| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > smfpimgtxr | Structured version Visualization version GIF version | ||
| Description: Given a function measurable w.r.t. to a sigma-algebra, the preimage of an open interval unbounded above is in the subspace sigma-algebra induced by its domain. (Contributed by Glauco Siliprandi, 26-Jun-2021.) (Revised by Glauco Siliprandi, 15-Dec-2024.) |
| Ref | Expression |
|---|---|
| smfpimgtxr.x | ⊢ Ⅎ𝑥𝐹 |
| smfpimgtxr.s | ⊢ (𝜑 → 𝑆 ∈ SAlg) |
| smfpimgtxr.f | ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝑆)) |
| smfpimgtxr.d | ⊢ 𝐷 = dom 𝐹 |
| smfpimgtxr.a | ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
| Ref | Expression |
|---|---|
| smfpimgtxr | ⊢ (𝜑 → {𝑥 ∈ 𝐷 ∣ 𝐴 < (𝐹‘𝑥)} ∈ (𝑆 ↾t 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq1 5110 | . . . . 5 ⊢ (𝐴 = -∞ → (𝐴 < (𝐹‘𝑥) ↔ -∞ < (𝐹‘𝑥))) | |
| 2 | 1 | rabbidv 3413 | . . . 4 ⊢ (𝐴 = -∞ → {𝑥 ∈ 𝐷 ∣ 𝐴 < (𝐹‘𝑥)} = {𝑥 ∈ 𝐷 ∣ -∞ < (𝐹‘𝑥)}) |
| 3 | smfpimgtxr.d | . . . . . . 7 ⊢ 𝐷 = dom 𝐹 | |
| 4 | smfpimgtxr.x | . . . . . . . 8 ⊢ Ⅎ𝑥𝐹 | |
| 5 | 4 | nfdm 5915 | . . . . . . 7 ⊢ Ⅎ𝑥dom 𝐹 |
| 6 | 3, 5 | nfcxfr 2889 | . . . . . 6 ⊢ Ⅎ𝑥𝐷 |
| 7 | nfcv 2891 | . . . . . 6 ⊢ Ⅎ𝑦𝐷 | |
| 8 | nfv 1914 | . . . . . 6 ⊢ Ⅎ𝑦-∞ < (𝐹‘𝑥) | |
| 9 | nfcv 2891 | . . . . . . 7 ⊢ Ⅎ𝑥-∞ | |
| 10 | nfcv 2891 | . . . . . . 7 ⊢ Ⅎ𝑥 < | |
| 11 | nfcv 2891 | . . . . . . . 8 ⊢ Ⅎ𝑥𝑦 | |
| 12 | 4, 11 | nffv 6868 | . . . . . . 7 ⊢ Ⅎ𝑥(𝐹‘𝑦) |
| 13 | 9, 10, 12 | nfbr 5154 | . . . . . 6 ⊢ Ⅎ𝑥-∞ < (𝐹‘𝑦) |
| 14 | fveq2 6858 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → (𝐹‘𝑥) = (𝐹‘𝑦)) | |
| 15 | 14 | breq2d 5119 | . . . . . 6 ⊢ (𝑥 = 𝑦 → (-∞ < (𝐹‘𝑥) ↔ -∞ < (𝐹‘𝑦))) |
| 16 | 6, 7, 8, 13, 15 | cbvrabw 3441 | . . . . 5 ⊢ {𝑥 ∈ 𝐷 ∣ -∞ < (𝐹‘𝑥)} = {𝑦 ∈ 𝐷 ∣ -∞ < (𝐹‘𝑦)} |
| 17 | nfv 1914 | . . . . . 6 ⊢ Ⅎ𝑦𝜑 | |
| 18 | smfpimgtxr.s | . . . . . . . 8 ⊢ (𝜑 → 𝑆 ∈ SAlg) | |
| 19 | smfpimgtxr.f | . . . . . . . 8 ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝑆)) | |
| 20 | 18, 19, 3 | smff 46730 | . . . . . . 7 ⊢ (𝜑 → 𝐹:𝐷⟶ℝ) |
| 21 | 20 | ffvelcdmda 7056 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → (𝐹‘𝑦) ∈ ℝ) |
| 22 | 17, 21 | pimgtmnf 46721 | . . . . 5 ⊢ (𝜑 → {𝑦 ∈ 𝐷 ∣ -∞ < (𝐹‘𝑦)} = 𝐷) |
| 23 | 16, 22 | eqtrid 2776 | . . . 4 ⊢ (𝜑 → {𝑥 ∈ 𝐷 ∣ -∞ < (𝐹‘𝑥)} = 𝐷) |
| 24 | 2, 23 | sylan9eqr 2786 | . . 3 ⊢ ((𝜑 ∧ 𝐴 = -∞) → {𝑥 ∈ 𝐷 ∣ 𝐴 < (𝐹‘𝑥)} = 𝐷) |
| 25 | 18, 19, 3 | smfdmss 46731 | . . . . 5 ⊢ (𝜑 → 𝐷 ⊆ ∪ 𝑆) |
| 26 | 18, 25 | subsaluni 46358 | . . . 4 ⊢ (𝜑 → 𝐷 ∈ (𝑆 ↾t 𝐷)) |
| 27 | 26 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝐴 = -∞) → 𝐷 ∈ (𝑆 ↾t 𝐷)) |
| 28 | 24, 27 | eqeltrd 2828 | . 2 ⊢ ((𝜑 ∧ 𝐴 = -∞) → {𝑥 ∈ 𝐷 ∣ 𝐴 < (𝐹‘𝑥)} ∈ (𝑆 ↾t 𝐷)) |
| 29 | breq1 5110 | . . . . . . 7 ⊢ (𝐴 = +∞ → (𝐴 < (𝐹‘𝑥) ↔ +∞ < (𝐹‘𝑥))) | |
| 30 | 29 | rabbidv 3413 | . . . . . 6 ⊢ (𝐴 = +∞ → {𝑥 ∈ 𝐷 ∣ 𝐴 < (𝐹‘𝑥)} = {𝑥 ∈ 𝐷 ∣ +∞ < (𝐹‘𝑥)}) |
| 31 | 4, 6, 20 | pimgtpnf2f 46703 | . . . . . 6 ⊢ (𝜑 → {𝑥 ∈ 𝐷 ∣ +∞ < (𝐹‘𝑥)} = ∅) |
| 32 | 30, 31 | sylan9eqr 2786 | . . . . 5 ⊢ ((𝜑 ∧ 𝐴 = +∞) → {𝑥 ∈ 𝐷 ∣ 𝐴 < (𝐹‘𝑥)} = ∅) |
| 33 | 19 | dmexd 7879 | . . . . . . . . 9 ⊢ (𝜑 → dom 𝐹 ∈ V) |
| 34 | 3, 33 | eqeltrid 2832 | . . . . . . . 8 ⊢ (𝜑 → 𝐷 ∈ V) |
| 35 | eqid 2729 | . . . . . . . 8 ⊢ (𝑆 ↾t 𝐷) = (𝑆 ↾t 𝐷) | |
| 36 | 18, 34, 35 | subsalsal 46357 | . . . . . . 7 ⊢ (𝜑 → (𝑆 ↾t 𝐷) ∈ SAlg) |
| 37 | 36 | 0sald 46348 | . . . . . 6 ⊢ (𝜑 → ∅ ∈ (𝑆 ↾t 𝐷)) |
| 38 | 37 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝐴 = +∞) → ∅ ∈ (𝑆 ↾t 𝐷)) |
| 39 | 32, 38 | eqeltrd 2828 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 = +∞) → {𝑥 ∈ 𝐷 ∣ 𝐴 < (𝐹‘𝑥)} ∈ (𝑆 ↾t 𝐷)) |
| 40 | 39 | adantlr 715 | . . 3 ⊢ (((𝜑 ∧ 𝐴 ≠ -∞) ∧ 𝐴 = +∞) → {𝑥 ∈ 𝐷 ∣ 𝐴 < (𝐹‘𝑥)} ∈ (𝑆 ↾t 𝐷)) |
| 41 | simpll 766 | . . . 4 ⊢ (((𝜑 ∧ 𝐴 ≠ -∞) ∧ ¬ 𝐴 = +∞) → 𝜑) | |
| 42 | smfpimgtxr.a | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ ℝ*) | |
| 43 | 41, 42 | syl 17 | . . . . 5 ⊢ (((𝜑 ∧ 𝐴 ≠ -∞) ∧ ¬ 𝐴 = +∞) → 𝐴 ∈ ℝ*) |
| 44 | simplr 768 | . . . . 5 ⊢ (((𝜑 ∧ 𝐴 ≠ -∞) ∧ ¬ 𝐴 = +∞) → 𝐴 ≠ -∞) | |
| 45 | neqne 2933 | . . . . . 6 ⊢ (¬ 𝐴 = +∞ → 𝐴 ≠ +∞) | |
| 46 | 45 | adantl 481 | . . . . 5 ⊢ (((𝜑 ∧ 𝐴 ≠ -∞) ∧ ¬ 𝐴 = +∞) → 𝐴 ≠ +∞) |
| 47 | 43, 44, 46 | xrred 45361 | . . . 4 ⊢ (((𝜑 ∧ 𝐴 ≠ -∞) ∧ ¬ 𝐴 = +∞) → 𝐴 ∈ ℝ) |
| 48 | 18 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝐴 ∈ ℝ) → 𝑆 ∈ SAlg) |
| 49 | 19 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝐴 ∈ ℝ) → 𝐹 ∈ (SMblFn‘𝑆)) |
| 50 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝐴 ∈ ℝ) → 𝐴 ∈ ℝ) | |
| 51 | 4, 48, 49, 3, 50 | smfpreimagtf 46766 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 ∈ ℝ) → {𝑥 ∈ 𝐷 ∣ 𝐴 < (𝐹‘𝑥)} ∈ (𝑆 ↾t 𝐷)) |
| 52 | 41, 47, 51 | syl2anc 584 | . . 3 ⊢ (((𝜑 ∧ 𝐴 ≠ -∞) ∧ ¬ 𝐴 = +∞) → {𝑥 ∈ 𝐷 ∣ 𝐴 < (𝐹‘𝑥)} ∈ (𝑆 ↾t 𝐷)) |
| 53 | 40, 52 | pm2.61dan 812 | . 2 ⊢ ((𝜑 ∧ 𝐴 ≠ -∞) → {𝑥 ∈ 𝐷 ∣ 𝐴 < (𝐹‘𝑥)} ∈ (𝑆 ↾t 𝐷)) |
| 54 | 28, 53 | pm2.61dane 3012 | 1 ⊢ (𝜑 → {𝑥 ∈ 𝐷 ∣ 𝐴 < (𝐹‘𝑥)} ∈ (𝑆 ↾t 𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Ⅎwnfc 2876 ≠ wne 2925 {crab 3405 Vcvv 3447 ∅c0 4296 class class class wbr 5107 dom cdm 5638 ‘cfv 6511 (class class class)co 7387 ℝcr 11067 +∞cpnf 11205 -∞cmnf 11206 ℝ*cxr 11207 < clt 11208 ↾t crest 17383 SAlgcsalg 46306 SMblFncsmblfn 46693 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-inf2 9594 ax-cc 10388 ax-ac2 10416 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-pre-sup 11146 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-iin 4958 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-se 5592 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-isom 6520 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-er 8671 df-map 8801 df-pm 8802 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-sup 9393 df-inf 9394 df-card 9892 df-acn 9895 df-ac 10069 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-n0 12443 df-z 12530 df-uz 12794 df-q 12908 df-rp 12952 df-ioo 13310 df-ico 13312 df-fl 13754 df-rest 17385 df-salg 46307 df-smblfn 46694 |
| This theorem is referenced by: smfpimgtxrmptf 46782 smfpimne 46837 smfinfdmmbllem 46846 |
| Copyright terms: Public domain | W3C validator |