆))
2018, 19, 3smff 46857 . . . . . . 7 (𝜑𝐹:𝐷⟶ℝ)
2120ffvelcdmda 7025 . . . . . 6 ((𝜑𝑦𝐷) → (𝐹𝑦) ∈ ℝ)
2217, 21pimgtmnf 46848 . . . . 5 (𝜑 → {𝑦𝐷 ∣ -∞ < (𝐹𝑦)} = 𝐷)
2316, 22eqtrid 2780 . . . 4 (𝜑 → {𝑥𝐷 ∣ -∞ < (𝐹𝑥)} = 𝐷)
242, 23sylan9eqr 2790 . . 3 ((𝜑𝐴 = -∞) → {𝑥𝐷𝐴 < (𝐹𝑥)} = 𝐷)
2518, 19, 3smfdmss 46858 . . . . 5 (𝜑𝐷 𝑆)
2618, 25subsaluni 46485 . . . 4 (𝜑𝐷 ∈ (𝑆t 𝐷))
2726adantr 480 . . 3 ((𝜑𝐴 = -∞) → 𝐷 ∈ (𝑆t 𝐷))
2824, 27eqeltrd 2833 . 2 ((𝜑𝐴 = -∞) → {𝑥𝐷𝐴 < (𝐹𝑥)} ∈ (𝑆t 𝐷))
29 breq1 5098 . . . . . . 7 (𝐴 = +∞ → (𝐴 < (𝐹𝑥) ↔ +∞ < (𝐹𝑥)))
3029rabbidv 3403 . . . . . 6 (𝐴 = +∞ → {𝑥𝐷𝐴 < (𝐹𝑥)} = {𝑥𝐷 ∣ +∞ < (𝐹𝑥)})
314, 6, 20pimgtpnf2f 46830 . . . . . 6 (𝜑 → {𝑥𝐷 ∣ +∞ < (𝐹𝑥)} = ∅)
3230, 31sylan9eqr 2790 . . . . 5 ((𝜑𝐴 = +∞) → {𝑥𝐷𝐴 < (𝐹𝑥)} = ∅)
3319dmexd 7841 . . . . . . . . 9 (𝜑 → dom 𝐹 ∈ V)
343, 33eqeltrid 2837 . . . . . . . 8 (𝜑𝐷 ∈ V)
35 eqid 2733 . . . . . . . 8 (𝑆t 𝐷) = (𝑆t 𝐷)
3618, 34, 35subsalsal 46484 . . . . . . 7 (𝜑 → (𝑆t 𝐷) ∈ SAlg)
37360sald 46475 . . . . . 6 (𝜑 → ∅ ∈ (𝑆t 𝐷))
3837adantr 480 . . . . 5 ((𝜑𝐴 = +∞) → ∅ ∈ (𝑆t 𝐷))
3932, 38eqeltrd 2833 . . . 4 ((𝜑𝐴 = +∞) → {𝑥𝐷𝐴 < (𝐹𝑥)} ∈ (𝑆t 𝐷))
4039adantlr 715 . . 3 (((𝜑𝐴 ≠ -∞) ∧ 𝐴 = +∞) → {𝑥𝐷𝐴 < (𝐹𝑥)} ∈ (𝑆t 𝐷))
41 simpll 766 . . . 4 (((𝜑𝐴 ≠ -∞) ∧ ¬ 𝐴 = +∞) → 𝜑)
42 smfpimgtxr.a . . . . . 6 (𝜑𝐴 ∈ ℝ*)
4341, 42syl 17 . . . . 5 (((𝜑𝐴 ≠ -∞) ∧ ¬ 𝐴 = +∞) → 𝐴 ∈ ℝ*)
44 simplr 768 . . . . 5 (((𝜑𝐴 ≠ -∞) ∧ ¬ 𝐴 = +∞) → 𝐴 ≠ -∞)
45 neqne 2937 . . . . . 6 𝐴 = +∞ → 𝐴 ≠ +∞)
4645adantl 481 . . . . 5 (((𝜑𝐴 ≠ -∞) ∧ ¬ 𝐴 = +∞) → 𝐴 ≠ +∞)
4743, 44, 46xrred 45490 . . . 4 (((𝜑𝐴 ≠ -∞) ∧ ¬ 𝐴 = +∞) → 𝐴 ∈ ℝ)
4818adantr 480 . . . . 5 ((𝜑𝐴 ∈ ℝ) → 𝑆 ∈ SAlg)
4919adantr 480 . . . . 5 ((𝜑𝐴 ∈ ℝ) → 𝐹 ∈ (SMblFn‘𝑆))
50 simpr 484 . . . . 5 ((𝜑𝐴 ∈ ℝ) → 𝐴 ∈ ℝ)
514, 48, 49, 3, 50smfpreimagtf 46893 . . . 4 ((𝜑𝐴 ∈ ℝ) → {𝑥𝐷𝐴 < (𝐹𝑥)} ∈ (𝑆t 𝐷))
5241, 47, 51syl2anc 584 . . 3 (((𝜑𝐴 ≠ -∞) ∧ ¬ 𝐴 = +∞) → {𝑥𝐷𝐴 < (𝐹𝑥)} ∈ (𝑆t 𝐷))
5340, 52pm2.61dan 812 . 2 ((𝜑𝐴 ≠ -∞) → {𝑥𝐷𝐴 < (𝐹𝑥)} ∈ (𝑆t 𝐷))
5428, 53pm2.61dane 3016 1 (𝜑 → {𝑥𝐷𝐴 < (𝐹𝑥)} ∈ (𝑆t 𝐷))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1541  wcel 2113  wnfc 2880  wne 2929  {crab 3396  Vcvv 3437  c0 4282   class class class wbr 5095  dom cdm 5621  cfv 6488  (class class class)co 7354  cr 11014  +∞cpnf 11152  -∞cmnf 11153  *cxr 11154   < clt 11155  t crest 17328  SAlgcsalg 46433  SMblFncsmblfn 46820
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7676  ax-inf2 9540  ax-cc 10335  ax-ac2 10363  ax-cnex 11071  ax-resscn 11072  ax-1cn 11073  ax-icn 11074  ax-addcl 11075  ax-addrcl 11076  ax-mulcl 11077  ax-mulrcl 11078  ax-mulcom 11079  ax-addass 11080  ax-mulass 11081  ax-distr 11082  ax-i2m1 11083  ax-1ne0 11084  ax-1rid 11085  ax-rnegex 11086  ax-rrecex 11087  ax-cnre 11088  ax-pre-lttri 11089  ax-pre-lttrn 11090  ax-pre-ltadd 11091  ax-pre-mulgt0 11092  ax-pre-sup 11093
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-iin 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-se 5575  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6255  df-ord 6316  df-on 6317  df-lim 6318  df-suc 6319  df-iota 6444  df-fun 6490  df-fn 6491  df-f 6492  df-f1 6493  df-fo 6494  df-f1o 6495  df-fv 6496  df-isom 6497  df-riota 7311  df-ov 7357  df-oprab 7358  df-mpo 7359  df-om 7805  df-1st 7929  df-2nd 7930  df-frecs 8219  df-wrecs 8250  df-recs 8299  df-rdg 8337  df-1o 8393  df-er 8630  df-map 8760  df-pm 8761  df-en 8878  df-dom 8879  df-sdom 8880  df-fin 8881  df-sup 9335  df-inf 9336  df-card 9841  df-acn 9844  df-ac 10016  df-pnf 11157  df-mnf 11158  df-xr 11159  df-ltxr 11160  df-le 11161  df-sub 11355  df-neg 11356  df-div 11784  df-nn 12135  df-n0 12391  df-z 12478  df-uz 12741  df-q 12851  df-rp 12895  df-ioo 13253  df-ico 13255  df-fl 13700  df-rest 17330  df-salg 46434  df-smblfn 46821
This theorem is referenced by:  smfpimgtxrmptf  46909  smfpimne  46964  smfinfdmmbllem  46973
  Copyright terms: Public domain W3C validator