Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smfpimgtxr Structured version   Visualization version   GIF version

Theorem smfpimgtxr 45011
Description: Given a function measurable w.r.t. to a sigma-algebra, the preimage of an open interval unbounded above is in the subspace sigma-algebra induced by its domain. (Contributed by Glauco Siliprandi, 26-Jun-2021.) (Revised by Glauco Siliprandi, 15-Dec-2024.)
Hypotheses
Ref Expression
smfpimgtxr.x 𝑥𝐹
smfpimgtxr.s (𝜑𝑆 ∈ SAlg)
smfpimgtxr.f (𝜑𝐹 ∈ (SMblFn‘𝑆))
smfpimgtxr.d 𝐷 = dom 𝐹
smfpimgtxr.a (𝜑𝐴 ∈ ℝ*)
Assertion
Ref Expression
smfpimgtxr (𝜑 → {𝑥𝐷𝐴 < (𝐹𝑥)} ∈ (𝑆t 𝐷))
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝐷(𝑥)   𝑆(𝑥)   𝐹(𝑥)

Proof of Theorem smfpimgtxr
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 breq1 5108 . . . . 5 (𝐴 = -∞ → (𝐴 < (𝐹𝑥) ↔ -∞ < (𝐹𝑥)))
21rabbidv 3415 . . . 4 (𝐴 = -∞ → {𝑥𝐷𝐴 < (𝐹𝑥)} = {𝑥𝐷 ∣ -∞ < (𝐹𝑥)})
3 smfpimgtxr.d . . . . . . 7 𝐷 = dom 𝐹
4 smfpimgtxr.x . . . . . . . 8 𝑥𝐹
54nfdm 5906 . . . . . . 7 𝑥dom 𝐹
63, 5nfcxfr 2905 . . . . . 6 𝑥𝐷
7 nfcv 2907 . . . . . 6 𝑦𝐷
8 nfv 1917 . . . . . 6 𝑦-∞ < (𝐹𝑥)
9 nfcv 2907 . . . . . . 7 𝑥-∞
10 nfcv 2907 . . . . . . 7 𝑥 <
11 nfcv 2907 . . . . . . . 8 𝑥𝑦
124, 11nffv 6852 . . . . . . 7 𝑥(𝐹𝑦)
139, 10, 12nfbr 5152 . . . . . 6 𝑥-∞ < (𝐹𝑦)
14 fveq2 6842 . . . . . . 7 (𝑥 = 𝑦 → (𝐹𝑥) = (𝐹𝑦))
1514breq2d 5117 . . . . . 6 (𝑥 = 𝑦 → (-∞ < (𝐹𝑥) ↔ -∞ < (𝐹𝑦)))
166, 7, 8, 13, 15cbvrabw 3439 . . . . 5 {𝑥𝐷 ∣ -∞ < (𝐹𝑥)} = {𝑦𝐷 ∣ -∞ < (𝐹𝑦)}
17 nfv 1917 . . . . . 6 𝑦𝜑
18 smfpimgtxr.s . . . . . . . 8 (𝜑𝑆 ∈ SAlg)
19 smfpimgtxr.f . . . . . . . 8 (𝜑𝐹 ∈ (SMblFn‘𝑆))
2018, 19, 3smff 44963 . . . . . . 7 (𝜑𝐹:𝐷⟶ℝ)
2120ffvelcdmda 7035 . . . . . 6 ((𝜑𝑦𝐷) → (𝐹𝑦) ∈ ℝ)
2217, 21pimgtmnf 44954 . . . . 5 (𝜑 → {𝑦𝐷 ∣ -∞ < (𝐹𝑦)} = 𝐷)
2316, 22eqtrid 2788 . . . 4 (𝜑 → {𝑥𝐷 ∣ -∞ < (𝐹𝑥)} = 𝐷)
242, 23sylan9eqr 2798 . . 3 ((𝜑𝐴 = -∞) → {𝑥𝐷𝐴 < (𝐹𝑥)} = 𝐷)
2518, 19, 3smfdmss 44964 . . . . 5 (𝜑𝐷 𝑆)
2618, 25subsaluni 44591 . . . 4 (𝜑𝐷 ∈ (𝑆t 𝐷))
2726adantr 481 . . 3 ((𝜑𝐴 = -∞) → 𝐷 ∈ (𝑆t 𝐷))
2824, 27eqeltrd 2838 . 2 ((𝜑𝐴 = -∞) → {𝑥𝐷𝐴 < (𝐹𝑥)} ∈ (𝑆t 𝐷))
29 breq1 5108 . . . . . . 7 (𝐴 = +∞ → (𝐴 < (𝐹𝑥) ↔ +∞ < (𝐹𝑥)))
3029rabbidv 3415 . . . . . 6 (𝐴 = +∞ → {𝑥𝐷𝐴 < (𝐹𝑥)} = {𝑥𝐷 ∣ +∞ < (𝐹𝑥)})
314, 6, 20pimgtpnf2f 44936 . . . . . 6 (𝜑 → {𝑥𝐷 ∣ +∞ < (𝐹𝑥)} = ∅)
3230, 31sylan9eqr 2798 . . . . 5 ((𝜑𝐴 = +∞) → {𝑥𝐷𝐴 < (𝐹𝑥)} = ∅)
3319dmexd 7842 . . . . . . . . 9 (𝜑 → dom 𝐹 ∈ V)
343, 33eqeltrid 2842 . . . . . . . 8 (𝜑𝐷 ∈ V)
35 eqid 2736 . . . . . . . 8 (𝑆t 𝐷) = (𝑆t 𝐷)
3618, 34, 35subsalsal 44590 . . . . . . 7 (𝜑 → (𝑆t 𝐷) ∈ SAlg)
37360sald 44581 . . . . . 6 (𝜑 → ∅ ∈ (𝑆t 𝐷))
3837adantr 481 . . . . 5 ((𝜑𝐴 = +∞) → ∅ ∈ (𝑆t 𝐷))
3932, 38eqeltrd 2838 . . . 4 ((𝜑𝐴 = +∞) → {𝑥𝐷𝐴 < (𝐹𝑥)} ∈ (𝑆t 𝐷))
4039adantlr 713 . . 3 (((𝜑𝐴 ≠ -∞) ∧ 𝐴 = +∞) → {𝑥𝐷𝐴 < (𝐹𝑥)} ∈ (𝑆t 𝐷))
41 simpll 765 . . . 4 (((𝜑𝐴 ≠ -∞) ∧ ¬ 𝐴 = +∞) → 𝜑)
42 smfpimgtxr.a . . . . . 6 (𝜑𝐴 ∈ ℝ*)
4341, 42syl 17 . . . . 5 (((𝜑𝐴 ≠ -∞) ∧ ¬ 𝐴 = +∞) → 𝐴 ∈ ℝ*)
44 simplr 767 . . . . 5 (((𝜑𝐴 ≠ -∞) ∧ ¬ 𝐴 = +∞) → 𝐴 ≠ -∞)
45 neqne 2951 . . . . . 6 𝐴 = +∞ → 𝐴 ≠ +∞)
4645adantl 482 . . . . 5 (((𝜑𝐴 ≠ -∞) ∧ ¬ 𝐴 = +∞) → 𝐴 ≠ +∞)
4743, 44, 46xrred 43589 . . . 4 (((𝜑𝐴 ≠ -∞) ∧ ¬ 𝐴 = +∞) → 𝐴 ∈ ℝ)
4818adantr 481 . . . . 5 ((𝜑𝐴 ∈ ℝ) → 𝑆 ∈ SAlg)
4919adantr 481 . . . . 5 ((𝜑𝐴 ∈ ℝ) → 𝐹 ∈ (SMblFn‘𝑆))
50 simpr 485 . . . . 5 ((𝜑𝐴 ∈ ℝ) → 𝐴 ∈ ℝ)
514, 48, 49, 3, 50smfpreimagtf 44999 . . . 4 ((𝜑𝐴 ∈ ℝ) → {𝑥𝐷𝐴 < (𝐹𝑥)} ∈ (𝑆t 𝐷))
5241, 47, 51syl2anc 584 . . 3 (((𝜑𝐴 ≠ -∞) ∧ ¬ 𝐴 = +∞) → {𝑥𝐷𝐴 < (𝐹𝑥)} ∈ (𝑆t 𝐷))
5340, 52pm2.61dan 811 . 2 ((𝜑𝐴 ≠ -∞) → {𝑥𝐷𝐴 < (𝐹𝑥)} ∈ (𝑆t 𝐷))
5428, 53pm2.61dane 3032 1 (𝜑 → {𝑥𝐷𝐴 < (𝐹𝑥)} ∈ (𝑆t 𝐷))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1541  wcel 2106  wnfc 2887  wne 2943  {crab 3407  Vcvv 3445  c0 4282   class class class wbr 5105  dom cdm 5633  cfv 6496  (class class class)co 7357  cr 11050  +∞cpnf 11186  -∞cmnf 11187  *cxr 11188   < clt 11189  t crest 17302  SAlgcsalg 44539  SMblFncsmblfn 44926
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-inf2 9577  ax-cc 10371  ax-ac2 10399  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-iin 4957  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-er 8648  df-map 8767  df-pm 8768  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-sup 9378  df-inf 9379  df-card 9875  df-acn 9878  df-ac 10052  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-n0 12414  df-z 12500  df-uz 12764  df-q 12874  df-rp 12916  df-ioo 13268  df-ico 13270  df-fl 13697  df-rest 17304  df-salg 44540  df-smblfn 44927
This theorem is referenced by:  smfpimgtxrmptf  45015  smfpimne  45070  smfinfdmmbllem  45079
  Copyright terms: Public domain W3C validator