| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > smfpimgtxr | Structured version Visualization version GIF version | ||
| Description: Given a function measurable w.r.t. to a sigma-algebra, the preimage of an open interval unbounded above is in the subspace sigma-algebra induced by its domain. (Contributed by Glauco Siliprandi, 26-Jun-2021.) (Revised by Glauco Siliprandi, 15-Dec-2024.) |
| Ref | Expression |
|---|---|
| smfpimgtxr.x | ⊢ Ⅎ𝑥𝐹 |
| smfpimgtxr.s | ⊢ (𝜑 → 𝑆 ∈ SAlg) |
| smfpimgtxr.f | ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝑆)) |
| smfpimgtxr.d | ⊢ 𝐷 = dom 𝐹 |
| smfpimgtxr.a | ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
| Ref | Expression |
|---|---|
| smfpimgtxr | ⊢ (𝜑 → {𝑥 ∈ 𝐷 ∣ 𝐴 < (𝐹‘𝑥)} ∈ (𝑆 ↾t 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq1 5098 | . . . . 5 ⊢ (𝐴 = -∞ → (𝐴 < (𝐹‘𝑥) ↔ -∞ < (𝐹‘𝑥))) | |
| 2 | 1 | rabbidv 3403 | . . . 4 ⊢ (𝐴 = -∞ → {𝑥 ∈ 𝐷 ∣ 𝐴 < (𝐹‘𝑥)} = {𝑥 ∈ 𝐷 ∣ -∞ < (𝐹‘𝑥)}) |
| 3 | smfpimgtxr.d | . . . . . . 7 ⊢ 𝐷 = dom 𝐹 | |
| 4 | smfpimgtxr.x | . . . . . . . 8 ⊢ Ⅎ𝑥𝐹 | |
| 5 | 4 | nfdm 5897 | . . . . . . 7 ⊢ Ⅎ𝑥dom 𝐹 |
| 6 | 3, 5 | nfcxfr 2893 | . . . . . 6 ⊢ Ⅎ𝑥𝐷 |
| 7 | nfcv 2895 | . . . . . 6 ⊢ Ⅎ𝑦𝐷 | |
| 8 | nfv 1915 | . . . . . 6 ⊢ Ⅎ𝑦-∞ < (𝐹‘𝑥) | |
| 9 | nfcv 2895 | . . . . . . 7 ⊢ Ⅎ𝑥-∞ | |
| 10 | nfcv 2895 | . . . . . . 7 ⊢ Ⅎ𝑥 < | |
| 11 | nfcv 2895 | . . . . . . . 8 ⊢ Ⅎ𝑥𝑦 | |
| 12 | 4, 11 | nffv 6840 | . . . . . . 7 ⊢ Ⅎ𝑥(𝐹‘𝑦) |
| 13 | 9, 10, 12 | nfbr 5142 | . . . . . 6 ⊢ Ⅎ𝑥-∞ < (𝐹‘𝑦) |
| 14 | fveq2 6830 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → (𝐹‘𝑥) = (𝐹‘𝑦)) | |
| 15 | 14 | breq2d 5107 | . . . . . 6 ⊢ (𝑥 = 𝑦 → (-∞ < (𝐹‘𝑥) ↔ -∞ < (𝐹‘𝑦))) |
| 16 | 6, 7, 8, 13, 15 | cbvrabw 3431 | . . . . 5 ⊢ {𝑥 ∈ 𝐷 ∣ -∞ < (𝐹‘𝑥)} = {𝑦 ∈ 𝐷 ∣ -∞ < (𝐹‘𝑦)} |
| 17 | nfv 1915 | . . . . . 6 ⊢ Ⅎ𝑦𝜑 | |
| 18 | smfpimgtxr.s | . . . . . . . 8 ⊢ (𝜑 → 𝑆 ∈ SAlg) | |
| 19 | smfpimgtxr.f | . . . . . . . 8 ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝑆)) | |
| 20 | 18, 19, 3 | smff 46857 | . . . . . . 7 ⊢ (𝜑 → 𝐹:𝐷⟶ℝ) |
| 21 | 20 | ffvelcdmda 7025 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → (𝐹‘𝑦) ∈ ℝ) |
| 22 | 17, 21 | pimgtmnf 46848 | . . . . 5 ⊢ (𝜑 → {𝑦 ∈ 𝐷 ∣ -∞ < (𝐹‘𝑦)} = 𝐷) |
| 23 | 16, 22 | eqtrid 2780 | . . . 4 ⊢ (𝜑 → {𝑥 ∈ 𝐷 ∣ -∞ < (𝐹‘𝑥)} = 𝐷) |
| 24 | 2, 23 | sylan9eqr 2790 | . . 3 ⊢ ((𝜑 ∧ 𝐴 = -∞) → {𝑥 ∈ 𝐷 ∣ 𝐴 < (𝐹‘𝑥)} = 𝐷) |
| 25 | 18, 19, 3 | smfdmss 46858 | . . . . 5 ⊢ (𝜑 → 𝐷 ⊆ ∪ 𝑆) |
| 26 | 18, 25 | subsaluni 46485 | . . . 4 ⊢ (𝜑 → 𝐷 ∈ (𝑆 ↾t 𝐷)) |
| 27 | 26 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝐴 = -∞) → 𝐷 ∈ (𝑆 ↾t 𝐷)) |
| 28 | 24, 27 | eqeltrd 2833 | . 2 ⊢ ((𝜑 ∧ 𝐴 = -∞) → {𝑥 ∈ 𝐷 ∣ 𝐴 < (𝐹‘𝑥)} ∈ (𝑆 ↾t 𝐷)) |
| 29 | breq1 5098 | . . . . . . 7 ⊢ (𝐴 = +∞ → (𝐴 < (𝐹‘𝑥) ↔ +∞ < (𝐹‘𝑥))) | |
| 30 | 29 | rabbidv 3403 | . . . . . 6 ⊢ (𝐴 = +∞ → {𝑥 ∈ 𝐷 ∣ 𝐴 < (𝐹‘𝑥)} = {𝑥 ∈ 𝐷 ∣ +∞ < (𝐹‘𝑥)}) |
| 31 | 4, 6, 20 | pimgtpnf2f 46830 | . . . . . 6 ⊢ (𝜑 → {𝑥 ∈ 𝐷 ∣ +∞ < (𝐹‘𝑥)} = ∅) |
| 32 | 30, 31 | sylan9eqr 2790 | . . . . 5 ⊢ ((𝜑 ∧ 𝐴 = +∞) → {𝑥 ∈ 𝐷 ∣ 𝐴 < (𝐹‘𝑥)} = ∅) |
| 33 | 19 | dmexd 7841 | . . . . . . . . 9 ⊢ (𝜑 → dom 𝐹 ∈ V) |
| 34 | 3, 33 | eqeltrid 2837 | . . . . . . . 8 ⊢ (𝜑 → 𝐷 ∈ V) |
| 35 | eqid 2733 | . . . . . . . 8 ⊢ (𝑆 ↾t 𝐷) = (𝑆 ↾t 𝐷) | |
| 36 | 18, 34, 35 | subsalsal 46484 | . . . . . . 7 ⊢ (𝜑 → (𝑆 ↾t 𝐷) ∈ SAlg) |
| 37 | 36 | 0sald 46475 | . . . . . 6 ⊢ (𝜑 → ∅ ∈ (𝑆 ↾t 𝐷)) |
| 38 | 37 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝐴 = +∞) → ∅ ∈ (𝑆 ↾t 𝐷)) |
| 39 | 32, 38 | eqeltrd 2833 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 = +∞) → {𝑥 ∈ 𝐷 ∣ 𝐴 < (𝐹‘𝑥)} ∈ (𝑆 ↾t 𝐷)) |
| 40 | 39 | adantlr 715 | . . 3 ⊢ (((𝜑 ∧ 𝐴 ≠ -∞) ∧ 𝐴 = +∞) → {𝑥 ∈ 𝐷 ∣ 𝐴 < (𝐹‘𝑥)} ∈ (𝑆 ↾t 𝐷)) |
| 41 | simpll 766 | . . . 4 ⊢ (((𝜑 ∧ 𝐴 ≠ -∞) ∧ ¬ 𝐴 = +∞) → 𝜑) | |
| 42 | smfpimgtxr.a | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ ℝ*) | |
| 43 | 41, 42 | syl 17 | . . . . 5 ⊢ (((𝜑 ∧ 𝐴 ≠ -∞) ∧ ¬ 𝐴 = +∞) → 𝐴 ∈ ℝ*) |
| 44 | simplr 768 | . . . . 5 ⊢ (((𝜑 ∧ 𝐴 ≠ -∞) ∧ ¬ 𝐴 = +∞) → 𝐴 ≠ -∞) | |
| 45 | neqne 2937 | . . . . . 6 ⊢ (¬ 𝐴 = +∞ → 𝐴 ≠ +∞) | |
| 46 | 45 | adantl 481 | . . . . 5 ⊢ (((𝜑 ∧ 𝐴 ≠ -∞) ∧ ¬ 𝐴 = +∞) → 𝐴 ≠ +∞) |
| 47 | 43, 44, 46 | xrred 45490 | . . . 4 ⊢ (((𝜑 ∧ 𝐴 ≠ -∞) ∧ ¬ 𝐴 = +∞) → 𝐴 ∈ ℝ) |
| 48 | 18 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝐴 ∈ ℝ) → 𝑆 ∈ SAlg) |
| 49 | 19 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝐴 ∈ ℝ) → 𝐹 ∈ (SMblFn‘𝑆)) |
| 50 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝐴 ∈ ℝ) → 𝐴 ∈ ℝ) | |
| 51 | 4, 48, 49, 3, 50 | smfpreimagtf 46893 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 ∈ ℝ) → {𝑥 ∈ 𝐷 ∣ 𝐴 < (𝐹‘𝑥)} ∈ (𝑆 ↾t 𝐷)) |
| 52 | 41, 47, 51 | syl2anc 584 | . . 3 ⊢ (((𝜑 ∧ 𝐴 ≠ -∞) ∧ ¬ 𝐴 = +∞) → {𝑥 ∈ 𝐷 ∣ 𝐴 < (𝐹‘𝑥)} ∈ (𝑆 ↾t 𝐷)) |
| 53 | 40, 52 | pm2.61dan 812 | . 2 ⊢ ((𝜑 ∧ 𝐴 ≠ -∞) → {𝑥 ∈ 𝐷 ∣ 𝐴 < (𝐹‘𝑥)} ∈ (𝑆 ↾t 𝐷)) |
| 54 | 28, 53 | pm2.61dane 3016 | 1 ⊢ (𝜑 → {𝑥 ∈ 𝐷 ∣ 𝐴 < (𝐹‘𝑥)} ∈ (𝑆 ↾t 𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 Ⅎwnfc 2880 ≠ wne 2929 {crab 3396 Vcvv 3437 ∅c0 4282 class class class wbr 5095 dom cdm 5621 ‘cfv 6488 (class class class)co 7354 ℝcr 11014 +∞cpnf 11152 -∞cmnf 11153 ℝ*cxr 11154 < clt 11155 ↾t crest 17328 SAlgcsalg 46433 SMblFncsmblfn 46820 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7676 ax-inf2 9540 ax-cc 10335 ax-ac2 10363 ax-cnex 11071 ax-resscn 11072 ax-1cn 11073 ax-icn 11074 ax-addcl 11075 ax-addrcl 11076 ax-mulcl 11077 ax-mulrcl 11078 ax-mulcom 11079 ax-addass 11080 ax-mulass 11081 ax-distr 11082 ax-i2m1 11083 ax-1ne0 11084 ax-1rid 11085 ax-rnegex 11086 ax-rrecex 11087 ax-cnre 11088 ax-pre-lttri 11089 ax-pre-lttrn 11090 ax-pre-ltadd 11091 ax-pre-mulgt0 11092 ax-pre-sup 11093 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-iin 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-se 5575 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6255 df-ord 6316 df-on 6317 df-lim 6318 df-suc 6319 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-isom 6497 df-riota 7311 df-ov 7357 df-oprab 7358 df-mpo 7359 df-om 7805 df-1st 7929 df-2nd 7930 df-frecs 8219 df-wrecs 8250 df-recs 8299 df-rdg 8337 df-1o 8393 df-er 8630 df-map 8760 df-pm 8761 df-en 8878 df-dom 8879 df-sdom 8880 df-fin 8881 df-sup 9335 df-inf 9336 df-card 9841 df-acn 9844 df-ac 10016 df-pnf 11157 df-mnf 11158 df-xr 11159 df-ltxr 11160 df-le 11161 df-sub 11355 df-neg 11356 df-div 11784 df-nn 12135 df-n0 12391 df-z 12478 df-uz 12741 df-q 12851 df-rp 12895 df-ioo 13253 df-ico 13255 df-fl 13700 df-rest 17330 df-salg 46434 df-smblfn 46821 |
| This theorem is referenced by: smfpimgtxrmptf 46909 smfpimne 46964 smfinfdmmbllem 46973 |
| Copyright terms: Public domain | W3C validator |