Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > smfpimgtxr | Structured version Visualization version GIF version |
Description: Given a function measurable w.r.t. to a sigma-algebra, the preimage of an open interval unbounded above is in the subspace sigma-algebra induced by its domain. (Contributed by Glauco Siliprandi, 26-Jun-2021.) (Revised by Glauco Siliprandi, 15-Dec-2024.) |
Ref | Expression |
---|---|
smfpimgtxr.x | ⊢ Ⅎ𝑥𝐹 |
smfpimgtxr.s | ⊢ (𝜑 → 𝑆 ∈ SAlg) |
smfpimgtxr.f | ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝑆)) |
smfpimgtxr.d | ⊢ 𝐷 = dom 𝐹 |
smfpimgtxr.a | ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
Ref | Expression |
---|---|
smfpimgtxr | ⊢ (𝜑 → {𝑥 ∈ 𝐷 ∣ 𝐴 < (𝐹‘𝑥)} ∈ (𝑆 ↾t 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq1 5077 | . . . . 5 ⊢ (𝐴 = -∞ → (𝐴 < (𝐹‘𝑥) ↔ -∞ < (𝐹‘𝑥))) | |
2 | 1 | rabbidv 3414 | . . . 4 ⊢ (𝐴 = -∞ → {𝑥 ∈ 𝐷 ∣ 𝐴 < (𝐹‘𝑥)} = {𝑥 ∈ 𝐷 ∣ -∞ < (𝐹‘𝑥)}) |
3 | smfpimgtxr.d | . . . . . . 7 ⊢ 𝐷 = dom 𝐹 | |
4 | smfpimgtxr.x | . . . . . . . 8 ⊢ Ⅎ𝑥𝐹 | |
5 | 4 | nfdm 5860 | . . . . . . 7 ⊢ Ⅎ𝑥dom 𝐹 |
6 | 3, 5 | nfcxfr 2905 | . . . . . 6 ⊢ Ⅎ𝑥𝐷 |
7 | nfcv 2907 | . . . . . 6 ⊢ Ⅎ𝑦𝐷 | |
8 | nfv 1917 | . . . . . 6 ⊢ Ⅎ𝑦-∞ < (𝐹‘𝑥) | |
9 | nfcv 2907 | . . . . . . 7 ⊢ Ⅎ𝑥-∞ | |
10 | nfcv 2907 | . . . . . . 7 ⊢ Ⅎ𝑥 < | |
11 | nfcv 2907 | . . . . . . . 8 ⊢ Ⅎ𝑥𝑦 | |
12 | 4, 11 | nffv 6784 | . . . . . . 7 ⊢ Ⅎ𝑥(𝐹‘𝑦) |
13 | 9, 10, 12 | nfbr 5121 | . . . . . 6 ⊢ Ⅎ𝑥-∞ < (𝐹‘𝑦) |
14 | fveq2 6774 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → (𝐹‘𝑥) = (𝐹‘𝑦)) | |
15 | 14 | breq2d 5086 | . . . . . 6 ⊢ (𝑥 = 𝑦 → (-∞ < (𝐹‘𝑥) ↔ -∞ < (𝐹‘𝑦))) |
16 | 6, 7, 8, 13, 15 | cbvrabw 3424 | . . . . 5 ⊢ {𝑥 ∈ 𝐷 ∣ -∞ < (𝐹‘𝑥)} = {𝑦 ∈ 𝐷 ∣ -∞ < (𝐹‘𝑦)} |
17 | nfv 1917 | . . . . . 6 ⊢ Ⅎ𝑦𝜑 | |
18 | smfpimgtxr.s | . . . . . . . 8 ⊢ (𝜑 → 𝑆 ∈ SAlg) | |
19 | smfpimgtxr.f | . . . . . . . 8 ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝑆)) | |
20 | 18, 19, 3 | smff 44268 | . . . . . . 7 ⊢ (𝜑 → 𝐹:𝐷⟶ℝ) |
21 | 20 | ffvelrnda 6961 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → (𝐹‘𝑦) ∈ ℝ) |
22 | 17, 21 | pimgtmnf 44259 | . . . . 5 ⊢ (𝜑 → {𝑦 ∈ 𝐷 ∣ -∞ < (𝐹‘𝑦)} = 𝐷) |
23 | 16, 22 | eqtrid 2790 | . . . 4 ⊢ (𝜑 → {𝑥 ∈ 𝐷 ∣ -∞ < (𝐹‘𝑥)} = 𝐷) |
24 | 2, 23 | sylan9eqr 2800 | . . 3 ⊢ ((𝜑 ∧ 𝐴 = -∞) → {𝑥 ∈ 𝐷 ∣ 𝐴 < (𝐹‘𝑥)} = 𝐷) |
25 | 18, 19, 3 | smfdmss 44269 | . . . . 5 ⊢ (𝜑 → 𝐷 ⊆ ∪ 𝑆) |
26 | 18, 25 | subsaluni 43899 | . . . 4 ⊢ (𝜑 → 𝐷 ∈ (𝑆 ↾t 𝐷)) |
27 | 26 | adantr 481 | . . 3 ⊢ ((𝜑 ∧ 𝐴 = -∞) → 𝐷 ∈ (𝑆 ↾t 𝐷)) |
28 | 24, 27 | eqeltrd 2839 | . 2 ⊢ ((𝜑 ∧ 𝐴 = -∞) → {𝑥 ∈ 𝐷 ∣ 𝐴 < (𝐹‘𝑥)} ∈ (𝑆 ↾t 𝐷)) |
29 | breq1 5077 | . . . . . . 7 ⊢ (𝐴 = +∞ → (𝐴 < (𝐹‘𝑥) ↔ +∞ < (𝐹‘𝑥))) | |
30 | 29 | rabbidv 3414 | . . . . . 6 ⊢ (𝐴 = +∞ → {𝑥 ∈ 𝐷 ∣ 𝐴 < (𝐹‘𝑥)} = {𝑥 ∈ 𝐷 ∣ +∞ < (𝐹‘𝑥)}) |
31 | 4, 6, 20 | pimgtpnf2f 44242 | . . . . . 6 ⊢ (𝜑 → {𝑥 ∈ 𝐷 ∣ +∞ < (𝐹‘𝑥)} = ∅) |
32 | 30, 31 | sylan9eqr 2800 | . . . . 5 ⊢ ((𝜑 ∧ 𝐴 = +∞) → {𝑥 ∈ 𝐷 ∣ 𝐴 < (𝐹‘𝑥)} = ∅) |
33 | 19 | dmexd 7752 | . . . . . . . . 9 ⊢ (𝜑 → dom 𝐹 ∈ V) |
34 | 3, 33 | eqeltrid 2843 | . . . . . . . 8 ⊢ (𝜑 → 𝐷 ∈ V) |
35 | eqid 2738 | . . . . . . . 8 ⊢ (𝑆 ↾t 𝐷) = (𝑆 ↾t 𝐷) | |
36 | 18, 34, 35 | subsalsal 43898 | . . . . . . 7 ⊢ (𝜑 → (𝑆 ↾t 𝐷) ∈ SAlg) |
37 | 36 | 0sald 43889 | . . . . . 6 ⊢ (𝜑 → ∅ ∈ (𝑆 ↾t 𝐷)) |
38 | 37 | adantr 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝐴 = +∞) → ∅ ∈ (𝑆 ↾t 𝐷)) |
39 | 32, 38 | eqeltrd 2839 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 = +∞) → {𝑥 ∈ 𝐷 ∣ 𝐴 < (𝐹‘𝑥)} ∈ (𝑆 ↾t 𝐷)) |
40 | 39 | adantlr 712 | . . 3 ⊢ (((𝜑 ∧ 𝐴 ≠ -∞) ∧ 𝐴 = +∞) → {𝑥 ∈ 𝐷 ∣ 𝐴 < (𝐹‘𝑥)} ∈ (𝑆 ↾t 𝐷)) |
41 | simpll 764 | . . . 4 ⊢ (((𝜑 ∧ 𝐴 ≠ -∞) ∧ ¬ 𝐴 = +∞) → 𝜑) | |
42 | smfpimgtxr.a | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ ℝ*) | |
43 | 41, 42 | syl 17 | . . . . 5 ⊢ (((𝜑 ∧ 𝐴 ≠ -∞) ∧ ¬ 𝐴 = +∞) → 𝐴 ∈ ℝ*) |
44 | simplr 766 | . . . . 5 ⊢ (((𝜑 ∧ 𝐴 ≠ -∞) ∧ ¬ 𝐴 = +∞) → 𝐴 ≠ -∞) | |
45 | neqne 2951 | . . . . . 6 ⊢ (¬ 𝐴 = +∞ → 𝐴 ≠ +∞) | |
46 | 45 | adantl 482 | . . . . 5 ⊢ (((𝜑 ∧ 𝐴 ≠ -∞) ∧ ¬ 𝐴 = +∞) → 𝐴 ≠ +∞) |
47 | 43, 44, 46 | xrred 42904 | . . . 4 ⊢ (((𝜑 ∧ 𝐴 ≠ -∞) ∧ ¬ 𝐴 = +∞) → 𝐴 ∈ ℝ) |
48 | 18 | adantr 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝐴 ∈ ℝ) → 𝑆 ∈ SAlg) |
49 | 19 | adantr 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝐴 ∈ ℝ) → 𝐹 ∈ (SMblFn‘𝑆)) |
50 | simpr 485 | . . . . 5 ⊢ ((𝜑 ∧ 𝐴 ∈ ℝ) → 𝐴 ∈ ℝ) | |
51 | 4, 48, 49, 3, 50 | smfpreimagtf 44303 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 ∈ ℝ) → {𝑥 ∈ 𝐷 ∣ 𝐴 < (𝐹‘𝑥)} ∈ (𝑆 ↾t 𝐷)) |
52 | 41, 47, 51 | syl2anc 584 | . . 3 ⊢ (((𝜑 ∧ 𝐴 ≠ -∞) ∧ ¬ 𝐴 = +∞) → {𝑥 ∈ 𝐷 ∣ 𝐴 < (𝐹‘𝑥)} ∈ (𝑆 ↾t 𝐷)) |
53 | 40, 52 | pm2.61dan 810 | . 2 ⊢ ((𝜑 ∧ 𝐴 ≠ -∞) → {𝑥 ∈ 𝐷 ∣ 𝐴 < (𝐹‘𝑥)} ∈ (𝑆 ↾t 𝐷)) |
54 | 28, 53 | pm2.61dane 3032 | 1 ⊢ (𝜑 → {𝑥 ∈ 𝐷 ∣ 𝐴 < (𝐹‘𝑥)} ∈ (𝑆 ↾t 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 Ⅎwnfc 2887 ≠ wne 2943 {crab 3068 Vcvv 3432 ∅c0 4256 class class class wbr 5074 dom cdm 5589 ‘cfv 6433 (class class class)co 7275 ℝcr 10870 +∞cpnf 11006 -∞cmnf 11007 ℝ*cxr 11008 < clt 11009 ↾t crest 17131 SAlgcsalg 43849 SMblFncsmblfn 44233 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-inf2 9399 ax-cc 10191 ax-ac2 10219 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 ax-pre-sup 10949 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-iin 4927 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-se 5545 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-isom 6442 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-er 8498 df-map 8617 df-pm 8618 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-sup 9201 df-inf 9202 df-card 9697 df-acn 9700 df-ac 9872 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-n0 12234 df-z 12320 df-uz 12583 df-q 12689 df-rp 12731 df-ioo 13083 df-ico 13085 df-fl 13512 df-rest 17133 df-salg 43850 df-smblfn 44234 |
This theorem is referenced by: smfpimgtxrmpt 44319 |
Copyright terms: Public domain | W3C validator |